SPEKTROSKOPIJA OSNOVE - zadaci

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "SPEKTROSKOPIJA OSNOVE - zadaci"

Transcript

1 uvodno predavanje općenito uzorkovanje; norme i standardi; intelektualno vlasništvo BOLTZMANNOVA RAZDIOBA STATISTIKA osnove EKSTRAKCIJA, KROMATOGRAFIJA - osnove ELEKTROANALITIČKE METODE SPEKTROSKOPIJA osnove SPEKTROSKOPIJA OSNOVE - zadai nositelj: prof.dr.s. P. Novak održala: K. Čuljak, dipl. inž. sastavila: dr.s.v. Allegretti Živčić; šk.g. 202/3.. Izračunajte frekveniju (Hz) za: a) snop X-zračenja valne duljine 2,65 Å; b) emisijsku liniju bakra pri 2,0 nm; ) lasersku liniju pri 694,3 nm; d) lasersku liniju pri 0,6 µm; e) infrarveni apsorpijski maksimum pri 9,6 µm; f) mikrovalni snop pri,86 m. osnovna formula: λ a) λ = 2,65 Å ( Å = 0 8 m) (s, Hz) konstanta: = 3 x 0 0 m s = 3 x 0 8 m s ms 8 =,3 0 8 s 2,65 0 m (Hz) b) λ = 2,0 nm ( nm = 0-7 m = 0 9 m) ms 5 =, s 2,0 0 m (Hz)

2 0 3 0 ms 4 ) λ = 694,3 nm = 694,3x0-7 m = 4,32x0 s (Hz) 7 694,3 0 m 0 0 ms d) λ = 0,6 µm ( µm = 0-4 m = m) = 2, 83 0 s 4 0, 6 0 m 3 (Hz) 0 0 ms e) λ = 9,6 µm ( µm = 0-4 m = m) = 53, 0 s 4 9, 6 0 m 3 (Hz) f) λ =,86 m ms 0 =,6 0 s,86 m (Hz) λ/ / nm ν/ / s - (Hz) 26,5 (2,65 Å),3 x 0 8 2,42 x ,32 x 0 4 0,6 x 0-3 (0,6 µm) 2,83 x 0 3 9,6 x 0-3 (9,6 µm),53 x 0 3,86 x 0-7 (,86 m),6 x Izračunajte valnu duljinu (m) za: a) frekveniju zrakoplovnog tornja pri 8,6 MHz; b) radiovalnu frekveniju pri 4,0 khz; ) NMR signal pri 05 MHz; d) infrarveni apsorpijski maksimum pri 20 m -. osnovna formula: λ = ν = ~ ν ms a) 8,6 MHz (M = mega = 0 6 ) λ 6 8, 6 0 s = = 2, 53m ms b) 4, khz (k = kilo = 0 3 ) λ = = 2629, 3m 3 4, 0 s λ = 2,63 km ms ) 05 MHz (M = mega = 0 6 ) λ = = 2, 86m s d) ~ 20 m - 4 λ = ~ = = 8,26 0 m λ = 8,26 µm ν 20 m 2

3 3. Pretvorite sljedeće valne duljine u frekvenije: 200 nm; 250 nm; 500 nm;,0 µm; 2,5 µm; 3,0 µm; 0 µm; 25 µm. osnovna formula: λ 8 0 ms 5 =,5 0 s m 3 s 0 m ms 4 = 3,0 0 6 λ ν 200 nm,5x0 5 s nm,2x0 5 s nm 6,0x0 4 s -,0 µm 3,0x0 4 s - 2,5 µm,2x0 4 s - 3,0 µm,0x0 4 s - 0 µm 3,0x0 3 s - 25 µm,2x0 3 s - 4. Pretvorite sljedeće valne brojeve u valne duljine: 5000 m - ; 8750 m - ; 6667 m - ; 5000 m - ; 3000 m - ; 2500 m - ; 2200 m - ; 2000 m - ; 000 m - ; 200 m -. λ = osnovna formula: λ = ν ~ 5 = 6, m m = 6,666x0-5 m x 0 4 µm m = 0,67µm ~ ν, m λ, µm , ,4 6667, , , , , , , ,0 srednji IR 3

