Nekaj zgledov. J.Kozak Numerične metode II (IŠRM) / 21

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Nekaj zgledov. J.Kozak Numerične metode II (IŠRM) / 21"

Transcript

1 Nekaj zgledov J.Kozak Numerične metode II (IŠRM) / 21 V robnih problemih rešitev diferencialne enačbe zadošča dodatnim pogojem, ki niso vsi predpisani v isti točki. Že osnovna zahteva, kot je na primer eksistenca točne rešitve, ni vedno izpolnjena. Zgled Kako se upogne tanka, vodoravno postavljena palica, ki jo obtežimo s funkcijo q in togo vpnemo v enem krajišču ter naslonimo na drugem? Diferencialna enačba, ki ji oblika y zadošča, je y (4) + k y = q, torej četrtega reda. Če palico togo vpnemo v izhodišču a, dobimo robna pogoja y(a) = 0, y (a) = 0. V drugem krajišču je višina enaka, in ker je palica le naslonjena, je navor nič, torej y(b) = 0, y (b) = 0.

2 J.Kozak Numerične metode II (IŠRM) / 21 Streljanje s topom Kako s topom zadeti določen cilj, če top stoji v točki (0, 0) ravnine IR 2, cilj pa je (a, 0) IR 2. Naj par (x(t), y(t)) označi položaj krogle v času t in v := (v x (t), v y (t)) njeno hitrost. Povzemimo preprost model, ki opisuje gibanje topovskega izstrelka z diferencialnimi enačbami. Te prepišemo v sistem enačb prvega reda, x = v x, y = v y, v x = u(y) v x v 2 /m, v y = g u(y) v y v 2 /m, kjer u označuje zračni upor, g zemeljski pospešek in m maso krogle. Za zračni upor uporabimo aproksimacijo u(y) = 1 2 c vsρ 0 e y y 0, kjer c v označuje koeficient upora, S presek izstrelka,

3 J.Kozak Numerične metode II (IŠRM) / 21 Streljanje s topom - nadaljevanje ρ 0 gostoto zraka na morski gladini in y 0 višino, pri kateri se ta zmanjša za faktor e. Začetna hitrost izstrelka naj bo v 0. Če problem pogledamo kot začetni in top postavimo pod kotom θ, je x(0) = 0, y(0) = 0, v x (0) = v 0 cos θ, v y (0) = v 0 sin θ. Trajektorije izstrelka pri konsistentno izbranih enotah in konstantah c v = 0.2, ρ 0 = 1.25, y 0 = 10000, g = 9.81, m = 100, S = πr 2, r = 0.1 vidimo na sliki. Vendar nas v resnici ne zanima enoparametrična družina rešitev začetnih problemov, ampak tiste rešitve, ki zadenejo cilj, na primer točko (20000, 0). Za točke, ki so v dometu topa, vidimo, da obstajata dve rešitvi, dve različni topovski poziciji, ki zadeneta cilj. Resda ne po enakem času, a če smo še tu natančni in predpišemo, v katerem trenutku želimo zadetek, bo rešitev obstajala zelo redko.

4 Metode za reševanje robnih problemov J.Kozak Numerične metode II (IŠRM) / 21 Metode za reševanje robnih problemov delimo v dve skupini: metode, ki temeljijo na metodah, razvitih za reševanje začetnih problemov, metode, razvite neposredno za reševanje robnih problemov. Prvi skupini metod je skupen razmislek, kako robni problem prevesti na reševanje začetnih. Če je problem, ki ga rešujemo, linearen, je prevedba dovolj preprosta. Problem je linearen, če je linearna diferencialna enačba in so tudi takšni robni pogoji. Tudi za nelinearne probleme poznamo preprosto metodo, ki temelji na streljanju. V splošnem lahko trdimo, da je prevedba na začetne probleme učinkovita, če le deluje. Pokaže pa se, da temu ni vedno tako, kar bomo spoznali ob numeričnih zgledih. Tedaj je treba poseči po drugi skupini metod.

