Theta Function Identities and Representations by Certain Quaternary Quadratic Forms II

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Theta Function Identities and Representations by Certain Quaternary Quadratic Forms II"

Transcript

1 International Mathematical Forum,, 008, no., Theta Function Identities and Representations by Certain Quaternary Quadratic Forms II Ayşe Alaca, Şaban Alaca Mathieu F. Lemire and Kenneth S. Williams Centre for Research in Algebra and Number Theory School of Mathematics and Statistics, Carleton University Ottawa, Ontario, Canada KS 5B6 Abstract Some new theta function identities are proved and used to determine the number of representations of a positive integer n by certain quaternary quadratic forms. Mathematics Subject Classification: E0, E5 Keywords: quaternary quadratic forms, theta functions Introduction Let N, N 0, Z, Q, R and C denote the sets of positive integers, nonnegative integers, integers, rational numbers, real numbers and complex numbers respectively. For q C with q < Ramanujan defined the one-dimensional theta function ϕq by. ϕq := n Zq n. For a, b, c, d N and n N 0 we define. Na, b, c, d; n = card{x, y, z, t Z n = ax + by + cz + dt }. In [] the authors determined Na, b, c, d; n n N for the following quaternary quadratic forms: x + y + z +t

2 50 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams x + y +z +6t x +y +z +t x +y +z +6t x +y +z +t x +y +6z +6t x +y +z +6t. For all of these seven forms, Na, b, c, d; n was given in terms of the arithmetic functions An, Bn, Cn and Dn given in Definition.. In this paper we consider the sixteen forms x + y + z +t x + y +z +t x + y +z +t x +y +z +t x +y +z +t x +y +z +t x +y +z +t x +y +z +t x +6y +6z +t x +y +z +t x +y +z +t x +y +z +t x +y +z +t x +y +z +t x +y +6z +6t x +y +z +t and show that Na, b, c, d; n for these forms can be given in terms of An, Bn, Cn, Dn and the two additional arithmetic functions En and F n defined in Definition.. Notation and Preliminary Results For q C with q < we set. ϕq := n Nq n.

3 Theta function identities 5 As in [5, pp., ] we define. p = pq := ϕ q ϕ q ϕ q and. k = kq := ϕ q ϕq. The representations of ϕq j j {,,,, 6, } in terms of p and k are given in Proposition. see [, Theorem.]. Proposition.. Define p and k by. and. respectively. Then a ϕq =+p / k /, b ϕq = + p / + p / + p / / k /, c ϕq =+p / k /, d ϕq = + p / + p / + p / k /, e ϕq 6 = + p / + p / + p / / k /, f ϕq = + p / + p / + p / k /. Using Proposition. in conjunction with the following well-known basic properties of ϕq..5 ϕq+ϕ q =ϕq, ϕ q+ϕ q =ϕ q, and.6 ϕqϕ q =ϕ q, we obtain ϕ q j j {,,,, 6, } in terms of p and k. Proposition.. a ϕ q = p / + p / k /, b ϕ q =+p /8 p /8 + p /8 k /,

4 5 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams c ϕ q = p / + p / k /, d ϕ q = / + p /6 + p /6 p /6 + p / ++p / p / / k /, e ϕ q 6 =+p /8 + p /8 p /8 k /, f ϕ q = / + p /6 + p /6 p /6 + p / ++p / p / / k /. In [, Definition.] we introduced the multiplicative arithmetic functions An, Bn, Cn and Dn. Definition.. For n N we set a An := d = n/d d n d n where D. b c d Bn := d n Cn := d n Dn := d n d d d n/d n d, d = n/d d n = d d n d = d d n n d n/d n d n, d n/d, d, d n/d D k N is the Legendre-Jacobi-Kronecker symbol for discriminant k The following result was given in [, Theorem.]. Proposition.. Let n N. Set n = α β N, where α, β N 0, N N and gcdn, 6 =. Then a An = α β AN, b Bn = α+β α N AN, c Cn = α+β+n / β AN, N d Dn = N / AN = AN. N

5 Theta function identities 5 Simple consequences of Proposition. are An =Bn, Cn =Dn, if n mod, An = Bn, Cn = Dn, if n mod, An =Cn, Bn =Dn, if n mod, An = Cn, Bn = Dn, if n mod. The next result was deduced from the work of Petr [0], see [, Theorem.]. Proposition.. For q < Anq n = 8 ϕqϕ q + 8 ϕ qϕq n= 8 ϕ qϕ qϕ q 8 ϕ qϕ q ϕ q, Bnq n = 8 ϕqϕ q 8 ϕ qϕq n= + 8 ϕ qϕ qϕ q 8 ϕ qϕ q ϕ q, Cnq n = ϕ qϕ qϕ q ϕ qϕ q ϕ q, n= Dnq n = ϕ qϕ qϕ q ϕ qϕ q ϕ q. n= Solving for the quantities ϕqϕ q, ϕ qϕq, ϕ qϕ qϕ q and ϕ qϕ q ϕ q in Proposition., we obtain the following result, see [, Theorem.]. Proposition.5. For q < a ϕqϕ q =+ b ϕ qϕq =+ An+Bn Cn Dnq n, n= 6An Bn+Cn Dnq n, n= c ϕ qϕ qϕ q =+ Cn Dnq n, n=