4 5. Instrument za mjerenje u UV, VIS i NIR području ima mogućnost rada između 85 i 3000 nm. Koje je to područje valnih brojeva i frekvenija? osnovne formule: 85 0 ~ = ~ ν λ λ [ m] ~ = = m 7 ν m ~ = = 3333,33 m 7 ν m 0 0 ms = m ms = m ms ms 54000m 5 = 62, 0 s ( Hz) , 33m = 9, 99 0 s ( Hz) područje valnih brojeva: ,33 m - područje frekvenija:,62x0 5-9,99x0 3 s - (Hz) 6. Tipičan jednostavni infrarveni spektrofotometar pokriva valno područje od 3 do 5 µm. Izrazite to područje u: valnim brojevima; hertzima. osnovne formule: ~ = ~ ν λ [ m] λ = , 3 0 m m = , 5 0 m m ms m 0 0 ms m = 3 0 ms ms , 33m = 9, 99 0 s ( Hz) 3 0 = , 67m = 2, 00 0 s ( Hz) područje valnih brojeva: 3333,33-666,67 m - područje frekvenija: 9,99x0 3-2,00x0 3 Hz 4

5 7. Pretpostavite da vibraije koje se odvijaju u čestiama za vrijeme proesa raspršenja postoje za trajanja perioda upadnog zračenja. Izračunajte period vidljive svjetlosti valne duljine 600 nm. osnovne formule: λ p = ν ms 4 = , s m p = 5, = s s p = 2x0-5 s 8. Elektromagnetsko zračenje u vakuumu ima valnu duljinu 275 nm. Odredite frekveniju i period zračenja. Izračunajte energiju povezanu sa svakim fotonom zračenja. osnovne formule: λ p = ν E = hν ms 5 = , s m p = = 9, 7 09, 0 s E = 6,63x0-34 J s - x,09x0 5 s = 7,23x0-9 J s.09x0 5 s - p = 9.7x0-6 s E = 7.23x0-9 J 5

6 9. Izračunajte energiju po fotonu zračenja koje u zraku ima valnu duljinu 589 nm. osnovna formula: E = h λ ms E = 6, 63 0 Js = 3, m 9 J E = 3.37x0-9 J 0. Izračunajte područje valnih duljina (nm) koje odgovara energijskim prijelazima od,5 do 8,0 ev. h osnovna formula: λ = ev = 0,60 aj E λ = λ = ,63 0 Js 3 0 ms 8,5 0,60 0 J 34 8,63 0 Js 3 0 ms 8 8,0 0,60 0 J = = 55 0 m m područje valnih duljina = nm. Odredite energiju (ev) molekule grijane na 5000 K. osnovna formula: E = kt (kinetička energija) k = Boltzmannova konstanta =, JK - E = ev 2. Energijska razlika između 3p i 3s orbitala natrija iznosi 2.07 ev. Izračunajte valnu duljinu zračenja koje će biti apsorbirano pri pobudi 3s elektrona u stanje 3p. osnovna formula: h λ = E h = 6.626x0-34 J s λ = 589 nm 6

7 Lambert-Beerov zakon osnovni pojmovi P 0 P b TRANSMITANCIJA udio upadnog zračenja koje je otopina propustila P T = P 0 %T = T 00 APSORBANCIJA opisuje količinu apsorbiranog zračenja P = log A = logt P A 0 LAMBERT-BEEROV ZAKON odnos apsorbanije i konentraije (duljine puta) A = ab A = apsorbanija (bezdimenzijska veličina) b = duljina puta zrake kroz uzorak (debljina sloja uzorka, debljina mjerne posudie), m = konentraija a = konstanta mjernog sustava apsorpijski koefiijent, apsorptivnost dimenzija ovisi o dimenziji stari način izražavanja: A = εb ε = molarni apsorpijski koefiijent, molarna apsorptivnost (L mol - m - ) (starija literatura) = molarna konentraija (mol L - ) 7

8 A = ab A = logt kvantitativna analiza baždarni prava 3. Kojim vrijednostima transmitanija (%T) odgovaraju sljedeće apsorbanije: 0,064; 0,765: 0,38? osnovne formule: A = -logt T = 0 A %T = Tx00 rješenja: A %T 0,064 86,3 0,765 7,2 0,38 48, 4. Izračunajte transmitaniju (%T) otopinačije su apsorbanije dvostruke od onih navedenih u prethodnom zadatku. rješenja: A %T 0,064 x 2 = 0,28 74,5 0,765 x 2 =,530 2,95 0,38 x 2 = 0,636 23, 8