5 Metode, razvite posebej za robne probleme: J.Kozak Numerične metode II (IŠRM) / 21 diferenčna metoda: odvode nadomestimo z deljenimi diferencami, kolokacija, rešitev iščemo v danem razredu funkcij, najpogosteje v prostorih zlepkov, metoda končnih elementov: diferencialno enačbo pretvorimo v variacijsko obliko in diskretiziramo. ipd.

6 Zapis robnih problemov, primeren za začetne metode J.Kozak Numerične metode II (IŠRM) / 21 Robni problem zapišemo lahko tudi v obliki, ki smo je vajeni iz reševanja začetnih problemov, kot sistem diferencialnih enačb prvega reda. Omejimo se na robne pogoje v krajiščih intervala a in b. Treba je poiskati zvezno odvedljivo vektorsko funkcijo y: [a, b] IR d, ki zadošča diferencialni enačbi in robnim pogojem y = f(x, y), x (a, b) g (y (a), y (b)) = 0. Zgoščen zapis (6) in (6) ne poenostavi zapisa numeričnih metod v tolikšni meri, kot ga je pri reševanju začetnih problemov. Za nekatere metode, kot je na primer diferenčna, pretvorba na sistem enačb prvega reda ni primerna.

7 J.Kozak Numerične metode II (IŠRM) / 21 Linearni robni problem drugega reda y + p(x)y + q(x)y = r(x), x (a, b), z linearnima robnima pogojema α 0 y(a) + α 1 y (a) = α 2, β 0 y(b) + β 1 y (b) = β 2. Če izberemo y := (y i ) 2 i=1 := (y, y ), dobimo zgoščen zapis y = A(x)y + q(x), ( ) 0 1 A(x) :=, q(x) := q(x) p(x) ( ) 0, r(x) z ( ) (α0, α g (u, z) := 1 ), u α 2. (β 0, β 1 ), z β 2

8 Prevedba robnega na začetni problem J.Kozak Numerične metode II (IŠRM) / 21 Označimo z y(. ; s) rešitev začetnega problema y = f(x, y), x (a, b), y(a) = s. Za f, ki zadošča zahtevam eksistenčnega izreka, bo začetni problem imel rešitev za vsak s IR d. Ker rešujemo robni problem, iščemo s, za katerega so izpolnjeni robni pogoji g (s, y (b; s)) = 0. To pomeni, da smo reševanje robnega problema prevedli na iskanje rešitve sistema enačb, ki je v splošnem nelinearen. V izračunu funkcije g je skrito reševanje začetnih problemov. Ker izbiramo parametre s in pri tem skušamo zadeti robne pogoje, metodi rečemo strelska metoda. Za določen tip robnih problemov dokazuje eksistenco in enoličnost rešitve prav ena od poti strelske metode.

9 J.Kozak Numerične metode II (IŠRM) / 21 Opozorilo Začetni problemi, ki jih spotoma rešujemo, imajo ob izpolnjenih predpostavkah vedno rešitev. To ne pomeni, da vedno obstaja tudi rešitev robnega problema. Ali da je celo zagotovljena njena enoličnost. Če sta diferencialna enačba in robni pogoji linearna v iskanem y, reševanje sistema naravno poenostavimo. Treba je poiskati dovolj veliko število neodvisnih rešitev, da njihovo linearno kombinacijo robni pogoji določajo enolično.

10 J.Kozak Numerične metode II (IŠRM) / 21 Linearni robni problem Rešitev robnega problema iščimo kot linearno kombinacijo y = s u + v. Iskani u naj bo rešitev homogene, v pa nehomogene enačbe, u = A(x)u, v = A(x)v + q(x). Zahtevajmo, da y za vsak skalar s zadošča robnemu pogoju v začetni točki a. Sledita pogoja, ki jim morata iskani rešitvi u in v zadoščati na začetku. (α 0, α 1 ), u(a) = 0, (α 0, α 1 ), v(a) α 2 = 0. Nekaj svobode je še na voljo pri izbiri u(a) in v(a). Izberemo ju in rešimo oba začetna problema. To da drugi robni pogoj s s (β 0, β 1 ), u(b) + (β 0, β 1 ), v(b) β 2 = 0.