6 5 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams d ϕ qϕ q ϕ q = Cn+Dnq n. Proposition.6. m / mq m = ϕq ϕ q ϕ q 8. m = m odd Proof. See [, Theorem.]. Proposition.7. m = m odd n= m / mq m = ϕq ϕ q ϕq ϕ q. Proof. Replacing q by q in Proposition.6, and using the identity.6 with q replaced by q, we obtain Proposition.7. Definition.. For n N we set En := i / i and F n := i, j N i, j odd n = i +j Proposition.8. Let n N. Then i, j N i, j odd n = i +j En =F n =0, if n is even. j / j. Proof. If i and j are both odd and n = i +j then n + mod 8, so n is odd. Clearly, as n =±i +±j, i / i = i / i and we have.7 En := i, j Z i, j odd n = i +j j / j = j / j, i / i and F n := i, j Z i, j odd n = i +j j / j.

7 Theta function identities 55 Theorem.. a Enq n = 6 ϕq ϕ q ϕq ϕ q ϕq ϕ q, b F nq n = 6 ϕq ϕ q ϕq ϕ q ϕq ϕ q. Proof. a Appealing to Proposition.8 and.7, we obtain.8 Enq n = Enq n = n= i = i odd i / iq i j = j odd q j. Now, by., we have.9 n = q n = q n q n = ϕq ϕq = ϕq ϕ q. n= n= Appealing to.8, Proposition.6,.6 with q replaced by q and.9 with q replaced by q we obtain part a. b Appealing to Proposition.8 and.7, we obtain.0 F nq n = F nq n = n= i = i odd q i j = j odd j / jq j. Appealing to.0,.9 and Proposition.7, we obtain part b. Theorem.. a ϕ qϕ q ϕ qϕq = ϕqϕ q ϕ q ϕ qϕ q ϕq. b ϕq ϕ q ϕq ϕ q = ϕq ϕq ϕ q ϕ q. c ϕ q ϕ q ϕ q ϕq = ϕq ϕ q ϕq ϕ q ϕq ϕ q. d ϕqϕ q ϕ qϕ q =ϕ qϕ qϕq ϕ qϕqϕ q.

8 56 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams Proof. a We start with the identity + p p = + p p + p. Multiplying both sides by + p / p / + p / k, we obtain + p 9/ p / + p / k + p / p 9/ + p / k = + p 5/ p / + p / k + p / p 5/ + p 7/ k. By Propositions. and., we have ϕ qϕ q = +p 9/ p / + p / k, ϕ qϕq = +p / p 9/ + p / k, ϕqϕ q ϕ q = +p 5/ p / + p / k, ϕ qϕ q ϕq = +p / p 5/ + p 7/ k, and part a follows. b We have ϕ q ϕ q = / p /6 + p /6 + p /6 + p / + p / + p / / k / / p /6 + p /6 + p /6 + p / + p / + p / / k / = / p / + p / + p / +p +p + p + + p + p p / + p / + p / / k = / p / + p / + p / +p + p + p / + p / + p / / k = p / + p / + p / +p +p + p / + p / + p / / k

9 Theta function identities 57 = p / + p / + p / + p / + p / + p / k = p / + p / + p / k + p / + p / + p / k = ϕqϕ q +ϕ qϕq. Also ϕq ϕq = ϕq+ϕ q ϕq +ϕ q = ϕqϕq +ϕ qϕq +ϕqϕ q +ϕ qϕ q. Hence ϕq ϕq ϕ q ϕ q = ϕqϕq +ϕ qϕq +ϕqϕ q +ϕ qϕ q ϕqϕ q ϕ qϕq = ϕqϕq ϕ qϕq ϕqϕ q +ϕ qϕ q = ϕq ϕ q ϕq ϕ q. c We have ϕq ϕ q ϕq ϕ q ϕq ϕ q = ϕq ϕq ϕ q ϕ q ϕq ϕ q by part b = ϕq ϕ q ϕ q ϕ q ϕq ϕ q = ϕ q ϕ q ϕ q ϕq by part a with q replaced by q as asserted. d We start with the identity + p =+p p + p. Multiplying both sides by + p / p / + p / k, we obtain + p / p / + p 9/ k + p / p / + p / k =+p 7/ p / + p / k + p / p 7/ + p 5/ k. By Propositions. and. we obtain ϕqϕ q ϕ qϕ q =ϕ qϕ qϕq ϕ qϕqϕ q as asserted.

10 58 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams Theorem.. a b Enq n = ϕ qϕ qϕq ϕqϕ qϕ q = ϕqϕ q ϕ qϕ q. F nq n = ϕqϕ q ϕ q ϕ qϕ q ϕq = ϕ qϕ q ϕ qϕq. Proof. a By Theorem.a and Theorem.b, we deduce Enq n = 6 ϕq ϕ q ϕq ϕ q ϕq ϕ q = ϕq ϕq ϕ q ϕ q ϕq ϕ q. Replacing q by q, we obtain appealing to Theorem.d Enq n = ϕqϕq ϕ qϕ q ϕqϕ q = ϕ qϕ qϕq ϕqϕ qϕ q = ϕqϕ q ϕ qϕ q, which is part a. b By Theorem.b and Theorem.b, we have F nq n = ϕq ϕq ϕ q ϕ q ϕq ϕ q. Replacing q by q, we obtain appealing to Theorem.a F nq n = ϕqϕq ϕ qϕ q ϕq ϕ q = ϕqϕ q ϕ q ϕ qϕq ϕ q = ϕ qϕ q ϕ qϕq,