9 5. Navedene transmitanijske vrijednosti pretvorite u pripadne apsorbanije: 9,4 %; 0,863; 27,2 %. A = -log T A = -log 0,94 A = -log 0,863 A = -log 0,272 rješenja: T A 9,4 % 0,72 0,863 0,064 27,2 % 0, Izračunajte apsorbanije otopinačije su transmitanije jednake polovii onih navedenih u prethodnom zadatku. A = -log T A = -log 0,097 A = -log 0,435 A = -log 0,36 rješenja: T A 9,4 / 2 = 9,7 %,03 0,863 / 2 = 0,435 0,365 27,2 / 2 = 3,6 % 0, Otopina koja sadrži 4,48 ppm KMnO 4 ima transmitaniju 0,309 mjerenu u kiveti debljine,00 m pri 520 nm. Izračunajte molarnu apsorptivnost (molarni apsorpijski koefiijent) otopine KMnO 4. osnovne formule: A = logt ppm = µg ml a = A b A = ab [ L mol m ] M(KMnO 4 ) = 58,04 g mol ppm = µg ml 6 0 g = 3 0 L = 0 3 g L ; L = 0 dm 3 γ M 4,48 0 g L 58,04 g mol 3 5 = = = 2,83 0 mol L A = - log 0,309 = 0,50 a 0,50 m 2,83 0 = = 802 L mol m 5 mol L 9

10 8. Alikvotu od 2,5 ml otopine koja sadrži 3,8 ppm željeza(iii) dodan je suvišak otopine KNCS. Tako pripravljena otopina razrijeđena je na 50,0 ml. Kolika je apsorbanija pripravljene otopine pri 580 nm, ako se mjeri u kiveti debljine 2,50 m, a molarni apsorpijski koefiijent nastalog kompleksa iznosi 7,00x0 3 L mol m? osnovna formula: pretpostavka: A = ab suvišak KNCS Fe(III) potpuno vezano u kompleks (Fe 3+ ) = (FeNCS 2+ ) M(Fe) = 55,85 g mol (Fe) = 3,8 ppm = 3,8 µg ml γ M 3 3,8µ g ml 3,8 0 g L 5 = = = = 6,80 0 mol L 55,85 g mol 55,85 g mol V = 2 V 2 ; V = 2,5 ml ; V 2 = 50,0 ml V 5 2, 5 ml 6 2 = = 6,80 0 mol L = 3,4 0 mol L V2 50, 0 ml A = 7,00x0 3 L mol - m - x 2,5 m x 3,40x0-6 mol L - = 0,0595 bezdimenzijska veličina! 9. Prenosivim fotometrom mjernog odgovora linearnog u odnosu na zračenje, izmjerena je vrijednost od 73,6 µa za slijepu otopinu (referentna otopina) u putu svjetlosti. Zamjenom slijepe otopine uzorkom koji apsorbira, izmjereno je 24,9 µa. Izračunajte: a) transmitaniju (% T) otopine uzorka; b) apsorbaniju otopine uzorka; ) transmitaniju koju bi imala otopinačija je konentraija jednaka trećini one u prvobitno opisanoj otopini; d) transmitaniju koju bi imala otopina konentraije dvostruke od one prvobitno opisane otopine. osnovne formule: A = - log T P T = P 0 24,9 a) T = = 0,338 73,6 ) 2 = 3 %T = 33,8 b) A = - log 0,338 A = 0,47 A A 2 = 3 A = 0,47/3 = 0,57 %T = 69,7 % d) 2 = 2 A 2 = 2 A A = 2 x 0,47 = 0,942 %T =,4 % 0

11 20. Primjenom tablično prikazanih podataka izračunajte veličine koje nedostaju, a uz pretpostavku da molekulska masa uzorka iznosi 250. A %T a / L mol - m - b / m / M / ppm a / m - ppm - 0,46,40,25 x 0-4,424 0,996 0,37 3,46 x 0 3 2,50 3,33 48,3 0,25 6,72 76,3,0 0,063 osnovne formule: A = log T A = ab A = 0,46 %T = 38,4 0, 46 3 = 2, 38 0 L mol 4 a =, 4 m, 25 0 mol L m ppm = µg ml 6 0 g = 3 0 L = 0 3 g L ; L = 0 dm 3 γ= M=,25x0-4 mol L 250 g mol - =32,5 x0-4 g L =3,25 ppm 0,46 3 a = = 9,5 0 m,40 m 3,25 ppm ppm rezultati za a), b), ), d) i e) prikazani su u popunjenoj tablii (rveni kosi brojevi): A %T a / L mol - m - b / m / M / ppm a / m - ppm - 0,46 38,4 2,38x0 3,40, ,25 9,5x0-3,424 3,77 3,43x0 4 0,996 4,7x0-5 0,44 0,37 0,5 76,7 3,46x0 3 2,50,33x0-5 3,33,38x0-2 0,36 48,3 4,70x0 4 0,25 2,69x0-5 6,72 0,88 0,7 76,3,57x0 4,0 6,76x0-6,69 0,063