11 J.Kozak Numerične metode II (IŠRM) / 21 Če je (β 0, β 1 ), u(b) = 0, rešitev homogenega problema zadošča obema homogenima robnima pogojema, konstanta s je poljubna in jo lahko vzamemo kar 0. Sicer pa (10) vrednost s določa kot s = (β 0, β 1 ), v(b) + β 2 (β 0, β 1 ), u(b) V obeh primerih dobimo iskano rešitev y = s u + v. Resda smo tu odmislili možne numerične težave pri izračunu u in v..

12 J.Kozak Numerične metode II (IŠRM) / 21 V nelinearnih primerih je treba uporabiti eno od znanih metod za reševanje sistema (6). Pri robnih problemih drugega reda rešujemo eno samo nelinearno enačbo in najpogosteje posežemo po metodah: regula falsi, sekantna metoda, tangentna metoda. Pri prvi izbiri je težava, da izberemo začetni vrednosti parametrov tako, da zadetka ujameta vrednost, ki jo ciljamo. Pri sekantni metodi prav tako potrebujemo dva začetna približka, a nas tudi lahko neomejeno odnese pri vsakem novem približku. Tangentno metodo dodajmo kot zgled.

13 na celotnem intervalu [a, b]. J.Kozak Numerične metode II (IŠRM) / 21 Robni problem drugega reda, tangentna metoda y = f (x, y, y ), x (a, b), y(a) = α, y(b) = β, v začetni obliki za y = y(. ; s) poenostavljen v y = f (x, y, y ), x (a, b), y(a; s) = α, y (a; s) = s. Drugi robni pogoj se glasi g(s) := y(b; s) β = 0. Za tangentno metodo potrebujemo poleg vrednosti g tudi vrednost odvoda d ds g(s) = y(b; s). s To izračunamo tako, da določimo vrednost odvodu y s (x) := y(x; s) s

14 J.Kozak Numerične metode II (IŠRM) / 21 Robni problem drugega reda, tangentna metoda, nadaljevanje Z odvajanjem prvotne diferencialne enačbe dobimo y s = f y (x, y, y )y s + f y (x, y, y )y s, z odvajanjem začetnih pogojev še y s (a) = 0, y s(a) = 1. Da določimo g (s) = y s (b), moramo dodatno rešiti še en začetni problem, skupaj na vsakem koraku po dva.

15 Robni problemi kot diskretni sistemi enačb Diferenčna metoda je najpogosteje uporabljana metoda za reševanje robnih problemov. Temelji na diskretni aproksimaciji odvodov. Pri tej metodi ne uporabljamo prevedbe problema na sistem enačb prvega reda. Zato si od tu naprej poenostavimo zapis in predpostavimo, da je iskana funkcija skalarna. Vzemimo, da rešujemo robni problem reda m, ( y (m) = f x, y, y,..., y (m 1)), x [a, b], z robnimi pogoji ) g i (y(a), y (a),..., y (m 1) (a); y(b), y (b),..., y (m 1) (b) = 0, i = 1, 2,..., m. Interval vnaprej razdelimo na n podintervalov, najpogosteje ekvidistantno, x i = a + i h, i = 0, 1,..., n, h := b a, n (0.1) J.Kozak Numerične metode II (IŠRM) / 21