11 Theta function identities 59 which is part b. We conclude this section by giving some arithmetic properties of En and F n. These properties can be used to slightly simplify Theorem 7. and Corollary 7. when n is odd by splitting into subcases modulo and/or modulo. However we do not do this. Theorem.. Let n N. Then a F n =En and b En = F n. Proof. a We have b We have as asserted. F n = En = = i, j N i, j odd n = i +j j, k N j, k odd n = j +k i, j N i, j odd n = i +j = j, k N j, k odd n = j +k j / j = j / j = En. i / i = k,j N k, j odd n =k +j k, j N k, j odd n =k +j k / k = F n, j / j k / k Theorem.5. Let n N. Then En =F n =0, if n mod.

12 550 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams Proof. If i, j N is such that n = i +j, then n n i +j i 0, mod, so n mod implies En =F n =0. Theorem.6. Let n N. Then { F n, if n mod, En = F n, if n mod. Proof. Let n N be odd. First we observe that by.7 we have replacing i by j +k. F n = j / j = j / j. i, j = i, j odd n = i +j j, k = j odd n = j + jk + k Secondly, we see that as n = j + jk+ k n = j + j j k+ j k j / j = j / j. j, k = j odd,k even n = j + jk + k j, k = j odd,k odd n = j + jk + k = j, k = j odd n = j + jk + k = F n j / j by.. Thirdly, we see that as n = j + jk + k jk + j + k + mod for j k mod j / k = n+/+k / k that is. j, k = j odd,k odd n = j + jk + k j, k = j, k odd n = j + jk + k j, k = j odd,k odd n = j + jk + k = n+/ j, k = j odd,k odd n = j + jk + k j / k = n / F n, j / j,

13 Theta function identities 55 by.. Fourthly, we have as n = j + jk+ k n = j + j j k+ j k j, k = j odd,k even n = j + jk + k that is j / k = = j, k = j, k odd n = j + jk + k j, k = j, k odd n = j + jk + k j / j k j / j j, k = j, k odd n = j + jk + k j / k,. j, k = j odd,k even n = j + jk + k j / k = F n+ n / F n, by. and.. Finally En = = i / i = i, j = i, j odd n = i +j j, k = j odd,k even n = j + jk + k + j, k = j odd,k even n = j + jk + k j / j j / k j, k = j odd n = j + jk + k j /+k j +k j, k = j, k odd n = j + jk + k j, k = j, k odd n = j + jk + k j / j j / k = F n F n F n+ n / F n+ n / F n = n / F n, by.7,.,. and., so that as asserted. En = n F n

14 55 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams The power series of ϕ qϕ q We see from Proposition.5 that the coefficients of q in the power series expansions of ϕqϕ q, ϕ qϕq, ϕ qϕ qϕ q and ϕ q ϕ qϕ q involve An, Bn, Cn and Dn. In Sections -6 we determine the power series expansions of ϕ qϕ q, ϕ qϕ qϕq, ϕqϕ q ϕ q and ϕqϕ q in powers of q and show that they involve An, Bn, Cn, Dn, En and F n, see Theorems.,., 5. and 6.. These four products of theta functions occur in Theorem. together with those obtained from them by replacing q by q. In this section we determine the power series expansion of ϕ qϕ q in powers of q. Theorem.. ϕ qϕ q = +6 n/ An Bn Cn+Dn q n F nq n. We require a lemma before proving Theorem.. Lemma.. Let n N. Then { 9 N,,, ; n = An Bn, if n mod, An Bn+Cn Dn, if n 0 mod. Proof. If x + y + z +t = n mod then exactly one of x, y and z is even. Thus, by [, Theorem 5.] and Proposition.ab, we have N,,, ; n = N,,, ; n = N,,, 6; n/ = 9An/ + Bn/ = 9 An Bn. If x + y + z +t = n 0 mod then x, y and z are all even and, by [, Theorem.] and Proposition., we have N,,, ; n = N,,, ; n/ = 6An/ Bn/ + Cn/ Dn/

15 Theta function identities 55 = An Bn+Cn Dn. Proof of Theorem.. By Lemma. we have N,,,, ; nq n = = = n 0mod + n mod An Bn+Cn Dn q n 9 An Bn q n n/ An n/ Bn + + n/ Cn An Bn+ Cn Dn q n On the other hand we have N,,,, ; nq n = = N,,,, ; nq n + n= n=0 + n/ Dn q n n/ An Bn Cn+Dn q n. N,,,, ; n q n n= N,,,, ; nq n + = ϕ qϕq + ϕ qϕq n=0 N,,,, ; n q n

16 55 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams = ϕ q+ϕ q ϕq = ϕ q+ϕ q ϕq +ϕ q by. = ϕ qϕq + ϕ qϕ q + ϕ qϕ q +ϕ qϕq = + 6An Bn+Cn Dn q n + + n= + 6An Bn+Cn Dn q n n= ϕ qϕ q +ϕ qϕq by Proposition.5b = + An Bn+ Cn Dn q n ϕ qϕ q +ϕ qϕq. Equating the two expressions for N,,,, ; nq n, we obtain so = n/ An Bn Cn+Dn q n ϕ qϕ q +ϕ qϕq ϕ qϕ q +ϕ qϕq = n/ An Bn Cn+Dn q n. From Theorem.b we have ϕ qϕ q ϕ qϕq = F nq n.