12 2. Zašto je rvena otopina rvena? valno područje, nm VIDLJIVI SPEKTAR apsorbirana boja vidljiva boja ljubičasta žutozelena plava žuta plavozelena narančasta zelenoplava rvena zelena purpurna žutozelena ljubičasta žuta plava narančasta plavozelena rvena zelenoplava apsorbirana i vidljiva boja su komplementarne primarne boje: žuta, rvena, plava mješavine primarnih boja daju sekundarne boje komplementarne boje nasuprotne u kolu boja 2

13 Vinent Van Gogh, Share the Love There are olors whih ause others to shine brilliantly, whih form a ouple whih omplete eah other like man and woman. Vinent Van Gogh Vinent Van Gogh, Café Terrae on the Plae du Forum, Arles, 888. odgovor: Crvena otopina apsorbira zelenu komponentu ukupnog bijelog zračenja, a propušta rvenu komponentu (komplementarne boje). shematski prikaz apsorpije vidljivog zračenja u rvenoj otopini 3

14 DODATNI ZADACI 22. Valna duljina EMZ u vakuumu iznosi 275 nm. Odredite frekveniju i period zračenja. Izračunajte energiju svakog fotona zračenja. 23. Brzina zračenja valne duljine 589,3 nm u boksitu iznosi,90 x 0 8 m/s. Izračunajte indeks loma boksita pri 589,3 nm. 24. Elektromagnetsko zračenje ima valnu duljinu nm u suhom zraku (n =,00028). Odredite frekveniju zračenja i energiju fotona zračenja. 25. Izračunajte valnu duljinu u vakuumu i u taljenom kvaru (n =,467) za zračenje čija frekvenija iznosi 4,708 x 0 4 Hz. 26. Izračunajte energiju po fotonu za zračenje čija je valna duljina u zraku 589 nm. 27. Molarni apsorpijski koefiijent vodene otopine nekog spoja pri 765 nm iznosi,54 x 0 3. Transmitanija izmjerena u kiveti debljine,00 m iznosi 43,2 %. Koja je konentraija otopine? 28. Standardna konentraija otopine nekog spoja konentraije 2,5 x 0-4 M mjerena je u kiveti debljine 5,00 m, te je dobivena transmitanija iznosila 58,6 % pri 347 nm. Odredite molarni apsorpijski koefiijent. 29. Pretvorite sljedeće apsorbanije u postotne transmitanije: a) 0,3, b) 0,878, ) 0,430, d) 0,27, e), Pretvorite sljedeće postotne transmitanije u apsorbanije: a) 2,3, b) 87,8, ) 44,8, d) 62,, e) 37,6. 3. Neki spoj u metanolu ima molarni apsorpijski koefiijent 2,9 x 0 4 pri 374 nm. Ukoliko treba spektrofotometrijski odrediti otopine u konentraijskom području od x 0-6 M do 8 x 0-6 M, kivete koje debljine se mogu preporučiti za izvedbu analize? Pretpostavite da na raspolaganju postoje kivete debljine,00 m, 5,00 m i 0,00 m, a ljestvia instrumenta mjeri apsorbanije od Izračunajte energiju mola fotona koja odgovara valnoj duljini od 300 nm. 33. Izračunajte apsorbaniju neke organske boje ( = 7 x 0-4 mol L - ), uz uvjet da molarni apsorpijski koefiijent iznosi a = 650 mol L - m - a duljina optičkog puta uporabljene kivete 2 x 0-2 m. Što bi se dogodilo s apsorbanijom kad bi se uporabila kiveta dvostruke debljine? 34. Otopina kalijevog permanganata konentraije,28 x 0-4 M ima transmitaniju 0,5 mjerenu pri 525 nm u kiveti debljine m. a) Izračunajte molarni apsorpijski koefiijent za permanganat pri toj valnoj duljini. b) Ukoliko se konentraija udvostruči, kolika bi bila pripadna apsorbanija i postotna transmitanija nove otopine? 35. Zagađeni uzorak vode sadrži približno 0, ppm kroma (M = 52 g mol - ). Za mjerenje prisutnosti kroma odabrana je metoda koja se temelji na apsorpiji Cr(VI) u obliku njegovog semikarbazidnog kompleksa ( max = 540 nm; a max = 4700 L mol - m - ). Koja je optimalna debljina kivete ukoliko mjerena apsorbanija treba biti reda veličine 0,4? 36. Boje i voskovi za primjenu na fasadama zgrada moraju se zaštititi od utjeaja sunčevog zračenja koje ubrzava njihovu degradaiju (fotoliza i fotokemijske reakije). Uz uvjet da za aditiv vrijedi M = 500 g mol - i a max = 5000 mol - L m - za max = 350 nm, koja mora bit konentraija (izražena u g L - ) UV-aditiva ako 90 % zračenja treba bit apsorbirano od strane premaza debljine 0,3 mm? 37. a) Koliku energiju posjeduje zračenje valnog broja 000 m -? b) Pretvorite = 5 µm u m - i potom u m -. Koja valna duljina odgovara valnom broju od 700 m -? ) U maksimumu apsorpijske vrpe transmitanija iznosi samo 5 %. Koja je odgovarajuća apsorbanija? 4