16 Zgledi diferenčnih aproksimacij odvodov J.Kozak Numerične metode II (IŠRM) / 21 Diskretne enačbe v točkah x i, ki so tako blizu enega od obeh krajišč intervala, da je treba upoštevati tudi robne pogoje, zahtevajo posebno pozornost. Neredko so prava nadloga pri pripravi programov za reševanje robnih problemov. Prav zato najpogosteje posežemo po aproksimacijah odvodov, ki temeljijo na kar se da malo sosednjih točkah. Če je le mogoče, so diferenčne aproksimacije simetrične, torej za red boljše kot primerljive nesimetrične, na primer y (x i ) = y (x i+1) y (x i 1 ) 2h y (x i ) = y (x i+1) 2y i + y (x i 1 ) h 2 ( + O h 2), ( + O h 2), y (4) (x i ) = y (x i 2) 4y (x i 1 ) + 6y (x i ) 4y (x i+1 ) + y (x i+2 ) h 4 + O (h 2)

17 Vzemimo diskretno aproksimacijo diferencialne enačbe v točki x i. Ker so odvode zamenjale diference, je nastala v vsaki od točk neka okrnitvena napaka. To vpeljemo kot definicijo lokalne napake pri reševanju robnih problemov. Definicija Lokalna napaka pri reševanju robnih problemov v dani točki je razlika, ki jo v tej točki dobimo, če od diferencialnega operatorja na gladki funkciji odštejemo diferenčno aproksimacijo na tej funkciji. V definicijo bi lahko vključili zahtevo, da je funkcija, ki nastopa, tudi rešitev diferencialne enačbe. Temu smo se izognili, saj vemo, da so z eksistenco rešitve lahko težave, lokalna napaka pa je vseeno dobro definirana. Tam, kjer to potrebujemo zaradi višjih redov aproksimacije, to posebej povemo. Ob diskretizaciji skušamo paziti, da je lokalna napaka v vseh točkah istega reda. Dobro je tudi ohranjati naravo diferencialnega operatorja: če je diferencialni operator simetričen ali pozitivno definiten, naj bo takšen tudi diskretni problem. J.Kozak Numerične metode II (IŠRM) / 21

18 J.Kozak Numerične metode II (IŠRM) / 21 Diskretna aproksimacija z lokalno napako O ( h 2) Diferencialno enačbo v točki x i zamenja izraz y i 1 2y i + y i+1 h 2 y + p(x)y + q(x)y = r(x), x [a, b], + p i y i+1 y i 1 2h + q i y i = r i, i = 1, 2,..., n 1, z p i := p(x i ), q i := q(x i ) in r i := r(x i ). Označimo lokalno napako v x i z τ i. Za y C 4 ([a, b]) je ta drugega reda, ( ) τ i = τ i (y) = y (x i ) + p(x i )y (x i ) + q(x i )y(x i ) r(x i ) ( y(xi 1 ) 2y(x i ) + y(x i+1 ) h 2 + p(x i ) y(x i+1) y(x i 1 ) + 2h ) ( + q(x i )y(x i ) r(x i ) = O h 2).

19 J.Kozak Numerične metode II (IŠRM) / 21 Diskretna aproksimacija z lokalno napako O ( h 2), nadaljevanje Linearna robna pogoja α 0 y(a) + α 1 y (a) = α 2, β 0 y(b) + β 1 y (b) = β 2 diskretiziramo tako, da je tudi tu lokalna napaka reda O ( h 2). Izberemo aproksimacijo α 0 y 0 + α 1 3y 0 + 4y 1 y 2 2h β 0 y n + β 1 3y n 4y n 1 + y n 2 2h = α 2, = β 2.

20 J.Kozak Numerične metode II (IŠRM) / 21 Diskretna aproksimacija z lokalno napako O ( h 2), nadaljevanje Dobimo sistem linearnih enačb za neznane y i, z matriko oblike IR n+1,n+1, ki je skoraj tridiagonalna. Gaussova eliminacija linearne sisteme enačb s takšno obliko matrike reši v linearnem času O (n).