17 Theta function identities 555 Adding these two equations, and dividing by, we obtain ϕ qϕ q = as asserted. +6 n/ An Bn Cn+Dn q n F nq n, The power series of ϕ qϕ qϕq In this section we determine the power series expansion of ϕ qϕ qϕq in powers of q. Theorem.. ϕ qϕ qϕq = + + n/ An Bn+Cn Dn q n Enq n. We require a number of lemmas. For n N we set Rn := card { x, y, z, t Z n = x + y + z +t, z t mod }. Lemma.. Let n N be such that n 0 mod. Then card { x, y, z, t Z n = x + y + z +t, z t mod, z t mod } = Rn/. Proof. Let n N satisfy n 0 mod. Set and T n = { x, y, z, t Z n = x + y + z +t, z t mod, z t mod } Un = { x, y, z, t Z n/ =x + y + z +t, z t mod }.

18 556 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams The mapping f : T n Un given by fx, y, z, t = x/,y/, z +t/, z t/ is a bijection. Thus as asserted. card T n = card Un = Rn/, Lemma.. Let n N be such that n 0 mod. Then N,,, ; n =N,,, ; n/ + 6Rn/. Proof. If x + y + z +t = n 0 mod then Thus x, y, z, t 0, 0, 0, 0, 0, 0,,, 0,, 0, or, 0, 0, mod. N,,, ; n =N,,, ; n/ + card { x, y, z, t Z n = x + y + z +t, z t mod } = N,,, ; n/ + 6 card { x, y, z, t Z n = x + y + z +t, z t mod,z t mod } = N,,, ; n/ + 6Rn/, by Lemma.. Lemma.. Let n N be such that n 0 mod. Then N,,, ; n =N,,, ; n/ + Rn/. Proof. If x + y +z +t = n 0 mod then x + y +z 0 mod so Thus Now x, y, z 0, 0, 0,, 0, or 0,, mod. N,,, ; n =N,,, ; n/ + card { x, y, z, t Z n = x + y +z +t,x mod, y 0 mod, z mod }. card { x, y, z, t Z n = x + y +z +t, x, y, z, 0, mod }

19 Theta function identities 557 = card { x,y,z,t Z n = x + y + z +t, x,y,z,t 0, 0,, mod } = card { x,y,z,t Z n = x + y + z +t, z,t, mod } = card { x,y,z,t Z n = x + y + z +t, z t mod,z t mod } =Rn/, by Lemma.. The asserted result now follows. Lemma.. Let n N be such that n 0 mod. Then N,,, ; n = N,,, ; n/ + N,,, ; n. Proof. This result follows by eliminating Rn/ from the formulae of Lemmas. and.. Lemma. was stated but not proved by Liouville [, p. 8]. Lemma.5. Let n N. Then N,,, ; n = 9 An Bn+Cn Dn, if n 0 mod. Proof. By [, Theorem.] we have N,,, ; n =6An Bn+Cn Dn, n N. Hence, by Proposition., we obtain for n 0 mod N,,, ; n/ = 6An/ Bn/ + Cn/ Dn/ = An Bn+Cn Dn. Then, by Lemma., we deduce N,,, ; n = An Bn+Cn Dn + 6An Bn+Cn Dn as claimed. = 9 An Bn+Cn Dn,

20 558 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams Lemma.6. Let n N. Then N,,, ; n = An Bn, if n mod. Proof. If x + y +z +t = n mod then x + y +z mod so x y mod and z 0 mod. Hence n x + y x y z = + +t +6 so that by [, Theorem 5.] we have N,,, ; n =N,,, 6; n/ = An/ + Bn/ = An Bn, if n mod. Lemma.7. Let n N. Ifn 0 mod then N,,, ; n = + n/ + + n/ Cn Proof. This follows from Lemmas.5 and.6. Proof of Theorem.. We have by Lemma.7 = = N,,, ; nq n An + n/ Bn + n/ Dn. + n/ An + n/ Bn + + n/ Cn + n/ Dn q n An Bn+ Cn Dn q n + n/ An Bn+ Cn Dn q n.

21 Theta function identities 559 On the other hand we have by. and Proposition.5b N,,, ; nq n = = n=0 N,,, ; nq n + n= N,,, ; nq n + n=0 = ϕ qϕq ϕq + ϕ qϕ q ϕq N,,, ; n q n n= N,,, ; n q n = ϕ qϕq ϕq+ϕ q + ϕ qϕ q ϕq+ϕ q = ϕ qϕq + ϕ qϕ q = + + ϕ qϕ qϕq +ϕ qϕqϕ q n= An Bn+ Cn Dn q n n= An Bn+ Cn Dn q n ϕ qϕ qϕq +ϕqϕ qϕ q = An Bn+ Cn Dn q n + ϕ qϕ qϕq +ϕqϕ qϕ q. Equating the two expressions for N,,, ; nq n, we deduce ϕ qϕ qϕq +ϕqϕ qϕ q = n/ An Bn+ Cn q Dn n,

22 560 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams from which we obtain ϕ qϕ qϕq +ϕqϕ qϕ q =+ n/ An Bn+Cn Dn q n. From Theorem.a we have ϕ qϕ qϕq ϕqϕ qϕ q = Adding these two equations, and dividing by, we deduce Enq n. ϕ qϕ qϕq =+ + n/ An Bn+Cn Dn q n Enq n, as asserted. 5 The power series of ϕqϕ q ϕ q In this section we determine the power series expansion of ϕqϕ q ϕ q in powers of q. The method of proof follows that of Theorem.. Theorem 5.. ϕqϕ q ϕ q = + + n/ An+Bn Cn Dn q n F nq n. We require a number of lemmas before giving the proof of Theorem 5.. For n N we set Sn := card { x, y, z, t Z n = x +y +z +t,x y mod }.

