Slika 2. Valna duljina i amplituda vala

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Slika 2. Valna duljina i amplituda vala"

Transcript

1 Valovi i zvuk_intro Postanak i širenje vala u sredstvu, transverzalni i longitudinalni valovi, ovisnost brzine vala o svojstvima sredstva, faza točke vala i razlika u fazi dviju točaka vala, jednadžba ravnog vala i grafovi, zakon odbijanja i primjena na čvrstom i slobodnom kraju, zakon loma valova, konstruktivna i destruktivna interferencija i uvjeti nastanka, stojni val, nastanak i svojstva zvuka, infrazvuk i ultrazvuk, Dopplerov efekt za zvuk, svojstva i spektar elektromagnetskih valova Postanak i širenje vala u sredstvu Zamislimo kako jedan kraj dugačkog užeta držimo u ruci dok je drugi pričvršćen za zid. Ako stvaramo rukom trzaje na način gore-dolje dobit ćemo val koji se širi duž užeta, od ruke do zida. To je osnovna slika tzv. mehaničkog vala. Možemo reći da je val poremećaj sredstva koji se širi od točke do točke, a da pritom nemamo gibanje samog medija koji prenosi val. Isto tako, nedavno smo vidjeli valni poremećaj oceana - tsunami, koji je prešao tisuće kilometara ali pritom voda nije bila na tom putovanju. Voda je samo prenosila val - nažalost. Vratimo se na primjer s užetom (konopcem). Ako se pojava pažljivije promatra može se uočiti postojanje brijegova i dolova vala koji se doista prenose i zato govorimo o progresivnom valu. Takav val nam prikazuje slika 1. Slika 1. Progresivni val U bilo kojoj točki (x) duž užeta imamo nekakav vremenski ovisan vertikalni pomak y. Na slici 1. različit je u trenutku t1 od onog u t2. Pažljivijim gledanjem uočavamo da je y u trenutku t1 malo iznad horizontale (pozitivan), da bi u trenutku t2 došao ispod horizontale tj. postao negativan. Iz toga možemo zaključiti da vertikalni pomak y neke točke vala ovisi ne samo o x, već i o vremenu t. Prema tome će jednadžba koja opisuje y biti funkcija od x i t. U tom smislu mogući su problemi koji se rješavaju na sljedeći način: umjesto da gledamo na val u kojem se mijenjaju dvije varijable (x i t) mi ćemo samo jednoj varijabli dozvoliti promjenu. Time dobivamo dva slučaja, slučaj #1: x se mijenja, t se ne mijenja slučaj #2: t se mijenja, x se ne mijenja

2 slučaj #1: x se mijenja, t se ne mijenja Što mislimo pod time da se vrijeme t ne mijenja? Zamislimo fotografiju vala. U biti, slika 1. sadrži dva snapshota - prvi uzet u t1 i drugi malo poslije u t2. Sada nam vrijeme više ne igra ulogu (imamo ga na pretek i mirno možemo pogledati što val radi!). Kao prvo, val je prešao neku udaljenost x; nadalje, možemo vidjeti na kojim mjestima val ima najveći odmak iznad horizontale (to zovemo brijeg vala), te na kojima postiže najveći odmak ispod horizontale (to zovemo dol vala). Izmjena dolova i brijegova odvija se u pravilnim razmacima pa možemo definirati valnu duljinu vala - lambda (λ). Valna duljina jest najkraća udaljenost dva susjedna brijega vala (ili dola), ali se jednako tako može odrediti i na način prikazan slikom 2. Na slici je naznačena i amplituda vala. Mjerna jedinica za valnu duljinu i amplitudu jest metar, m. Slika 2. Valna duljina i amplituda vala slučaj #2: t se mijenja, x se ne mijenja Promatramo što se događa na nekoj odabranoj točki vala - x. Na toj poziciji točka vala se miče gore-dolje. Spomenimo sada da takav val nazivamo transverzalnim valom jer je smjer osciliranja točke okomit na smjer širenja vala. Možemo definirati period vala (T), kao vrijeme koje treba točki vala za potpunu vertikalnu oscilaciju (u tom vremenu prijeđe četiri amplitude). Također, na ovom mjestu uvodimo i frekvenciju vala (f): f=1/t. Mjerne jedinice su sljedeće: valna duljina (λ) - metar [m], amplituda (A) - metar [m], period (T) - sekunda [s] i frekvencija (f) - herc [Hz]. Val ima brzinu širenja (rasprostiranja) koju bilježimo s uobičajenom oznakom - v. Pritom vrijedi,