21 Zgled konvergenčnega izreka J.Kozak Numerične metode II (IŠRM) / 21 Izrek Naj za robni problem y + p(x)y + q(x)y = r(x), x [a, b], y(a) = α, y(b) = β, velja q q < 0 za neko konstanto q. Funkcije p, q in r naj bodo gladke. Naj bo (y i ) n i=0 numerična rešitev, ki jo da diskretizacija, ki smo jo uporabili. Tedaj obstaja h 0 > 0, takšen, da za vse h, 0 < h h 0 velja ( max i y(x i ) = O h 2). 0 i n

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Poglavje 6 Navadne diferencialne enačbe 6.1 Uvod Splošna rešitev navadne diferencialne enačbe n-tega reda F(x, y, y, y,..., y (n) ) = 0 je n-parametrična družina funkcij. Kadar želimo iz splošne rešitve

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

α i y n i + h β i f n i = 0, Splošni nastavek je k

α i y n i + h β i f n i = 0, Splošni nastavek je k 10.4 Večkoračne metode Splošni nastavek je k α i y n i + h i=0 k β i f n i = 0, kjer je f i = f(x i, y i ), privzamemo pa še α 0 = 1. Če je β 0 = 0, je metoda eksplicitna, sicer pa implicitna. i=0 Adamsove

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

8. Navadne diferencialne enačbe

8. Navadne diferencialne enačbe 8. Navadne diferencialne enačbe 8.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

3.1 Reševanje nelinearnih sistemov

3.1 Reševanje nelinearnih sistemov 3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n

Διαβάστε περισσότερα

Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v

Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v Enočlenske metode J.Kozak Uvod v numerične metode - / 4 Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v skupino Runge-Kutta metod.

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe (študijsko gradivo) Matija Cencelj 1. maja 2003 2 Kazalo 1 Uvod 5 1.1 Preprosti primeri......................... 8 2 Diferencialne enačbe prvega reda 11 2.1 Ločljivi spremenljivki.......................

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb

Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb Fakulteta za računalništvo in informatiko Univerza v Ljubljani 2017/2018 Za kaj rabimo diferencialne

Διαβάστε περισσότερα

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko: 4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Dragi polinom, kje so tvoje ničle?

Dragi polinom, kje so tvoje ničle? 1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.

Διαβάστε περισσότερα

11.5 Metoda karakteristik za hiperbolične PDE

11.5 Metoda karakteristik za hiperbolične PDE 11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

Interpolacija in aproksimacija funkcij

Interpolacija in aproksimacija funkcij Poglavje 4 Interpolacija in aproksimacija funkcij Na interpolacijo naletimo, kadar moramo vrednost funkcije, ki ima vrednosti znane le v posameznih točkah (pravimo jim interpolacijske točke), izračunati

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

Jasna Prezelj DIFERENCIALNE ENAČBE. za finančno matematiko

Jasna Prezelj DIFERENCIALNE ENAČBE. za finančno matematiko Jasna Prezelj DIFERENCIALNE ENAČBE za finančno matematiko Ljubljana 211 naslov: DIFERENCIALNE ENAČBE ZA FINANČNO MATEMATIKO avtorske pravice: Jasna Prezelj izdaja: prva izdaja založnik: samozaložba Jasna

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 215 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Διαβάστε περισσότερα

Programi v Matlabu za predmet numerične metode

Programi v Matlabu za predmet numerične metode Programi v Matlabu za predmet numerične metode 18. 04 2002 1 1 Reševanje nelinearnih enačb Napisali bomo program za reševanje nelinearnih enačb z uporabo posameznih metod. Rešujete nelinearne enačbe oblike

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

Funkcije dveh in več spremenljivk

Funkcije dveh in več spremenljivk Poglavje 3 Funkcije dveh in več spremenljivk 3.1 Osnovni pojmi Definicija 3.1.1. Funkcija dveh spremenljivk je preslikava, ki vsaki točki (x, y) ravninske množice D priredi realno število z = f(x, y),