23 Theta function identities 56 Lemma 5.. Let n N be such that n 0 mod. Then card { x, y, z, t Z n = x +y +z +t, x y mod, x y mod } = Sn/. Proof. Let n N satisfy n 0 mod. Set and W n = V n = { x, y, z, t Z n = x +y +z +t, x y mod, x y mod } { x, y, z, t Z n } = x +y +z +t,x ymod. The mapping g : V n W n given by x +y gx, y, z, t =, x y, z,t is a bijection. Thus as claimed. card Cn = card Dn = Sn/, Lemma 5.. Let n N be such that n 0 mod. Then N,,, ; n =N,,, ; n/ + 6Sn/. Proof. If x +y +z +t = n 0 mod then Thus x, y, z, t 0, 0, 0, 0,,, 0, 0,, 0,, 0 or, 0, 0, mod. N,,, ; n =N,,, ; n/ + card { x, y, z, t Z n = x +y +z +t,x y mod } = N,,, ; n/ + 6 card { x, y, z, t Z n = x +y +z +t, x y mod,x y mod } = N,,, ; n/ + 6Sn/, by Lemma 5.. Lemma 5.. Let n N be such that n 0 mod. Then N,,, ; n =N,,, ; n/ + Sn/.

24 56 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams Proof. If x +y +z +t = n 0 mod then x +y +z 0 mod so Thus x, y, z 0, 0, 0,,, 0 or, 0, mod. N,,, ; n =N,,, ; n/ + card { x, y, z, t Z n = x +y +z +t,x mod, y mod, z 0 mod }. Now card { x, y, z, t Z n = x +y +z +t, x, y, z,, 0 mod } = card { x, y, z, t Z n = x +y +z +t, x, y, mod } = card { x, y, z, t Z n = x +y +z +t, x y mod, x y mod } =Sn/, by Lemma 5.. Lemma 5.. Let n N be such that n 0 mod. Then N,,, ; n = N,,, ; n/ + N,,, ; n. Proof. From Lemmas 5. and 5. we obtain N,,, ; n = N,,, ; n/ + Sn/ = N,,, ; n/ + N,,, ; n N,,, ; n/ 6 as asserted. = N,,, ; n/ + N,,, ; n, Although Lemma 5. is an analogue of Lemma., it was not stated by Liouville. Lemma 5.5. Let n N. Then N,,, ; n = An+ Bn Cn Dn, if n 0 mod.

25 Theta function identities 56 Proof. By [, Theorem 8.] we have N,,, ; n =An+Bn Cn Dn, n N. Hence for n 0 mod we have by Proposition. N,,, ; n/ = An/ + Bn/ Cn/ Dn/ = An+ Bn Cn Dn. Then, by Lemma 5., we obtain N,,, ; n = An+ Bn Cn Dn + An+Bn Cn Dn for n 0 mod. Lemma 5.6. Let n N. Then = An+ Bn Cn Dn N,,, ; n = An+ Bn, if n mod. Proof. If x +y +z +t = n mod then x +y +z mod so x, y, z 0,, mod. Hence n = x + y + z y z + +6t. Then, by [, Theorem 0.] and Proposition., we have for n mod N,,, ; n =N,,, 6; n/ = An/ Bn/ = An+ Bn, as asserted. Lemma 5.7. Let n N. Then N,,, ; n = + n/ An+ + n/ Bn + n/ Cn + n/ Dn, if n 0 mod.

26 56 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams Proof. This follows from Lemmas 5.5 and 5.6. Proof of Theorem 5.. By Lemma 5.7 we have N,,, ; nq n = = + + n/ An+ + n/ Bn + n/ Cn An+Bn Cn Dn q n + n/ Dn q n An+Bn n/ Cn Dn q n. On the other hand we have by. and Proposition.5a N,,, ; nq n = N,,, ; nq n + N,,, ; n q n = n=0 n= N,,, ; nq n + n=0 = ϕqϕ q ϕq + ϕ qϕ q ϕq n= N,,, ; n q n = ϕqϕ q ϕq +ϕ q + ϕ qϕ q ϕq +ϕ q = ϕqϕ q + ϕ qϕ q + ϕqϕ q ϕ q +ϕ qϕ q ϕq = + An+Bn Cn Dn q n n= + + An+Bn Cn Dn q n n=

27 Theta function identities ϕqϕ q ϕ q +ϕ qϕq ϕ q = + An+Bn Cn Dn q n + ϕqϕq ϕ q +ϕ qϕq ϕ q. Equating the two expressions for N,,, ; nq n, we obtain ϕqϕ q ϕ q +ϕ qϕq ϕ q =+ n/ An+Bn Cn Dn q n. From Theorem.b we have ϕqϕ q ϕ q ϕ qϕq ϕ q = F nq n. Adding these two identities, and dividing by, we obtain ϕqϕ q ϕ q =+ n/ An+Bn Cn Dn q n as asserted. + F nq n, 6 The power series of ϕqϕ q In this section we determine the power series expansion of ϕqϕ q in powers of q. The proof is similar to that of Theorem.. Theorem 6.. ϕqϕ q = n/ An+Bn+Cn+Dn q n