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

F2_K2, R: nastavni materijali s predavanja, preporučena literatura, web stranica katedre fizike;

F2_K2, R: nastavni materijali s predavanja, preporučena literatura, web stranica katedre fizike; F_K,.06.08.. Interferencija elektromagnetskih valova; posebno vidljive svjetlosti. Uvjeti za konstruktivnu i destruktivnu interferenciju. Opišite interferentni uzorak za monokromatsku i polikromatsku svjetlost

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Fizika 2. Auditorne vježbe 11. Kvatna priroda svjetlosti, Planckova hipoteza, fotoefekt, Comptonov efekt. Ivica Sorić

Fizika 2. Auditorne vježbe 11. Kvatna priroda svjetlosti, Planckova hipoteza, fotoefekt, Comptonov efekt. Ivica Sorić Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstava Fizika 2 Auditorne vježbe 11 Kvatna priroda svjetlosti, Planckova hipoteza, fotoefekt, Comptonov efekt Ivica Sorić (Ivica.Soric@fesb.hr)

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži

Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži tomi i jezgre.. tomi i kvanti.. tomska jezgra Kvant je najmanji mogući iznos neke veličine. Foton, čestica svjetlosti, je kvant energije: gdje je f frekvencija fotona, a h Planckova konstanta. E = hf,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima

Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Heterogene ravnoteže taloženje i otapanje u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Ako je BA teško topljiva sol (npr. AgCl) dodatkom

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

ANALITIČKA KEMIJA II - SEMINAR

ANALITIČKA KEMIJA II - SEMINAR ANALITIČKA KEMIJA II - SEMINAR UVOD STATISTIKA osnovni pojmovi BOLTZMANNOVA RAZDIOBA ATOMSKA SPEKTROSKOPIJA predavanja i seminar MOLEKULSKA SPEKTROSKOPIJA primjena UV/VIS MOLEKULSKA SPEKTROSKOPIJA AK2;

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

UVOD U KVANTNU TEORIJU

UVOD U KVANTNU TEORIJU UVOD U KVANTNU TEORIJU UVOD U KVANTNU TEORIJU 1.) FOTOELEKTRIČKI EFEKT 2.) LINIJSKI SPEKTRI ATOMA 3.) BOHROV MODEL ATOMA 4.) CRNO TIJELO 5.) ČESTICE I VALOVI Elektromagnetsko zračenje UVOD U KVANTNU TEORIJU

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

F2_kolokvij_K2_zadaci izbor_rješenja lipanj, 2008

F2_kolokvij_K2_zadaci izbor_rješenja lipanj, 2008 F_kolokvij_K_zadai izbor_rješenja lipanj, 008 Fermatov prinip:. Fermatov prinip o širenju svjetlosnih zraka; izvedite zakon refleksije pomoću prinipa minimalnog vremena širenja svjetlosti između dviju

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

INSTRUMENTNE ANALITIČKE METODE I. seminar

INSTRUMENTNE ANALITIČKE METODE I. seminar INSTRUMENTNE ANALITIČKE METODE I seminar šk.g. 2006/07. 4 selektori valnih duljina sastavila: V. Allegretti Živčić SELEKTORI VALNIH DULJINA filtri monokromatori (disperzni element) apsorpcijski interferencijski

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

PISMENI ISPIT IZ STATISTIKE

PISMENI ISPIT IZ STATISTIKE 1. a) Trgovina odjeće prodaje odjeću u tri različite veličine: 32% veličine S, 44% veličine M i ostatak veličine L. Pokazalo se da je postotak odjeće s greškom redom 1%, 5% i 2%. Ako je trgovina ustanovila

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih: Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α

Διαβάστε περισσότερα

osnovne formule: λ/λ = v/c v = 8/ c = m s -1 k = 1, J K -1 m = M/N A

osnovne formule: λ/λ = v/c v = 8/ c = m s -1 k = 1, J K -1 m = M/N A .4.013 ZDCI 1. Dopplerov efekt jedan je od uzroka proširenja linija u S. tomi koji se kreću prema izvoru zračenja opažaju više frekvenije od atoma koji se udaljavaju od izvora. Razlika u valnoj duljini,

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009.

Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009. Fakule elekoehnike, sojasva i bodogadnje Računasvo Fiika Audione vježbe - 7 lekomagneski valovi 15. avnja 9. Ivica Soić (Ivica.Soic@fesb.h) Mawellove jednadžbe inegalni i difeencijalni oblik 1.. 3. 4.

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Impuls i količina gibanja

Impuls i količina gibanja FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba 4 Impuls i količina gibanja Ime i prezime prosinac 2008. MEHANIKA

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Fizika 2. Auditorne vježbe 12. Kvatna priroda svjetlosti. Ivica Sorić. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstava

Fizika 2. Auditorne vježbe 12. Kvatna priroda svjetlosti. Ivica Sorić. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstava Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstava Fizika Auditorne vježbe Kvatna priroda svjetlosti Ivica Sorić (Ivica.Soric@fesb.hr) Bohrovi postulati Elektron se kreće oko atomske

Διαβάστε περισσότερα

Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.)

Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.) Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.) četvrti razred (valna optika, relativnost, uvod u kvantnu fiziku, nuklearna fizika) Sve primjedbe

Διαβάστε περισσότερα

Spektroskopija u UV-Vis oblasti

Spektroskopija u UV-Vis oblasti Spektroskopija u UV-Vis oblasti APSORPCIONE METODE EMISIONE METODE Apsorpcija u vidljivom delu spektra zasniva se na stabilnim promenama u elektronskim energetskim nivoima. Apsorpcioni spektar nastaje

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Rješenje 141 Uočimo da je valna duljina čestice obrnuto razmjerna sa razlikom energijskih razina. h = E E n m h E E. m c

Rješenje 141 Uočimo da je valna duljina čestice obrnuto razmjerna sa razlikom energijskih razina. h = E E n m h E E. m c Zadatak 4 (Ivia, trukovna škola) Crtež prikazuje dio energijkih razina vodikova atoma. Koja od trjelia prikazuje emiiju fotona najkraće valne duljine? Zaokružite ipravan odgovor. A. a) B. b) C. ) D. d

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

F2_ zadaća_ L 2 (-) b 2

F2_ zadaća_ L 2 (-) b 2 F2_ zadaća_5 24.04.09. Sistemi leća: L 2 (-) Realna slika (S 1 ) postaje imaginarni predmet (P 2 ) L 1 (+) P 1 F 1 S 1 P 2 S 2 F 2 F a 1 b 1 d -a 2 slika je: realna uvećana obrnuta p uk = p 1 p 2 b 2 1.

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Što je svjetlost? Svjetlost je elektromagnetski val

Što je svjetlost? Svjetlost je elektromagnetski val Optika Što je svjetlost? Svjetlost je elektromagnetski val Transvezalan Boja ovisi o valnoj duljini idljiva svjetlost (od 400 nm do 700 nm) Ljubičasta ( 400 nm) ima kradu valnu duljinu od crvene (700 nm)

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA

Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA Relativna skala masa elemenata: atomska jedinica mase 1/12 mase atoma ugljika C-12. Unificirana jedinica atomske mase (u)

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

ANALITIČKA KEMIJA II BOLTZMANNOVA RASPODJELA. nositelj: prof.dr.sc. P. Novak održao: doc.dr.sc.t. Jednačak; ak.god. 2017/18.

ANALITIČKA KEMIJA II BOLTZMANNOVA RASPODJELA. nositelj: prof.dr.sc. P. Novak održao: doc.dr.sc.t. Jednačak; ak.god. 2017/18. ANALITIČKA KEMIJA II BOLTZMANNOVA RASPODJELA nositelj: prof.dr.sc. P. Novak održao: doc.dr.sc.t. Jednačak; ak.god. 2017/18. Ludwig Boltzmann rođen umro boravio nacionalnost struka 20. veljače 1844. Beč

Διαβάστε περισσότερα