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Osnove linearne algebre

Osnove linearne algebre Osnove linearne algebre Matrike Matrika razsežnosti n m je A = a 1 1 a 1 2 a 1 m a 2 1 a 2 2 a 2 m a n 1 a n 2 a n m Če je n = m, tedaj matriko imenujemo kvadratna matrika Elementi matrike so lahko realna

Διαβάστε περισσότερα

1. UREJENE OBLIKE KVADRATNE FUNKCIJE

1. UREJENE OBLIKE KVADRATNE FUNKCIJE 1. UREJENE OBLIKE KVADRATNE FUNKCIJE A) Splošna oblika Definicija 1 : Naj bodo a, b in c realna števila in a 0. Realno funkcijo: f : x ax + bx + c imenujemo kvadratna funkcija spremenljivke x v splošni

Διαβάστε περισσότερα

Kombinatorika. rekurzivnih enačb in rodovne funkcije. FMF Matematika Finančna matematika. Vladimir Batagelj. Ljubljana, april

Kombinatorika. rekurzivnih enačb in rodovne funkcije. FMF Matematika Finančna matematika. Vladimir Batagelj. Ljubljana, april FMF Matematika Finančna matematika Kombinatorika Reševanje rekurzivnih enačb in rodovne funkcije Vladimir Batagelj Math fun: Pascal triangle Ljubljana, april 2008 4. Dec 2012 različica: December 4, 2012

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Domača naloga 6: dušeno nihanje

Domača naloga 6: dušeno nihanje Domača naloga 6: dušeno nihanje Vaje iz predmeta Numerične metode v fiziki Igor Grešovnik Kazalo: 1 Naloga 6a Nihanje... 1.1 Enačbe nihanja... 1. Numerično reševanje problema... 3 1..1 Reševanje sistema

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

UPOR NA PADANJE SONDE V ZRAKU

UPOR NA PADANJE SONDE V ZRAKU UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Matematične metode v fiziki II. B. Golli, PeF

Matematične metode v fiziki II. B. Golli, PeF Matematične metode v fiziki II B. Golli, PeF 8. september 2014 2 Kazalo 1 Navadne diferencialne enačbe (NDE) 5 1.1 Uvod.............................................. 5 1.1.1 Diferencialne enačbe v fiziki.............................

Διαβάστε περισσότερα

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a

Διαβάστε περισσότερα

Osnove numeričnega reševanja fizikalnih problemov

Osnove numeričnega reševanja fizikalnih problemov Osnove numeričnega reševanja fizikalnih problemov Kazalo Bojan Golli, Pedagoška fakulteta, Univerza v Ljubljani 1. Nekatere metode za reševanje navadnih diferencialnih enačb 2 1.1 Diskretizacija......................................

Διαβάστε περισσότερα

Metoda končnih elementov III

Metoda končnih elementov III Metoa končnih elementov I Metoo končnih elementov (MKE uporabljamo pri praktičnem inženirskem in pri znanstvenoraziskovalnem elu najpogosteje. Spaa me variacijske metoe in jo je nekoliko težje razumeti

Διαβάστε περισσότερα

Poliedri Ines Pogačar 27. oktober 2009

Poliedri Ines Pogačar 27. oktober 2009 Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA II Maribor, 2016 Kazalo Uvod v linearno algebro 1 1.1 Matrike................................ 1 1.2 Računanje

Διαβάστε περισσότερα

1.(a) Kdaj ima A R 2 mero 0? (b) Naj bo D enotski krog in f : D R taka, da je f ds = 0. Kaj lahko rečeš o funkciji f?