28 566 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams We need a lemma. + Enq n. Lemma 6.. Let n N. Then { N,,, ; n = An+ Bn Cn Dn, if n 0 mod, An+ Bn, if n mod. Proof. If x +y +z +t = n 0 mod then x +y +z 0 mod so x y z 0 mod. Thus N,,, ; n = N,,, ; n/ = An/ + Bn/ Cn/ Dn/ = An+ Bn Cn Dn by [, eq. 8.] and Proposition.. If x +y +z +t = n mod then x + y + z mod so x, y, z,, 0,, 0, or 0,, mod. Hence, for n mod, we have N,,, ; n = card { x, y, z, t Z n =x +y +z +t, x y mod, z 0 mod } = card { x, y, z, t Z n =x +y +z +t, x y mod } { = card x, y, z, t Z n x + y x y } = + +t +6z = card {x, y, z, t Z n } =x +y +z +6t = An/ Bn/ = An+ Bn by [, Theorem 0.] and Proposition.. Proof of Theorem 6.. We have by. and Propostion.5a n =0 N,,, ; nq n

29 Theta function identities 567 = N,,, ; nq n + n=0 N,,, ; n q n n=0 = ϕ q ϕq + ϕ q ϕq = ϕ q ϕq+ϕ q + ϕ q ϕq+ϕ q = ϕqϕ q +ϕ qϕ q + ϕqϕ q +ϕ qϕ q = ϕqϕ q +ϕ qϕ q + + An+Bn Cn Dn q n + + = + n= An+Bn Cn Dn q n n= ϕqϕ q +ϕ qϕ q + An+Bn Cn Dn q n. On the other hand we have by Lemma 6. n =0 N,,, ; nq n =+ + =+ n 0mod n mod An+ Bn Cn Dn q n An+ Bn q n An+Bn Cn Dn q n

30 568 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams n/ An+Bn+Cn+Dn q n. Thus, equating the two expressions for n =0 N,,, ; nq n, we have ϕqϕ q +ϕ qϕ q = n/ An+Bn+Cn+Dn q n. By Theorem.a we have ϕqϕ q ϕ qϕ q = Enq n. Adding these two identities, and dividing by, we obtain ϕqϕ q = as asserted. + n/ An+Bn+Cn+Dn q n Enq n, 7 Sixteen quaternary forms Our first theorem of this section shows that the generating functions of the sixteen forms listed in Section, namely, 7. ϕ qϕq, ϕ qϕq ϕq, ϕ qϕq ϕq, ϕqϕ q ϕq, ϕqϕ q ϕq, ϕqϕq ϕ q, ϕqϕq ϕ q, ϕqϕ q ϕq, ϕqϕ q 6 ϕq, ϕqϕ q,

31 Theta function identities 569 ϕ q ϕq ϕq, ϕ q ϕq, ϕ q ϕq ϕq, ϕq ϕ q, ϕq ϕq ϕ q 6, ϕq ϕq ϕ q, can all be expressed as linear combinations of the eight products 7. ϕqϕ q, ϕ qϕq, ϕ qϕ qϕ q, ϕ qϕ q ϕ q, ϕ qϕ q, ϕ qϕ qϕq, ϕqϕ q, ϕqϕ q ϕ q, and the eight products formed from them by replacing q by q. Theorem 7.. a ϕ qϕq = ϕ qϕq + ϕ qϕ q. b ϕ qϕq ϕq = ϕ qϕq + ϕ qϕ qϕq. c ϕ qϕq ϕq = ϕ qϕq + ϕ qϕ qϕq + ϕ qϕ q + ϕ qϕ qϕ q. d ϕqϕ q ϕq = ϕ qϕq + ϕ qϕ q + ϕqϕ qϕq + ϕqϕ qϕ q. e ϕqϕ q ϕq = ϕqϕ q + ϕqϕ q ϕ q. f ϕqϕq ϕ q = ϕ qϕq + ϕqϕ qϕq + ϕ qϕ qϕq. g ϕqϕq ϕ q = ϕqϕ q + ϕqϕq ϕ q + ϕqϕ q ϕ q.

32 570 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams h ϕqϕ q ϕq = 8 ϕ qϕq + 8 ϕ qϕ q + 8 ϕqϕ qϕq + 8 ϕqϕ qϕ q + ϕ qϕ qϕq + ϕ qϕ qϕ q. i ϕqϕ q 6 ϕq = ϕqϕ q + ϕqϕ q ϕ q + ϕqϕ q ϕq + ϕqϕ q. j ϕqϕ q = 8 ϕqϕ q + 8 ϕqϕ q ϕ q + 8 ϕqϕq ϕ q + 8 ϕqϕ q. k ϕ q ϕq ϕq = ϕ qϕq + ϕ qϕ qϕq + ϕqϕ qϕq + ϕq ϕ q. l ϕ q ϕq = ϕqϕ q + ϕ qϕ q. m ϕ q ϕq ϕq = ϕqϕ q + ϕqϕ q ϕ q + ϕ qϕ q + ϕ qϕ q ϕ q. n ϕq ϕ q = 8 ϕ qϕq + 8 ϕ qϕq + 8 ϕqϕ qϕq + 8 ϕ qϕ qϕq. o ϕq ϕq ϕ q 6 = ϕqϕ q + ϕ qϕ q + ϕqϕq ϕ q + ϕ qϕq ϕ q. p ϕq ϕq ϕ q = 8 ϕqϕ q + 8 ϕ qϕ q + 8 ϕqϕq ϕ q + 8 ϕ qϕq ϕ q + ϕqϕ q ϕ q + ϕ qϕ q ϕ q. Proof. We just give the proof of formula n as the rest can be proved similarly. We have by. ϕq ϕ q = ϕq ϕq+ ϕ q