3 Još malo o brzini vala: ona ne ovisi o frekvenciji vala ili valnoj duljini već jedino o svojstvima sredstva koje prenosi val!! U našem primjeru s valom na užetu to znači sljedeće: ako povećamo frekvenciju vala (radimo rukom brže gore-dolje!) nećemo povećati brzinu vala, već ćemo smanjiti njegovu valnu duljinu. Transverzalni i longitudinalni valovi Već je spomenuta definicija transverzalnog vala - onaj val kojem čestice titraju okomito na smjer širenja vala. Ako čestice vala titraju u smjeru širenja vala govorimo o longitudinalnom valu. Ovisnost brzine vala o svojstvima sredstva Brzina vala na napetoj žici (užetu) O ovome samo kratko, dakle preko formule koja glasi pri čemu je FT sila napetosti u žici, µ=m/l (m - masa žice, L - duljina žice) koju nazivamo linearna gustoća kojoj je mjerna jedinica kg/m. Brzina transverzalnog vala u žici ovisi o fizikalnim osobinama žice - napetosti i linearnoj gustoći. Što se događa s valom kada prelazi iz jednog sredstva u drugo? Kada val prelazi iz jednog sredstva u drugo njegova frekvencija se ne mijenja. Za pojašnjenje ove tvrdnje uvodimo pojam valnih fronti. One nam predstavljaju što se događa s npr. brijegom vala. Takav prikaz nalazimo na slici 3. Slika 3. Valne fronte

4 Kada val ulazi u drugo sredstvo njegova brzina se mijenja. Pritom broj valnih fronti koje dolaze na granicu novog sredstva u jedinici vremena jednak je broju valnih fronti koje odlaze. To je u biti frekvencija vala. Time dolazi do promjene valne duljine. Takav slučaj nalazimo na slici 4. Slika 4. Prijelaz vala iz jednog sredstva u drugo Napomenimo da je razmak susjednih valnih fronti upravo valna duljina vala. Na koji način se mijenja valna duljina sa slike 4.? Faza točke vala i razlika u fazi dviju točaka vala Ponekad se za valnu duljinu vala kaže da predstavlja udaljenost dviju najbližih točaka vala koje titraju u istoj fazi, što znači na potpuno jednak način, ali na drugom mjestu. Dvije točke koje se nalaze na udaljenosti x1 i x2 od izvora vala imaju međusobnu razliku u fazi, odnosno pomak u fazi: = 2 x Jednadžba ravnog vala i grafovi gdje je Y0 amplituda vala, y elongacija (pomak iz ravnotežnog položaja) koje god točke koja se nalazi na udaljenosti x od izvora vala u bilo koje vrijeme t. Period vala jest T i valna duljina λ.

5 Zakon odbijanja valova i primjena na čvrstom i slobodnom kraju Slika 5. prikazuje odbijanje ravnih valova od prepreke na koju dolaze pod nekim kutem. Valovi se odbijaju pod jednakim kutem. Razmak susjednih valnih fronti govori nam da pri odbijanju nema promjene u valnoj duljini. Slika 5. Odbijanje valova Važan slučaj refleksije (odbijanja) nalazimo na slici 6. To je tzv. refleksija vala na čvrstom kraju prilikom koje imamo promjenu u fazi; brijeg se reflektira kao dol te je razlika u fazi π (180 o ). Slika 6. Refleksija vala na čvrstom kraju

6 Slika 7. prikazuje refleksiju vala na slobodnom kraju prilikom koje se brijeg vraća kao brijeg. Slika 7. Refleksija vala na slobodnom kraju Zakon loma valova Ovaj slučaj nalazimo npr. kada valovi prelaze iz dublje u pliću vodu. Valovima se mijenja smjer širenja ako dolaze pod nekim kutem na granicu, te brzina odnosno valna duljina (slika 8.). Slika 8. Lom valova

7 Konstruktivna i destruktivna interferencija Ukoliko se na nekom mjestu sretnu dva ili pak više valova, pomak bilo koje točke sredstva jednak je zbroju pomaka svakog pojedinog vala. To je superpozicija valova. Na slici 9. vidimo kako se dva pulsa šire duž napete žice jedan ususret drugom. Primjetimo da na mjestu gdje se preklapaju (interferiraju) imamo pojačanje, a potom se pulsevi nastavljaju gibati u smjerovima naznačenim na slici. Slika 9. Superpozicija valova Razlikujemo dva specijalna slučaja superpozicije valova: konstruktivnu i destruktivnu interferenciju.