1.(a) Kdaj ima A R 2 mero 0? (b) Naj bo D enotski krog in f : D R taka, da je f ds = 0. Kaj lahko rečeš o funkciji f? Test iz Analize II (. semester), 2.2.2008 Priimek, ime, šifra:.(a) Kdaj ima A R 2 mero 0? (b) Naj bo D enotski krog in f : D R taka, da je f ds = 0. Kaj lahko rečeš o funkciji f? D 2. a) Formuliraj izrek

Διαβάστε περισσότερα

Definicija 1. Naj bo f : D odp R funkcija. Funkcija F : D odp R je primitivna funkcija funkcije f, če je odvedljiva in če velja F = f.

Definicija 1. Naj bo f : D odp R funkcija. Funkcija F : D odp R je primitivna funkcija funkcije f, če je odvedljiva in če velja F = f. Nedoločeni integral V tem razdelku si bomo pogledali operacijo, ki je na nek način inverzna odvajanju. Za dano funkcijo bomo poskušali poiskati neko drugo funkcijo, katere odvod bo ravno dana funkcija.

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Uvod v numerične metode

Uvod v numerične metode Uvod v numerične metode Bor Plestenjak soba 4.04 bor.plestenjak@fmf.uni-lj.si http://www-lp.fmf.uni-lj.si/plestenjak/vaje/vaje.htm asistent: Gašper Jaklič Režim 2 sklopa domačih nalog - 20% pisne ocene

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

8. Posplošeni problem lastnih vrednosti

8. Posplošeni problem lastnih vrednosti 8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki

Διαβάστε περισσότερα

Bor Plestenjak. Numerične metode. delovna verzija. verzija: 4. marec 2010

Bor Plestenjak. Numerične metode. delovna verzija. verzija: 4. marec 2010 Bor Plestenjak Numerične metode delovna verzija verzija: 4. marec 200 Kazalo Uvod 7. Numerična matematika................................. 7.2 Plavajoča vejica...................................... 0.3

Διαβάστε περισσότερα

Poglavje 2. Sistemi linearnih enačb

Poglavje 2. Sistemi linearnih enačb Poglavje 2 Sistemi linearnih enačb Najpogostejši problem, na katerega naletimo pri numeričnem računanju, je reševanje sistema linearnih enačb Tak sistem lahko dobimo direktno iz matematične formulacije

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Oznake in osnovne definicije

Oznake in osnovne definicije Oznake in osnovne definicije B Plestenjak, JKozak: Numerične metode 2011-2012 1 / 53 Sistem n linearnih enačb z n neznankami a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika 1 Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 21. april 2008 102 Poglavje 4 Odvod 4.1 Definicija odvoda Naj bo funkcija f definirana na intervalu (a, b) in x 0 točka s tega intervala. Vzemimo

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

Zbirka rešenih izpitnih nalog iz numeričnih metod

Zbirka rešenih izpitnih nalog iz numeričnih metod Zbirka rešenih izpitnih nalog iz numeričnih metod Borut Jurčič - Zlobec Andrej Perne Univerza v Ljubljani Fakulteta za elektrotehniko Ljubljana 6 Kazalo Iterativno reševanje nelinearnih enačb 4 Navadna

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

Problem lastnih vrednosti 1 / 20

Problem lastnih vrednosti 1 / 20 Problem lastnih vrednosti 1 / 20 2 / 20 1 Uvod 2 Potenčna metoda 3 Inverzna iteracija 4 QR iteracija 5 Metode za simetrične matrike Sturmovo zaporedje Jacobijeva iteracija 3 / 20 Uvod Naj bo A R n n. Paru

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Afina in projektivna geometrija

Afina in projektivna geometrija fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +

Διαβάστε περισσότερα

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih

Διαβάστε περισσότερα

Problem lastnih vrednosti

Problem lastnih vrednosti Problem lastnih vrednosti Naj bo A R n n. Iščemo lastni par, da zanj velja Ax = λx, kjer je x C n, x 0 (desni) lastni vektor, λ C pa lastna vrednost. Vektor y 0, pri katerem je y H A = λy H, je levi lastni

Διαβάστε περισσότερα