33 Theta function identities 57 = 8 ϕ qϕq + 8 ϕ qϕ qϕq + 8 ϕqϕ qϕq + 8 ϕ qϕq as claimed. The power series expansions of the products listed in 7. are given in Proposition.5 and Theorems.,., 5. and 6.. Using these in Theorem 7. we obtain our main result. Theorem 7.. Let n N. Then a N,,, ; n = b N,,, ; n = c N,,, ; n = d N,,, ; n = e N,,, ; n = An Bn+ Cn Dn+F n, if n mod, 9 An Bn, if n mod, An Bn+Cn Dn, if n 0 mod. An Bn+ Cn Dn+En, if n mod, An Bn, if n mod, 9 An Bn+Cn Dn, if n 0 mod. An Bn+ Cn Dn+En+ F n, if n mod, An Bn, if n mod, An Bn+Cn Dn, if n 0 mod. An Bn En+ F n, if n mod, An Bn, if n mod, An Bn+Cn Dn, if n 0 mod. An+Bn Cn Dn+F n, if n mod, An+ Bn, if n mod, An+ Bn Cn Dn, if n 0 mod.

34 57 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams f N,,, ; n = g N,,, ; n = An Bn+En, if n mod, 0, if n mod, An Bn+Cn Dn, if n 0 mod. An+ Bn+F n, if n mod, 0, if n mod, An+Bn Cn Dn, if n 0 mod. An Bn+Cn Dn+En+F n, if n mod, h N,,, ; n = 0, if n mod, An Bn+Cn Dn, if n 0 mod. An+Bn+En+F n, if n mod, i N, 6, 6, ; n = An+ Bn, if n mod, An+ Bn Cn Dn, if n 0 mod. An+Bn+Cn +Dn+En+F n, if n mod, j N,,, ; n = 0, if n mod, An+ Bn Cn Dn, if n 0 mod. k N,,, ; n = l N,,, ; n = An Bn+ En F n, if n mod, An Bn, if n mod, An Bn+Cn Dn, if n 0 mod. An+Bn Cn Dn En, if n mod, An+ Bn, if n mod, An+ Bn Cn Dn, if n 0 mod.

35 Theta function identities 57 m N,,, ; n = An +Bn Cn Dn En+F n, if n mod, An+ Bn, if n mod, An+ Bn Cn Dn, if n 0 mod. An Bn Cn +Dn+En F n, if n mod, n N,,, ; n = 0, if n mod, An Bn+Cn Dn, if n 0 mod. o N,, 6, 6; n = An+Bn En F n, if n mod, An+ Bn, if n mod, An+ Bn Cn Dn, if n 0 mod. An +Bn Cn Dn En+F n, if n mod, p N,,, ; n = 0, if n mod, An+ Bn Cn Dn, if n 0 mod. Appealing to Theorem 7. and Proposition., and using the identity An+sBn+tCn+stDn N = α + t α+β+n / β + s α+β we obtain the following corollary, see Liouville [6]-[9]. AN, Corollary 7.. Let n N. Set n = α β N, where α N 0, β N 0, N N and gcdn, 6 =. Then a N,,, ; n + β+ N N β+ β AN+F n, if α =0, N = β+ + β AN, if α =, α N α+β+ N + β+ α+β AN, if α.

36 57 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams b N,,, ; n N β+ N + β+ β AN+En, if α =0, N = β+ + β AN, if α =, α N α+β+ N + β+ α+β AN, if α. c N,,, ; n + N β+ β AN F n, if α =0, N β+ + En+ = N β+ + β AN, if α =, α N α+β+ N + β+ α+β AN, if α. d N,,, ; n N β+ β AN En+ F n, if α =0, N = β+ + β AN, if α =, α N α+β+ N + β+ α+β AN, if α. e N,,, ; n N β+ N β + β AN+F n, if α =0, N = β β AN, if α =, α N α+β+ N β + α+β AN, if α. f N,,, ; n = N β+ β AN+En, if α =0, 0, if α =, α + N α+β+ β+ α+β N AN, if α.

37 Theta function identities 575 g N,,, ; n = N β + β AN+F n, if α =0, 0, if α =, α h N,,, ; n + N α+β+ N β+ β + α+β N AN, if α. N β+ β AN F n, if α =0, + En+ = 0, if α =, α N α+β+ N + β+ α+β AN, if α. i N, 6, 6, ; n N β + β AN+ En+ F n, if α =0, N = β β AN, if α =, α N α+β+ N β + α+β AN, if α. j N,,, ; n + N β + β AN F n, if α =0, N β+ + En+ = 0, if α =, α N α+β+ AN, if α. β + α+β N k N,,, ; n N β+ β AN+ En F n, if α =0, N = β+ + β AN, if α =, α N α+β+ N + β+ α+β AN, if α.

38 576 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams l N,,, ; n N β+ N β + β AN En, if α =0, N = β β AN, if α =, α N α+β+ N β + α+β AN, if α. m N,,, ; n N β + β AN F n, if α =0, N β+ En+ = N β β AN, if α =, α N α+β+ N β + α+β AN, if α. n N,,, ; n N β+ β AN F n, if α =0, N β+ + En = 0, if α =, α N α+β+ + AN, if α. β+ α+β N o N,, 6, 6; n N β + β AN En F n, if α =0, N = β β AN, if α =, α N α+β+ N β + α+β AN, if α. p N,,, ; n N β + β AN F n, if α =0, N β+ En+ = 0, if α =, α N α+β+ AN, if α. β + α+β N

39 Theta function identities Conclusion We conclude by noting that the quantities Rn and Sn used in Sections and 5 respectively can be determined explicitly. Replacing n by n in Lemma. we obtain From [, Theorem.] we have Rn = N,,, ; n N,,, ; n. 6 N,,, ; n =6An Bn+Cn Dn. Thus, by Proposition., we have N,,, ; n =An 8Bn+Cn Dn. Hence Rn =An Bn = α β+ α+β N AN, which is Theorem. of []. In a similar way starting from Lemma 5. and appealing to Theorem 8. of [], we can obtain an explicit formula for Sn. We leave this to the reader. The methods of this paper can be used to determine explicit formulae for Na, b, c, d; n valid for all n N for other forms ax + by + cz + dt, see for example [], []. Acknowledgements The fourth author was supported by research grant A-7 from the Natural Sciences and Engineering Research Council of Canada. References [] A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams, Theta function identities and representations by certain quaternary quadratic forms, Int. J. Number Theory, to appear. [] A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams, Jacobi s identity and representation of integers by certain quaternary quadratic forms, Int. J. Modern Math. 007, -76.

40 578 A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams [] A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams, Nineteen quaternary quadratic forms, Acta Arith., to appear. [] A. Alaca, Ş. Alaca, M. F. Lemire and K. S. Williams, The number of representations of a positive integer by certain quaternary quadratic forms, Int. J. Number Theory, to appear. [5] A. Alaca, Ş. Alaca and K. S. Williams, Evaluation of the convolution sums σlσm and σlσm, Advances in Theoretical and l+m=n l+m=n Applied Mathematics 006, 7-8. [6] J. Liouville, Sur la forme x + y + z +t, J. Math. Pures Appl. 8 86, [7] J. Liouville, Sur la forme x +y +z +t, J. Math. Pures Appl. 8 86, [8] J. Liouville, Sur la forme x + y +z +t, J. Math. Pures Appl. 8 86, [9] J. Liouville, Sur la forme x +y +z +t, J. Math. Pures Appl. 8 86, [0] J. Liouville, Sur la forme x +y +z +t, J. Math. Pures Appl. 8 86, [] J. Liouville, Sur la forme x + y +z +t, J. Math. Pures Appl. 8 86, 8-8. [] J. Liouville, Sur la forme x +y +z +t, J. Math. Pures Appl. 8 86, [] J. Liouville, Sur la forme x +y +z +t, J. Math. Pures Appl. 8 86, [] J. Liouville, Sur la forme x +y +z +t, J. Math. Pures Appl. 8 86, 9-8. [5] J. Liouville, Sur la forme x +y +z +t, J. Pures Appl. Math. 8 86, 9-0. [6] J. Liouville, Sur la forme x +y +z +t, J. Pures Appl. Math. 8 86, -. [7] J. Liouville, Sur la forme x +y +z +t, J. Pures Appl. Math. 8 86, -8.

41 Theta function identities 579 [8] J. Liouville, Sur la forme x +y +z +t, J. Pures Appl. Math. 8 86, 9-5. [9] J. Liouville, Sur la forme x +y +z +t, J. Pures Appl. Math. 8 86, 5-5. [0] K. Petr, O počtu třid forem kvadratických záporného diskriminantu, Rozpravy Ceské Akademie Císare Frantiska Josefa I 0 90, -. Received: July 0, 007

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Representation by Quaternary Quadratic Forms whose Coefficients are 1, 2, 7 or 14

Representation by Quaternary Quadratic Forms whose Coefficients are 1, 2, 7 or 14 Representation by Quaternary Quadratic Forms whose Coefficients are 1, 2, 7 or 14 by Jamilah Alanazi, B. Math (King Faisal University) A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

On the k-bessel Functions

On the k-bessel Functions International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points Global Journal of Pure Applied Mathematics. ISSN 0973-768 Volume, Number 3 06, pp. 849 865 Research India Publications http://www.ripublication.com/gjpam.htm On New Subclasses of Analytic Functions with

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

The k-bessel Function of the First Kind

The k-bessel Function of the First Kind International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients

The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients Robert Gardner Brett Shields Department of Mathematics and Statistics Department of Mathematics and Statistics

Διαβάστε περισσότερα

Two generalisations of the binomial theorem

Two generalisations of the binomial theorem 39 Two generalisations of the binomial theorem Sacha C. Blumen Abstract We prove two generalisations of the binomial theorem that are also generalisations of the q-binomial theorem. These generalisations

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα