Θεµελίωση Γενετικών Αλγορίθµων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεµελίωση Γενετικών Αλγορίθµων"

Transcript

1 Θεµελίωση Γενετικών Αλγορίθµων Σηµερινό Μάθηµα Προβληµατισµοί Σχήµατα Τάξη Οριστικό Μήκος ΘεώρηµατωνΣχηµάτων Υπόθεση δοµικών Στοιχείων Πλάνη 1

2 Προβληµατισµοί Τι προβλέψεις µπορούν να γίνουν για τη χρονική εξέλιξη και για τη δυναµική των δοµών του πληθυσµού σε ένα συγκεκριµένο ΓA; Πώς οι τελεστές χαµηλού επιπέδου (επιλογή, διασταύρωση και µετάλλαξη) βελτιώνουν την µακροσκοπική συµπεριφορά των ΓA; Σε τι τύπους προβληµάτων οι ΓA αποδίδουν καλά; Σε τι τύπους προβληµάτων οι ΓA δεν αποδίδουν καλά; Τι κριτήρια απόδοσης είναι κατάλληλα; Κάτω από ποιες συνθήκες ένας ΓA υπερτερεί από τις συµβατικές µεθόδους αναζήτησης; Παραδοσιακή θεωρία ΓΑ Οι ΓA δουλεύουν ανασυνδυάζοντας «καλά δοµικά στοιχεία» λύσεων, µεένατρόπουψηλού παραλληλισµού (Holland) Η βασική ιδέα είναι ότι οι καλές λύσεις τείνουν να δηµιουργηθούν από καλά δοµικά στοιχεία Τα δοµικά στοιχεία είναι συνδυασµοί τµηµάτων συµβολοσειρών τα οποία προσδίδουν µεγαλύτερη απόδοση στις συµβολοσειρές στις οποίες παραβρίσκονται. Ο Holland εισήγαγε πρώτος την ονοµασία σχήµατα, γιανατυποποιήσειτηνάτυπη ονοµασία των «δοµικών στοιχείων» 2

3 Σχήµατα Ηθεωρητικήθεµελίωση των ΓA βασίζεται στην αναπαράσταση των λύσεων ως δυαδικών συµβολοσειρών, και στην έννοια του σχήµατος Το σχήµαείναιέναπρότυπο(template) που επιτρέπει τον προσδιορισµότηςοµοιότητας µεταξύ των χρωµοσωµάτων Ένα σχήµα κατασκευάζεται εισάγοντας ένα αδιάφορο σύµβολο (*) στο αλφάβητο των γονιδίων Ένα σχήµα αναπαριστά όλες τις συµβολοσειρές οι οποίες ταιριάζουν σε όλες τις θέσεις εκτός από αυτές που περιέχουν το αδιάφορο σύµβολο Σχήµατα - Παράδειγµα Στο σχήµα (* ) ταιριάζουν οι δύο συµβολοσειρές: {( ), ( )} Ενώ το σχήµα (**********) αναπαριστά όλες τις συµβολοσειρές µήκους 10 3

4 Σχήµατα Κάθε σχήµααναπαριστά2 r συµβολοσειρές, όπου r είναι ο αριθµός των αδιάφορων συµβόλων * στο σχήµα Κάθε συµβολοσειρά µήκους m ταιριάζει σε 2 m διαφορετικά σχήµατα Το πλήθος των αδιάφορων συµβόλων * σε ένα σχήµακαθορίζειτοναριθµότων συµβολοσειρών που ταιριάζουν σε αυτό το σχήµα. Σχήµατα - Παράδειγµα Ησυµβολοσειρά ( ) ταιριάζει στα ακόλουθα 2 10 σχήµατα: ( ) (* ) (1* ) (10* ) ( *) (** ) (*0* ) ( **) (*** ) (**********) 4

5 Τάξη και Οριστικό Μήκος Υπάρχουν δύο σηµαντικά µεγέθη που χαρακτηρίζουν τα σχήµατα: η τάξηκαι το οριστικό µήκος Ητάξηενόςσχήµατος S (ο(s)) είναι ο αριθµός των θέσεων µε 0 και 1, που καλούνται και σταθερές θέσεις (fixed positions) Η τάξη προσδιορίζει την ειδικότητα ενός σχήµατος Ητάξηενόςσχήµατος χρησιµεύει στον υπολογισµό της πιθανότητας επιβίωσης του σχήµατος κατά τη µετάλλαξη. Τάξη και Οριστικό Μήκος Το οριστικό µήκος ενός σχήµατος S (δ(s)) είναι η απόσταση µεταξύ της πρώτης και της τελευταίας σταθερής θέσης. Προσδιορίζει την πυκνότητα (compactness) της πληροφορίας Η έννοια του οριστικού µήκους ενός σχήµατος είναι χρήσιµηστον υπολογισµότηςπιθανότητας επιβίωσης του σχήµατος κατά τη διασταύρωση 5

6 ΘεώρηµατωνΣχηµάτων (Schema Theorem) Σχήµατα άνω του µέσου όρου απόδοσης, µε µικρό οριστικό µήκος και µικρή τάξη λαµβάνουν εκθετικά αυξανόµενες συµβολοσειρές σε διαδοχικές γενιές ενός Γενετικού Αλγορίθµου Εξέλιξη του ΓΑ Η διαδικασία εξέλιξης ενός Γ.Α. αποτελείται από τέσσερα επαναλαµβανόµενα βήµατα: 1) t t+1 2) επέλεξε νέο πληθυσµό P(t+1) από τον P( 3) ανασυνδύασε τον 4) αξιολόγησε τον 6

7 Επίδραση της επιλογής Ορίζουµεωςξ(S, τον αριθµός των συµβολοσειρών στον πληθυσµότηστιγµή t που ταιριάζουν στο σχήµα S παράδειγµα για το σχήµα S 0 = (****111************************** ) στο παράδειγµα του προηγ. µαθήµατος είναι ξ(s 0, = 3 Αρχικός Πληθυσµός v 1 = ( ) v 2 = ( ) v 3 = ( ) v 4 = ( ) v 5 = ( ) v 6 = ( ) v 7 = ( ) v 8 = ( ) v 9 = ( ) v 10 = ( ) v 11 = ( ) v 12 = ( ) v 13 = ( ) v 14 = ( ) v 15 = ( ) v 16 = ( ) v 17 = ( ) v 18 = ( ) v 19 = ( ) v 20 = ( ) 7

8 Επίδραση της επιλογής Η απόδοσή του σχήµατος τη στιγµή t ορίζεται ως η µέση απόδοση όλων των συµβολοσειρών του πληθυσµού τη στιγµή t που ταιριάζουν µετοσχήµα S. Έστω p συµβολοσειρές: eval( S, = ( p j= 1 eval( v i )) / p j Επίδραση της επιλογής Μετά την επιλογή, αναµένεται ότι θα ταιριάζουν µετο σχήµαξ(s,t+1) συµβολοσειρές, επειδή: 1. για µια συµβολοσειρά που ταιριάζει µετοσχήµα S, ηπιθανότηταεπιλογήςτηςείναιeval (S, /F(, 2. οαριθµός των συµβολοσειρών που ταιριάζουν µετο σχήµα S είναι ξ(s, 3. οαριθµόςτωνεπιλογώνσεκάθεβήµαείναι pop_size ξ ( S, t + 1) = ξ ( S, pop _ size eval( S, / F( ή ξ ( S, t + 1) = ξ ( S, eval( S, / F( 8

9 Τελικός Πληθυσµός ξ(s,t+1)=4,19 v1 = ( ) v2 = ( ) v3 = ( ) v4 = ( ) v5 = ( ) v6 = ( ) v7 = ( ) v8 = ( ) v9 = ( ) v10 = ( ) v11 = ( ) v12 = ( ) v13 = ( ) v14 = ( ) v15 = ( ) v16 = ( ) v17 = ( ) v18 = ( ) v19 = ( ) v20 = ( ) Επίδραση της επιλογής Οαριθµός των συµβολοσειρών στον πληθυσµό που ταιριάζει στο σχήµα, αυξάνεται ανάλογα µετολόγοτης απόδοσης του αντίστοιχου σχήµατος προς την µέση απόδοση του πληθυσµού. Η διαδικασία της επιλογής δεν εισάγει νέες πιθανές λύσεις στον πληθυσµό. Απλά, αντιγράφει κάποιες συµβολοσειρές για το σχηµατισµόενός προσωρινού πληθυσµού. 9

10 Επίδραση των γενετικών τελεστών διασταύρωση-παράδειγµα Έστω τα σχήµατα S 0 =(****111**************************) S 1 =(111****************************10) Ζευγαρώνουν τα v 13 και v 18 και επιλέχθηκε, ως σηµείο διασταύρωσης, pos = 20: v 13 = ( ) v 18 =( ) δίνει v 13 = ( ) v 18 =( ) Επίδραση των γενετικών τελεστών διασταύρωση Το οριστικό µήκος ενός σχήµατος παίζει καθοριστικό ρόλο για την επιβίωση του. Η πιθανότητα καταστροφής του είναι: δ ( S) p d ( S ) = m 1 Το σηµείο διασταύρωσης επιλέγεται οµοιόµορφα από m-1 πιθανά σηµεία. Η πιθανότητα επιβίωσης ενός σχήµατος S είναι: δ ( S) ps ( S) = 1 pd ( S) = 1 m 1 10

11 Επίδραση των γενετικών τελεστών διασταύρωση Όµως, η διασταύρωση έχει µια πιθανότητα p c να εκτελεστεί, η πιθανότητα επιβίωσης ενός σχήµατος είναι: δ ( S) ps ( S) = 1 pc m 1 Αν το σηµείο διασταύρωσης επιλεχθεί ανάµεσα σε σταθερές θέσεις σε ένα σχήµα, υπάρχει ακόµα πιθανότητα να επιβιώσει και συνεπώς : p ( S) 1 p s c δ ( S) m 1 Επίδραση επιλογής & διασταύρωσης Η επίδραση της επιλογής και της διασταύρωσης στην αύξηση του αριθµού των συµβολοσειρών είναι: ξ ( S, t + 1) ξ ( S, δ ( S) ( eval( S, / F( ) 1 p c m 1 Συνεπώς, τα άνω του µέσου όρου σχήµατα µε µικρό οριστικό µήκος θα δειγµατοληπτούνται µεεκθετικά αυξανόµενους ρυθµούς 11

12 Επίδραση των γενετικών τελεστών µετάλλαξη - παράδειγµα Έστω το από το παράδειγµα µας το άτοµο: v 19 =( ) Και το σχήµα: S 0 =(****111**************************) Το άτοµο µας µεταλλάχθηκε στην ένατη θέση v 19 =( ) Επίδραση των γενετικών τελεστών µετάλλαξη η πιθανότητα επιβίωσης ενός σχήµατος κατά την όλη διαδικασία της µετάλλαξης είναι: p ( S) = (1 s p m Επειδή, όµως, p m <<1: p ( S) 1 o( S) ) o( S ) s p m 12

13 Θεώρηµατωνσχηµάτων Οσυνδυασµός των αποτελεσµάτων για την επιλογή, τη διασταύρωση και την µετάλλαξη: δ ( S) ( eval( S, / F( ) 1 p o( S p ξ ( S, t 1) ξ ( S, c ) m 1 + m Σχήµατα άνω του µέσου όρου απόδοσης, µε µικρό οριστικό µήκος και µικρή τάξη λαµβάνουν εκθετικά αυξανόµενες συµβολοσειρές σε διαδοχικές γενιές ενός Γενετικού Αλγορίθµου. Υπόθεση δοµικών Στοιχείων Ένας Γενετικός Αλγόριθµος αναζητεί απόδοση κοντά στο βέλτιστο, τοποθετώντας δίπλα δίπλα µικρού µήκους, χαµηλής τάξης και υψηλής απόδοσης σχήµατα, που ονοµάζονται δοµικά στοιχεία Η υπόθεση προϋποθέτει ότι το πρόβληµα της κωδικοποίησης για ένα ΓA είναι κρίσιµο για την απόδοσή του και ότι µια τέτοια κωδικοποίηση θα έπρεπε να ικανοποιεί την ιδέα των δοµικών στοιχείων µικρού µήκους 13

14 «πλάνη» Συµβαίνει όταν µερικά δοµικά σχήµατα (µικρού µήκους, χαµηλής τάξης σχήµατα) µπορούν να παρασύρουν το ΓA και να τον αναγκάσουν να συγκλίνει σε υποβέλτιστα σηµεία Έχουν προταθεί τρεις προσεγγίσεις που ασχολούνται µετην«πλάνη» Πρώτη προσέγγιση Προϋποθέτει εκ των προτέρων γνώση της αντικειµενικής συνάρτησης για να κωδικοποιηθεί µε κατάλληλο τρόπο. Για παράδειγµα, µπορεί να οδηγήσει σε διαφορετική κωδικοποίηση, όπου τα έξι ψηφία που απαιτούνται για τη βελτιστοποίηση της συνάρτησης είναι γειτονικά, αντί να είναι σε έξι χωριστές θέσεις. 14

15 εύτερη προσέγγιση Χρησιµοποιεί τον τρίτο γενετικό τελεστή, την αντιστροφή: επιλέγει δύο σηµεία µέσα σε µια συµβολοσειρά και αντιστρέφει την τάξη των ψηφίων µεταξύ των επιλεγµένων σηµείων, αλλά θυµάται τη «σηµασία» του ψηφίου. Παράδειγµα: s = ((1, 0), (2, 0), (3, 0) (4, 1), (5, 1), (6, 0), (7, 1) (8, 0), (9, 0), (10, 0), (11, 1)) s = ((1, 0), (2, 0), (3, 0) (7, 1), (6, 0), (5, 1), (4, 1) (8, 0), (9, 0), (10, 0), (11, 1)) Γενικά ο τελεστής αυτός έχει αυξηµένη πολυπλοκότητα και η επιτυχής εφαρµογή του είναι περιορισµένη. Τρίτη προσέγγιση Η τρίτη προσέγγιση για την εξουδετέρωση της «πλάνης», προτάθηκε σχετικά πρόσφατα και είναι η υλοποίηση ένος «ακατάστατου» (messy) Γενετικού Αλγορίθµου. 15

16 Aσκήσεις Άσκηση 1 Έξι συμβολοσειρές έχουν τις ακόλουθες τιμές της αντικειμενικής συνάρτησης: 5, 10, 15, 25, 50, 100. Κάνοντας χρήση της εξαναγκασμένης ρουλέτας, να υπολογίσετε τον αναμενόμενο αριθμό αντιγράφων κάθε συμβολοσειράς στο νέο πληθυσμό, ανσεκάθεγενιάδιατηρείται έναςσταθερός πληθυσμός μεγέθους n=6. Άσκηση 2 Έστω ότι θέλουμε να ελαχιστοποιήσουμε τη συνάρτηση f(x)=x 2 +5x+3 όπου το x ανήκει στο διάστημα [0, 63]. Πόσα δυαδικά ψηφία θα χρειαστούν για να κωδικοποιηθούν όλες οι πιθανές ακέραιες τιμές του x στο διάστημα 0 έως 63; Άσκηση 3 Έστω ότι θέλετε να υλοποιήσετε ένα Γ.Α., ο οποίος από ένα πληθυσμό 100 ατόμων θα ξεχωρίζει εκείνο το χρωμόσωμα (μήκους 100), το οποίο περιέχει τους περισσότερους άσους. Ποια αντικειμενική συνάρτηση θα χρησιμοποιήσετε; 16

ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ

ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Quiz Γενετικών Αλγορίθµων 1 ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ ΚΩ ΙΚΟΠΟΙΗΣΗ ΕΡΩΤΗΜΑ 1.1 Ο φαινότυπος ενός ατόµου α.αναπαριστά ένα άτοµο στο χώρο λύσεων του προβλήµατος β.κωδικοποιεί

Διαβάστε περισσότερα

Ανάλυση των Γενετικών Αλγορίθµων

Ανάλυση των Γενετικών Αλγορίθµων Ανάλυση των Γενετικών Αλγορίθµων Σηµερινό Μάθηµα ΠρόβληµαΒελτιστοποίησης Βελτιστοποίηση συνάρτησης µιας µεταβλητής Βελτιστοποίηση συνάρτησης k µεταβλητών Περιορισµοίτουπεδίουορισµού Περιορισµοί πλεοναζουσών

Διαβάστε περισσότερα

Εισαγωγή στους Γενετικούς Αλγορίθμους

Εισαγωγή στους Γενετικούς Αλγορίθμους ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΓΝΩΡΙΣΗΣ ΠΡΟΤΥΠΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών & Πληροφορικής Τομέας Εφαρμογών και Θεμελιώσεων της Επιστήμης των Υπολογιστών. Διευθυντής

Διαβάστε περισσότερα

Υπολογιστική Νοηµοσύνη

Υπολογιστική Νοηµοσύνη Υπολογιστική Νοηµοσύνη Σηµερινό Μάθηµα Η θεωρία της Εξέλιξης των Ειδών οµή Γενετικού Αλγόριθµου Κύρια χαρακτηριστικά ενός Γενετικού Αλγορίθµου (ΓΑ) Γενετική ιαδικασία 1 Η θεωρία της Εξέλιξης των Ειδών

Διαβάστε περισσότερα

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Ένα από τα γνωστότερα παραδείγματα των ΕΑ είναι ο Γενετικός

Διαβάστε περισσότερα

Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά

Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά ΤΕΙ Κεντρικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταπτυχιακό Πρόγραμμα Τηλεπικοινωνιών & Πληροφορικής Μάθημα : 204a Υπολογιστική Ευφυία Μηχανική Μάθηση Καθηγητής : Σπύρος Καζαρλής Ενότηα : Εξελικτική

Διαβάστε περισσότερα

Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 7 Γενετικοί Αλγόριθµοι Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Εισαγωγή Σε αρκετές περιπτώσεις το µέγεθος ενός προβλήµατος καθιστά απαγορευτική

Διαβάστε περισσότερα

ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ: θεωρητικό Πλαίσιο

ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ: θεωρητικό Πλαίσιο ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ: θεωρητικό Πλαίσιο EVOLOTIONARY ALGORITHMS 1 ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Η Λογική (1/2) Ο Εξελικτικός Υπολογισµός (evolutionary computation) χρησιµοποιεί τα υπολογιστικά µοντέλα εξελικτικών

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η αντικειμενική συνάρτηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕΔΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕΔΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕΔΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ & ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Πρόγραμμα μεταπτυχιακών σπουδών: «Σχεδίαση διαδραστικών

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα επανάληψη Γενετικών Αλγορίθµων η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Κωδικοποίηση Αντικειµενική Συνάρτ Αρχικοποίηση Αξιολόγηση

Διαβάστε περισσότερα

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ Ηλίας Κ. Ξυδιάς 1, Ανδρέας Χ. Νεάρχου 2 1 Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου, Σύρος

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 26: Καθολική Μηχανή Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Νικόλαος - Σπυρίδων Αναστασίου Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Χρήση Εξελικτικών Αλγορίθμων για την εκπαίδευση

Διαβάστε περισσότερα

Γενετικοί Αλγόριθμοι. Εισαγωγή

Γενετικοί Αλγόριθμοι. Εισαγωγή Τεχνητή Νοημοσύνη 08 Γενετικοί Αλγόριθμοι (Genetic Algorithms) Εισαγωγή Σε αρκετές περιπτώσεις το μέγεθος ενός προβλήματος καθιστά απαγορευτική τη χρήση κλασικών μεθόδων αναζήτησης για την επίλυσή του.

Διαβάστε περισσότερα

ΑΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ:

ΑΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΑΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: Υλοποίηση ενός απλού Classifier System (σταθερού πλήθους κανόνων) για εφαρµογή στο πρόβληµα προσοµοίωσης ενός ψηφιακού πολυπλέκτη κα ενός

Διαβάστε περισσότερα

1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2

1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 Άσκηση Δίνεται ο αρχικός πληθυσμός, στην 1 η στήλη στον παρακάτω πίνακα και οι αντίστοιχες καταλληλότητες (στήλη 2). Υποθέστε ότι, το ζητούμενο είναι η μεγιστοποίηση

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ (Τμήματα Υπολογιστή) ΕΚΠΑΙΔΕΥΤΗΣ:ΠΟΖΟΥΚΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΜΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΗ Κάθε ηλεκτρονικός υπολογιστής αποτελείται

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Ρυθμός κωδικοποίησης Ένας κώδικας που απαιτεί L bits για την κωδικοποίηση μίας συμβολοσειράς N συμβόλων που εκπέμπει μία πηγή έχει ρυθμό κωδικοποίησης (μέσο μήκος λέξης) L

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΕΤΑΠΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ Ε. Τ. Υ.

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΕΤΑΠΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ Ε. Τ. Υ. Π ΑΝΕΠΙΣΤΗΜΙΟ Π ΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΕΤΑΠΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ Ε. Τ. Υ. ΣΙΕΛΗΣ ΓΕΩΡΓΙΟΣ Α.Μ.: 494 ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Η έννοια πρόβληµα Ανάλυση προβλήµατος Με τον όρο πρόβληµα εννοούµε µια κατάσταση η οποία χρήζει αντιµετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή ούτε προφανής. Μερικά προβλήµατα είναι τα εξής:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Τετάρτη Ιουνίου 7 :-4: Κατασκευάστε έναν αισθητήρα (perceptron)

Διαβάστε περισσότερα

Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής

Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Έλεγχος λειτουργίας δικτύων διανομής με χρήση μοντέλων υδραυλικής ανάλυσης Βασικό ζητούμενο της υδραυλικής ανάλυσης είναι ο έλεγχος

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ

ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Μανινάκης Ανδρέας 1 Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Επιβλέπων καθηγητής:

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 6: Αλγόριθμοι Τοπικής Αναζήτησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 11: Τεχνικές Κατακερματισμού. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής.

Δομές Δεδομένων. Ενότητα 11: Τεχνικές Κατακερματισμού. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Ενότητα 11: Τεχνικές Κατακερματισμού Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης ΟΜΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ Ένας υπολογιστής αποτελείται από την Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ), τη µνήµη, τις µονάδες εισόδου/εξόδου και το σύστηµα διασύνδεσης

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

Γενετικοί Aλγόριθµοι και Eφαρµογές

Γενετικοί Aλγόριθµοι και Eφαρµογές Γενετικοί Aλγόριθµοι και Eφαρµογές ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Σχολή Θετικών Επιστηµών και Τεχνολογίας Πρόγραµµα Σπουδών ΠΛΗΡΟΦΟΡΙΚΗ Θεµατική Ενότητα TΕΧΝΗΤΗ NΟΗΜΟΣΥΝΗ ΚΑΙ EΦΑΡΜΟΓΕΣ Τόµος Γ' Γενετικοί

Διαβάστε περισσότερα

Θεώρημα κωδικοποίησης πηγής

Θεώρημα κωδικοποίησης πηγής Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS

ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS Χρήστος Δ. Ταραντίλης Αν. Καθηγητής ΟΠΑ ACO ΑΛΓΟΡΙΘΜΟΙ Η ΛΟΓΙΚΗ ΑΝΑΖΗΤΗΣΗΣ ΛΥΣΕΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΙΑΤΑΞΗΣ (1/3) Ε..Ε. ΙΙ Oι ACO

Διαβάστε περισσότερα

Γενετικοί Αλγόριθμοι (ΓΑ) Genetic Algorithms (GAs) Είναι το πιο αντιπροσωπευτικό και δημοφιλές είδος Εξελικτικού Αλγόριθμου Χρησιμοποιούνται κυρίως

Γενετικοί Αλγόριθμοι (ΓΑ) Genetic Algorithms (GAs) Είναι το πιο αντιπροσωπευτικό και δημοφιλές είδος Εξελικτικού Αλγόριθμου Χρησιμοποιούνται κυρίως Σπύρος Καζαρλής Γενετικοί Αλγόριθμοι (ΓΑ) Genetic Algorithms (GAs) Είναι το πιο αντιπροσωπευτικό και δημοφιλές είδος Εξελικτικού Αλγόριθμου Χρησιμοποιούνται κυρίως ως αλγόριθμοι γενικής βελτιστοποίησης

Διαβάστε περισσότερα

Διερεύνηση μεθόδων αναζήτησης ολικού βελτίστου σε προβλήματα υδατικών πόρων

Διερεύνηση μεθόδων αναζήτησης ολικού βελτίστου σε προβλήματα υδατικών πόρων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ» Διερεύνηση μεθόδων αναζήτησης ολικού βελτίστου σε προβλήματα υδατικών πόρων

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

Ιεραρχία Οργανισµών Οι οργανισµοί που ζουν στο οικοσύστηµά µας κατατάσσονται σύµφωνα µε την παρακάτω ιεραρχία: Organisms

Ιεραρχία Οργανισµών Οι οργανισµοί που ζουν στο οικοσύστηµά µας κατατάσσονται σύµφωνα µε την παρακάτω ιεραρχία: Organisms ΗΥ252 - Οντοκεντρικός Προγραµµατισµός Project Εαρινού εξαµήνου 2002 Περιγραφή Παραδοταίων Περιγραφή Project Το project αφορά την προσοµοίωση ενός οικοσυστήµατος. Το οικοσύστηµα µας αποτελείται από διάφορα

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17)

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε Άπληστους Αλγόριθµους Στοιχεία άπληστων αλγορίθµων Το πρόβληµα επιλογής εργασιών ΕΠΛ 232

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

Τεράστιες ανάγκες σε αποθηκευτικό χώρο

Τεράστιες ανάγκες σε αποθηκευτικό χώρο ΣΥΜΠΙΕΣΗ Τεράστιες ανάγκες σε αποθηκευτικό χώρο Παράδειγμα: CD-ROM έχει χωρητικότητα 650MB, χωρά 75 λεπτά ασυμπίεστου στερεοφωνικού ήχου, αλλά 30 sec ασυμπίεστου βίντεο. Μαγνητικοί δίσκοι χωρητικότητας

Διαβάστε περισσότερα

ΘΕΜΑ 1. 1. Συμβολική γλώσσα 2. Γλώσσες υψηλού επιπέδου 3. Γλώσσες τέταρτής γενιάς 4. Γλώσσα μηχανής

ΘΕΜΑ 1. 1. Συμβολική γλώσσα 2. Γλώσσες υψηλού επιπέδου 3. Γλώσσες τέταρτής γενιάς 4. Γλώσσα μηχανής ΘΕΜΑ 1 Α1Να γράψετε στο τετράδιο σας τον αριθμό καθεμίας από τις παρακάτω προτάσεις και δίπλα τη λέξη Σώστο,αν είναι σωστή και τη λέξη Λάθος, αν είναι λανθασμένη. 1.ο αλγόριθμος του πολλαπλασιασμού αλά

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

1. Να αναφέρετε ονοµαστικά τις λειτουργίες µε τις οποίες ο υπολογιστής µπορεί να επιτελέσει µε επιτυχία οποιαδήποτε επεξεργασία. Ï.Å.Ö.Å.

1. Να αναφέρετε ονοµαστικά τις λειτουργίες µε τις οποίες ο υπολογιστής µπορεί να επιτελέσει µε επιτυχία οποιαδήποτε επεξεργασία. Ï.Å.Ö.Å. 1 Γ' ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1: Α. 1. Να αναφέρετε ονοµαστικά τις λειτουργίες µε τις οποίες ο υπολογιστής µπορεί να επιτελέσει µε επιτυχία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

Λελούδας Παναγιώτης. Επιβλέπων Καθηγητής: Σπυρίδων Λυκοθανάσης. Τμήμα Μηχανικών Η/Υ και Πληροφορικής. Πανεπιστήμιο Πατρών

Λελούδας Παναγιώτης. Επιβλέπων Καθηγητής: Σπυρίδων Λυκοθανάσης. Τμήμα Μηχανικών Η/Υ και Πληροφορικής. Πανεπιστήμιο Πατρών Σχεδιασμός, Ανάλυση και Υλοποίηση Ευφυών Αλγορίθμων Υπολογιστικής Νοημοσύνης για την Εύρεση Βέλτιστου Ωρολογίου Προγράμματος Εργασίας Οδηγών και Χρονοδρομολόγησης Λεωφορείων σε Υπεραστικά και Αστικά ΚΤΕΛ

Διαβάστε περισσότερα

6 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

6 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 6 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 4 4 η Άσκηση... 4 5 η Άσκηση... 5 6 η Άσκηση... 5 7 η Άσκηση... 5 8 η Άσκηση... 6 Χρηματοδότηση... 7

Διαβάστε περισσότερα

ΗΜΙΟΥΡΓΙΑ ΕΠΕΝ ΥΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΜΕ ΧΡΗΣΗ ΕΞΕΛΙΚΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ

ΗΜΙΟΥΡΓΙΑ ΕΠΕΝ ΥΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΜΕ ΧΡΗΣΗ ΕΞΕΛΙΚΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΜΙΟΥΡΓΙΑ ΕΠΕΝ ΥΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΜΕ ΧΡΗΣΗ ΕΞΕΛΙΚΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Πτυχιακή εργασία του ΑΣΤΕΡΙΟΥ ΚΑΚΛΑΜΑΝΟΥ Εισηγητής : ΠΑΝΑΓΙΩΤΗΣ Α ΑΜΙ

Διαβάστε περισσότερα

ADVANCED TIMETABLE ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ - ΣΕΜΙΝΑΡΙΑ. Advanced Time Table - Σεμινάρια. Τι είναι τα σεμινάρια

ADVANCED TIMETABLE ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ - ΣΕΜΙΝΑΡΙΑ. Advanced Time Table - Σεμινάρια. Τι είναι τα σεμινάρια ADVANCED TIMETABLE ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ - ΣΕΜΙΝΑΡΙΑ Ακόμα ένα χαρακτηριστικό, που περιλαμβάνεται στην Pro έκδοση του Advanced TimeTable, είναι τα σεμινάρια. Η Professional έκδοση, απευθύνεται στους εκπαιδευτικούς

Διαβάστε περισσότερα

Σχεσιακό Μοντέλο. Εισαγωγή. Βάσεις εδοµένων : Σχεσιακό Μοντέλο 1

Σχεσιακό Μοντέλο. Εισαγωγή. Βάσεις εδοµένων : Σχεσιακό Μοντέλο 1 Σχεσιακό Μοντέλο Βάσεις εδοµένων 2011-2012 Ευαγγελία Πιτουρά 1 Εισαγωγή O σχεδιασμός μιας βάση δεδομένων κωδικοποιεί κάποιο μέρος του φυσικού κόσμου Ένα μοντέλο δεδομένων είναι ένα σύνολο από έννοιες για

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Differential Evolution (Storn & Price 1995) Μπορεί να θεωρηθεί ως παραλλαγή των ΓΑ. Εφαρμόζεται μόνο σε προβλήματα συνεχών παραμέτρων και όχι

Differential Evolution (Storn & Price 1995) Μπορεί να θεωρηθεί ως παραλλαγή των ΓΑ. Εφαρμόζεται μόνο σε προβλήματα συνεχών παραμέτρων και όχι Σπύρος Καζαρλής Differential Evolution (Storn & Price 1995) Μπορεί να θεωρηθεί ως παραλλαγή των ΓΑ. Εφαρμόζεται μόνο σε προβλήματα συνεχών παραμέτρων και όχι συνδυαστικά. Χρησιμοποιεί πληθυσμό λύσεων που

Διαβάστε περισσότερα

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Μοντελοποίηση Υπολογισμού Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Προβλήματα - Υπολογιστές Δεδομένου ενός προβλήματος υπάρχουν 2 σημαντικά ερωτήματα: Μπορεί να επιλυθεί με χρήση υπολογιστή;

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >

Διαβάστε περισσότερα

Συμπίεση Πολυμεσικών Δεδομένων

Συμπίεση Πολυμεσικών Δεδομένων Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας

Διαβάστε περισσότερα

Φροντιστήριο 3o. όπου x = max{m N 0 : m x} και N 0 = {0, 1, 2,...} Λύση. Ιδιότητες αθροιστικής: lim F (x) = 0 αφού F (x) = 0 για x < 1.

Φροντιστήριο 3o. όπου x = max{m N 0 : m x} και N 0 = {0, 1, 2,...} Λύση. Ιδιότητες αθροιστικής: lim F (x) = 0 αφού F (x) = 0 για x < 1. Φροντιστήριο 3o Όπως έχουμε πει, αναλόγως με τη μορφή που έχει το στήριγμα, διακρίνουμε τις κατανομές σε διακριτές και μη διακριτές. Συγκεκριμένα, μια κατανομή ονομάζεται διακριτή όταν έχει διακριτό στήριγμα,

Διαβάστε περισσότερα

o AND o IF o SUMPRODUCT

o AND o IF o SUMPRODUCT Πληροφοριακά Εργαστήριο Management 1 Information Συστήματα Systems Διοίκησης ΤΕΙ Τμήμα Ελεγκτικής Ηπείρου Χρηματοοικονομικής (Παράρτημα Πρέβεζας) και Αντικείµενο: Μοντελοποίηση προβλήµατος Θέµατα που καλύπτονται:

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;

Διαβάστε περισσότερα

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Καθ. Καρατζάς Γεώργιος Υπ. Διδ. Δόκου Ζωή Σχολή Μηχανικών

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Σχήµα 3.1: Εισαγωγή shift register σε βρόγχο for-loop.

Σχήµα 3.1: Εισαγωγή shift register σε βρόγχο for-loop. Η δοµή «Shift register» 1. Η δοµή «Shift register» εισάγεται στο βρόγχο for-loop αλλά και σε άλλους βρόγχους που θα δούµε στη συνέχεια, όπως ο βρόγχος «While loop». Ο τρόπος εισαγωγής και λειτουργίας της

Διαβάστε περισσότερα

Εισαγωγή στα Συστήματα Ψηφιακής Επεξεργασίας Σήματος

Εισαγωγή στα Συστήματα Ψηφιακής Επεξεργασίας Σήματος ΕΣ 08 Επεξεργαστές Ψηφιακών Σημάτων Εισαγωγή στα Συστήματα Ψηφιακής Επεξεργασίας Σήματος Κλήμης Νταλιάνης Λέκτορας Π.Δ.407/80 Τμήμα Επιστήμη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήμιο Πελοποννήσου Αρχιτεκτονική

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ http://prlab.ceid.upatras.gr/courses/simeiwseis/yp2/chap1.htm Page 1 of 1 1. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΝΕΤΙΚΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ Οι Γενετικοί Αλγόριθμοι (Genetic Algorithms) είναι ένα μοντέλο μηχανισμού μάθησης του

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Δραστηριότητα 8 ης εβδομάδας ΟΜΑΔΑΣ Α: Γ. Πολυμέρης, Χ. Ηλιούδη, Ν. Μαλλιαρός και Δ. Θεοτόκης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Περιγραφή Η συγκεκριμένη δραστηριότητα αποτελεί μια πρόταση

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 04 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΑΡ ΕΥΤΙΚΟΥ ΙΚΤΥΟΥ ΥΠΟ ΠΙΕΣΗ ΜΕ ΓΕΝΕΤΙΚΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΑΡ ΕΥΤΙΚΟΥ ΙΚΤΥΟΥ ΥΠΟ ΠΙΕΣΗ ΜΕ ΓΕΝΕΤΙΚΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΕΙ ΙΚΕΥΣΗΣ ΠΡΟΣΤΑΣΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΒΙΩΣΙΜΗ ΑΝΑΠΤΥΞΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 7 Ιανουαρίου 2005 ιάρκεια εξέτασης: 5:00-8:00 Έστω ότι

Διαβάστε περισσότερα

Search and Replication in Unstructured Peer-to-Peer Networks

Search and Replication in Unstructured Peer-to-Peer Networks Search and Replication in Unstructured Peer-to-Peer Networks Presented in P2P Reading Group in 11/10/2004 Abstract: Τα µη-κεντρικοποιηµένα και µη-δοµηµένα Peer-to-Peer δίκτυα όπως το Gnutella είναι ελκυστικά

Διαβάστε περισσότερα

Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παναγιώτης Αδαµίδης

Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παναγιώτης Αδαµίδης Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εισαγωγή Παναγιώτης Αδαµίδης Θεσσαλονίκη, Μάιος 1999 Περιεχόµενα 1. Εισαγωγή 1 2. Βιολογικό υπόβαθρο 2 3. Απλό παράδειγµα 4 4. Βασικά Μοντέλα Εξελικτικών Αλγόριθµων

Διαβάστε περισσότερα

Σχεδιασµός και δράση στον πραγµατικό κόσµο

Σχεδιασµός και δράση στον πραγµατικό κόσµο Σχεδιασµός και δράση στον πραγµατικό κόσµο Planning and Acting in the Real World Ενέργειες µε διάρκεια Init(Σασί(C 1 ) Σασί(C 2 ) Μηχανή(E 1, C 1, 30) Μηχανή(E 2, C 2, 60) Τροχοί(W 1, C 1, 30) Τροχοί(W

Διαβάστε περισσότερα

ΓΕΝΕΤΙΚΗ ΒΕΛΤΙΩΣΗ. 6η ΙΑΛΕΞΗ ΒΑΣΙΚΑ ΣΤΑ ΙΑ ΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΟΣ ΒΕΛΤΙΩΣΗΣ

ΓΕΝΕΤΙΚΗ ΒΕΛΤΙΩΣΗ. 6η ΙΑΛΕΞΗ ΒΑΣΙΚΑ ΣΤΑ ΙΑ ΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΟΣ ΒΕΛΤΙΩΣΗΣ ΓΕΝΕΤΙΚΗ ΒΕΛΤΙΩΣΗ ΦΥΤΩΝ 6η ΙΑΛΕΞΗ ΒΑΣΙΚΑ ΣΤΑ ΙΑ ΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΟΣ ΒΕΛΤΙΩΣΗΣ Απαραίτητες Προϋποθέσεις ενός Βελτιωτικού Προγράµµατος 1. Ύπαρξη γενετικής παραλλακτικότητας 2. Εφαρµογήεπιλογήςσεκάποιοστάδιοτου

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 17 Φεβρουαρίου 2004 ιάρκεια: 2 ώρες (15:00-17:00)

Διαβάστε περισσότερα

Κατάτµηση εικόνας σε οµοιόµορφες περιοχές

Κατάτµηση εικόνας σε οµοιόµορφες περιοχές KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση εικόνας σε οµοιόµορφες περιοχές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη

Διαβάστε περισσότερα