8 Interferencija valova na vodi analizira se na slici 10. Slika 10. Eksperimentalni postav za analizu interferencije valova na vodi Pri analizi interferencijskih pojava koristimo i prikaz s valnim frontama (slika 11.). Slika 11. Analiza interferncije pomoću valnih fronti (S1,S2 - izvori valova)

9 Stojni val Vratimo se našem valu na užetu. Nakon što val stigne do zida, reflektira se (kako?) i potom vraća nazad. Možemo reći da uže sada podržava dva vala - onog kojeg mi stvaramo i onog koji se reflektira od zida. Sada vidimo superpoziciju tih dvaju valova koji imaju jednaku frekvenciju, amplitudu i valnu duljinu. Rezultantni val oscilira vertikalno i nazivamo ga stojnim valom. Desni kraj užeta privezan je za zid dok lijevi kraj oscilira zanemarivom amplitudom pa i njega možemo smatrati učvršćenim. Na nekim mjestima ta dva vala interferiraju destruktivno (to su točke N na slici 12.), dok na nekim konstruktivno (točke A). Ostale točke interferiraju između ta dva ekstremna slučaja. Ujedno ćemo istaknuti i bitnu razliku između progresivnih (putujućih) i stojnih valova - sve točke progresivnog vala postižu jednaku amplitudu dok u stojnom valu nije tako jer imamo točke koje miruju tj. nemaju uopće amplitudu. U hrvatskoj literaturi točke N (engl. nodes) nazivaju se čvorovi, a točke A (engl. antinodes) trbusi. Slika 12. Čvorovi i trbusi stojnog vala Čvorovi i trbusi stojnog vala međusobno se izmjenjuju i uvijek su jednako razmaknuti u tzv. modu u kojem imamo stojni val. Neki od modova koji mogu nastati na užetu duljine L prikazani su na slici 13. Slika 13. Modovi stojnog vala

10 U prvom stojnom valu vrijedi da je L=1 (λ/2), u drugom je L=2 (λ/2), u trećem je L=3 (λ/ 2) itd. Dolazimo do zaključka da stojni val na užetu može nastati ukoliko je zadovoljen uvjet da je L=n (λ/2), pri čemu je n prirodan broj. Ponekad govorimo o frekvencijama koje stvara stojni val. Kako je λ f=v, a brzina vala v ovisi o fizikalnim osobinama užeta, moguće je izvesti sljedeću formulu za frekvencije stojnog vala, tzv. harmoničke (rezonantne) frekvencije: Prema tome, na užetu ćemo dobiti stojni val ukoliko je frekvencija vala koji stvaramo rukom na lijevom kraju užeta jednaka nekoj rezonantnoj frekvenciji stojnog vala. Prvi stojni val kojemu je n=1 ima osnovnu frekvenciju f1. Može se matematički potvrditi da je frekvencija n-tog harmonika višekratnik osnovne frekvencije te vrijedi Nastanak i svojstva zvuka Zvučni valovi nastaju vibracijama bilo kakvog tijela, poput vibracija naših glasnica, gudenjem po gudalu itd. Takve vibracije izazivaju promjene u tlaku u sredstvu kojim se zvuk širi (plin, tekućina, čvrsto tijelo). Ako su frekvencije u granici od oko 20 Hz do 20 khz njih može detektirati naše uho. Zvuk frekvencije manje od 20 Hz naziva se infrazvuk, a one iznad Hz (20 khz) ultrazvuk. Nastanak i širenje zvuka prikazuje slika 14. Vidimo vibrirajuću opnu (poput one u zvučniku) koja stvara zvučni val u cijevi sa zrakom. Nastaju zgušnjenja i razrjeđenja zraka. Na mjestima zgušnjenja imamo velik broj molekula zraka prikazanih točkicama. Slika 14. Širenje zvuka Primjetimo da opna kao izvor zvučnog vala titra u smjeru širenja vala. Takve valove nazivamo longitudinalnim valovima. Analiza takvih valova u potpunosti jest jednaka kao i za dosad razmatrane transverzalne valove. Dakle, fizikalne veličine kao što su amplituda vala, valna duljina, period, frekvencija i brzina koristimo i za opis ovih valova.

11 Udaljenost susjednih zgušnjenja jest valna duljina (slika 15.) Slika 15. Valna duljina longitudinalnog zvučnog vala Intenzitet zvuka I (jakost zvuka) Jakost zvuka je energija E koju prenese zvučni val u jedinici vremena t kroz jediničnu površinu S okomitu na pravac širenja: Kako je snaga jednaka energija/vrijeme za jakost zvuka je mjerna jedinica W/m2. Najslabiji zvuk koji ljudsko uho može čuti ima jakost i zove se prag čujnosti ljudskog uha. Najjači zvuk koji ljudsko uho može čuti iznosi Razina jakosti zvuka je fizikalna veličina koja se često koristi umjesto jakosti zvuka. Zvuk jakosti I ima razinu jakosti zvuka danu s gdje je I0 prag čujnosti. Mjerna jedinica za razinu jakosti zvuka je decibel, db. Infrazvuk i ultrazvuk Zvuk frekvencije manje od 20 Hz naziva se infrazvuk, a zvuk frekvencije veće od 20 khz je ultrazvuk.

12 Dopplerov efekt za zvuk Ukoliko izvor zvuka i detektor miruju, frekvencija zvuka koju stvara izvor jednaka je frekvenciji zvuka koju registrira detektor. Valne fronte zvučnog vala koncentrične su kružnice. Međutim, ako postoji neko relativno gibanje izvora prema detektoru dolazi do promjene izgleda valnih fronti odnosno, bolje rečeno, dolazi do promjene frekvencije. Ova pojava naziva se Dopplerov efekt. Kada se izvor giba prema detektoru imamo više frekvencije zvuka na mjestu detektora, a valne fronte se zgušnjavaju. S druge pak strane, ako se izvor udaljava od detektora bilježimo niže frekvencije, a valne fronte se razrjeđuju.

13 Svojstva i spektar elektromagnetskih valova Kroz vakuum svi elektromagnetski valovi imaju jednaku brzinu neovisno o svojoj frekvenciji. c= m/s Podjela elektromagnetskih valova prema frekvenciji (valnoj duljini) naziva se elektromagnetski spektar. Granice pojedinih vrsta nisu dobro definirane (postoji i preklapanje područja). Za razliku od dosad spomenutih valova, elektromagnetski valovi mogu se širiti vakuumom. U elektomagnetskom valu okomito i u fazi titraju promjenjivo električno i magnetsko polje. Smjer širenja vala okomit je prema vektorima električnog i magnetskog polja.

Fizika 2. Fizikalna optika 2008/09

Fizika 2. Fizikalna optika 2008/09 Fizika 2 Fizikalna optika 2008/09 Što je svjetlost; što je priroda svjetlosti? U geometrijskoj optici: Svjetlost je pravocrtna pojava određene brzine u nekom sredstvu (optičkom sredstvu). U fizikalnoj

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Val je gibanje poremećaja nekog medija

Val je gibanje poremećaja nekog medija Valovi Što je val? - Svijet je pun valova: valovi na vodi, zvučni valovi, valovi na žici, seizmički valovi, elektromagnetski valovi - svjetlost, rentgenske zrake, gama zrake, uljatraljubičasta svjetlost,

Διαβάστε περισσότερα

Što je svjetlost? Svjetlost je elektromagnetski val

Što je svjetlost? Svjetlost je elektromagnetski val Optika Što je svjetlost? Svjetlost je elektromagnetski val Transvezalan Boja ovisi o valnoj duljini idljiva svjetlost (od 400 nm do 700 nm) Ljubičasta ( 400 nm) ima kradu valnu duljinu od crvene (700 nm)

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

V A L O V I. * pregled osnovnih pojmova *

V A L O V I. * pregled osnovnih pojmova * V A L O V I * pregled osnovnih pojmova * Val predstavlja prijenos energije titranja kroz prostor. Izvor vala svojim oscilacijama emitira energiju u okolinu. U prirodi postoje dvije vrste valova, mehanički

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)

šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) šupanijsko natjecanje iz zike 017/018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) U prvom vremenskom intervalu t 1 = 7 s automobil se giba jednoliko ubrzano ubrzanjem

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Interferencija svjetlosti

Interferencija svjetlosti Interferencija svjetlosti a) Interferencija valova (mehaničkih i svjetlosnih) je svojstvo algebarskog zbrajanja (pojačavanja i poništavanja) dva ili više vala. Na slici je prikazan val na vodi iz jednog

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Interferencija svjetlosti

Interferencija svjetlosti Interferencija svjetlosti a) Interferencija valova (mehaničkih i svjetlosnih) je svojstvo algebarskog zbrajanja (pojačavanja i poništavanja) dva ili više vala. Na slici je prikazan val na vodi iz jednog

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009.

Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009. Fakule elekoehnike, sojasva i bodogadnje Računasvo Fiika Audione vježbe - 7 lekomagneski valovi 15. avnja 9. Ivica Soić (Ivica.Soic@fesb.h) Mawellove jednadžbe inegalni i difeencijalni oblik 1.. 3. 4.

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Elektricitet i magnetizam. 2. Magnetizam

Elektricitet i magnetizam. 2. Magnetizam 2. Magnetizam Od Oersteda do Einsteina Zimi 1819/1820 Oersted je održao predavanja iz kolegija Elektricitet, galvanizam i magnetizam U to vrijeme izgledalo je kao da elektricitet i magnetizam nemaju ništa

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Fizika 2. Dr. sc. Damir Lelas. Predavanje 2 Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje titranja. Uvod u mehaničke valove.

Fizika 2. Dr. sc. Damir Lelas. Predavanje 2 Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje titranja. Uvod u mehaničke valove. Školska godina 008./009. Fakultet elektrotehnike, strojarstva i brodogradnje Razlikovni studiji (90/90/930/940/950) Fizika Predavanje Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

λ λ ν =. Zadatak 021 (Zoki, elektrotehnička škola) Dva zvučna vala imaju intenzitete 10 i 600 mw/cm 2. Za koliko se decibela razlikuju ta dva zvuka?

λ λ ν =. Zadatak 021 (Zoki, elektrotehnička škola) Dva zvučna vala imaju intenzitete 10 i 600 mw/cm 2. Za koliko se decibela razlikuju ta dva zvuka? Zadatak (Zoki, elektrotehnička škola) Da zučna ala iaju intenzitete i 5 W/c. Za koliko e decibela razlikuju ta da zuka? Rješenje I = W/c = W/, I = 5 W/c = 5 W/, I = - W/, L L =? Tražio razliku intenziteta

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Za teorijsko objašnjenje Youngova pokusa koristi se slika 2. Slika 2. uz teorijsko objašnjenje Youngovog pokusa

Za teorijsko objašnjenje Youngova pokusa koristi se slika 2. Slika 2. uz teorijsko objašnjenje Youngovog pokusa Valna optika_intro Interferencija svjetlosti, Youngov pokus, interferencija na tankim listićima, difrakcija svjetlosti na pukotini, optička rešetka, polarizacija svjetlosti, Brewsterov zakon Interferencija

Διαβάστε περισσότερα

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1 Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

IV godina 2005/06 J.Brnjas-Kraljević siječanj 2006

IV godina 2005/06 J.Brnjas-Kraljević siječanj 2006 V godina 005/06 J.Brnjas-Kraljević siječanj 006 Zvučni valovi zvučni val prijenos prijenos mehaničke energije kroz prostor - titranjem čestica elastičnog sredstva čujni zvuk - područje frekvencija 0 Hz

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

7. MEHANIČKI VALOVI I ZVUK

7. MEHANIČKI VALOVI I ZVUK ELEKTROTEHNIČKI FAKULTET SARAJEVO INŽENJERSKA FIZIKA I 7. MEHANIČKI VALOVI I ZVUK 7.1 Prostiranje valova u elastičnoj sredini Ako se na jednom mjestu elastične sredine (čvrste, tečne ili plinovite) izazovu

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

Vježba 16 1/17. Praktikum iz eksperimentalne nastave fizike 2. Fizika informatika

Vježba 16 1/17. Praktikum iz eksperimentalne nastave fizike 2. Fizika informatika 1/17 Praktikum iz eksperimentalne nastave fizike 2 Fizika informatika Vježba 16 16.1. ŠIRENJE VALA IZMEðU DVA NEPOMIČNA KRAJA 16.2. ODREðIVANJE BRZINE ŠIRENJA ZVUKA U STUPCU ZRAKA IZNAD POVRŠINE VODE 16.3.

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

f(x) = a x, 0<a<1 (funkcija strogo pada)

f(x) = a x, 0<a<1 (funkcija strogo pada) Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα