u statistici označava raspodjelu rezultata, odnosno frekvenciju kojom se u nekom skupu rezultata, poredanih po veličini pojavljuju

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "u statistici označava raspodjelu rezultata, odnosno frekvenciju kojom se u nekom skupu rezultata, poredanih po veličini pojavljuju"

Transcript

1 Distribucije

2 Distribucija u statistici označava raspodjelu rezultata, odnosno frekvenciju kojom se u nekom skupu rezultata, poredanih po veličini pojavljuju pojedini rezultati.

3 Provjera oblika distribucije Statistička ti tičk analiza podataka počinje provjerom oblika distribucije ib ij i nastavlja se njezinom statističkom deskripcijom (određivanjem osnovnih statističkih vrijednosti središnjih vrijednosti, varijabiliteta i sl.) l) Oblik distribucije može ukazati na to uz koji model pristaju dobiveni rezultati. To omogućuje interpretaciju rezultata, a osim toga, podatak o tome da li distribucija odstupa od određenog modela ili ne, utječe i na odabir daljnjih postupaka statističke obrade. Postoji veći broj matematički opisanih distribucija.

4 Podjela distribucija na distribucije za: kontinuirane varijable diskretne Ako varijabla može poprimiti bilo koju vrijednost između neke dvije specificirane vrijednosti radi se o kontinuiranoj varijabli (pr. težina vatrogasaca je propisana p od 50 kg do 130 kg,; bilo koja vrijednost). Ako ne može, varijabla je diskretna (npr. koliko je puta pala glava kod bacanja novčića:od od nula do plus beskonačnosti, ali cijeli broj).

5 Teorijske distribucije za diskretnu varijablu jesu : binomna i Poissonova. Teorijske distribucije za kontinuiranu varijablu jesu : normalna (Gaussova), Studentova t distribucija, F distribucija.

6 Binomna distribucija (najjednostavnija) teorijska distribucija za alternativna obilježja. pokazuje vjerojatnost j događanja međusobno isključivih događaja za svaki broj slučajeva posebno. U statistici se model binomne distribucije koristi za rezultate u dihotomnim varijablama u kojima su podacitipa točno netočno, muškarci žene i sl.

7 Binomna distribucija je u svezi s Bernoullijevim pokusima Bernoullijev pokus je slučajni č pokus ovih obilježja: Pokus ima dva ishoda (uspjeh, neuspjeh) U svakom ponavljanju pokusa vjerojatnost ishoda uspjeh = p i ne mijenja se od pokušaja do pokušaja. Vjerojatnost ishoda neuspjeh q= 1 p Pokušaji su neovisni.

8 Primjeri s novčićem bacanje novčića: Pismo i glava su isključivi događaji i vjerojatnost njihovog pojavljivanja je 05 0,5.

9 Primjer s dva novčića Akobacamo 2 novčića, postoje 3 mogućnosti ishoda bacanja: 1. na oba pismo 2. na oba glava 3. na jednom pismo na drugom glava Treću mogućnost dobivamo najčešće jer moguće su 4 kombinacije: I pismo, II pismo I pismo, II glava I glava, II pismo I glava, II glava Svaka od tih kombinacija je jednako vjerojatna, pa je p od svake 25%, od 2. i 3. zajedno 50%. Ako p i q zamijenimo i s izrazima i P i G dobivamo: (G+P) 2 =G 2 +2GP+P 2 što znači: jedanput 2 glave+ dva puta glava pismo+jedanput dva pisma ( ) 5) 2 = *0.5* = , , ,25

10 Primjer s četiri novčića Ako bacamo 4 komada, postoji 16 mogućih kombinacija 5 ishoda): Inovčić II novčić III novčić IV novčić 1. P P P P (4P) 2. P P P G (3P, 1G) 3. P P G P 4. P G P P 5. G P P P 6. G G P P (2P 2G) 7. G P P G 8. P P G G 9. P G G P 10. P G P G 11. G P G P 12. P G G G 13. G P G G 14. G G P G 15. G G G P 4P 6.25% slučajeva 3P,1G oko 25% slučajeva (2P,2G) 2P2G oko 37.5% slučajeva (1P,3G) 16. G G G G (4G) 1P3G oko 25% slučajeva 4G oko 6.25% slučajeva (p+q) 4 =(G+P) 4 =G 4 +4G 3 P+6G 2 P 2 +4GP 3 +P 4

11 Kako to zapravo izračunavamo Vjerojatnost pojedinih kombinacija (P, G) izračunavamo pomoću binomne raspodjele: (p+q) n S tim da je: p vjerojatnost da će se nešto dogoditi (npr glava) q vjerojatnost da se nešto neće dogoditi (ne glava, tj.pismo) eksponent n broj faktora (u našem pr.je to br novčića) (p+q) je uvijek 1 odnosno 100%

12 Binomni poučak (lat. ex binis nominibus iz dvije oznake) je pravilo prema kj kojem se potencija (n=bilo koji kjineneg. br) b) nekog binoma (=matematički tički izraz koji se sastoji od dvije veličine povezane oznakom + ili ) razvija. (a+b) n (a+b) 0 = 1 (a+b) 1 = a +b (a+b) 2 = a 2 + 2ab + b 2 (a+b) 3 = a 3 +3a 2 b + 3ab 2 +b 3 (a+b) 4 = a 4 +4a 3 b +6a 2 b 2 +4ab 3 +b 4 (a+b) 5 = a 5 + 5a 4 b +10 a 3 b 2 +10a 2 b 3 + 5ab 4 +b 5

13 Parametre binomnog poučka, kombinacije, a time i očekivanu frekvenciju binomne distribucije ib ij lako lk dobivamo iz Pascalovog trokuta. t Tk Tako uz pomoć ć Pascalovog trokuta možemo utvrditi ove kombinacije i bez računanja. U n-tom retku Pascalovog trokuta nalaze se binomni koeficijenti n-tog reda n=0,1,2,3, i to poredani po razredu k=0,1,2,3...n. Npr bacanje 3 novčića:n=3 (a+b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 1*3G 3*2G1P 3*1G2P 1* 3P frekvencija kombinacija Vidimo da je svaki element, osim rubnih, zbroj dvaju elemenata koji se nalaze s lijeve i desne strane u retku iznad.

14 Binomna vs normalnadistribucija Ako postoji dovoljno veliki broj takvih događaja (povećavajući br. novčića), dobili bismo konačno praktički potpuno pravilnu zvonastu ili normalnu raspodjelu. Ipak, razlika između binomne distribucije i normalne distribucije je u tome što binomna nastaje kombinacijom faktora kojima je pojavljivanje uvijek jednako vjerojatno, a kod normalne je situacija nešto drugačija (npr. kada bismo imali mnogo novčića koji nisu ispravni, tako da je svaki novčić po slučaju svinut, pa oko polovice novčića ima veću vjerojatnost da padne na glavu, a oko polovice na pismo, i takve novčiće bacamo, dobit ćemo krivulju rezultata koja će biti jednaka krivulji binomne raspodjele kada je N veliki broj).

15 Poissonova distribucija je raspodjelavrlorijetkih rijetkih slučajnihdogađaja (kod kojih je vjerojatnost pojavljivanjavrlovrlo mala; ako je p veoma malen, tj. ako je p 0.1, a n 50, tada se binomne vjerojatnosti mogu izračunati aproksimativno pomoću funkcije koju je otkrio Poisson). Izražava vjerojatnost broja događaja ako se ti događaji pojavljuju u fiksnom vremenskom periodu s poznatom prosječnom č brzinom pojavljivanja j i vremenski su nezavisne od prošlog događaja. Za razliku od normalne distribucije koja je potpuno definirana aritmetičkom sredinom i standardnom devijacijom, Poissonova distribucija je potpuno definirana aritmetičkom sredinom, jer je njena varijanca jednaka aritmetičkoj ičk sredini. i To znači da je ta distribucija šira što joj je aritmetička sredina veća. Kada je N vrlo velik, Poissonova distribucija se približava binomnoj, ali je razlika u tome što kod binomne raspodjele znamo koliko se puta neki događaj pojavio, ali i koliko se puta nije pojavio, a kod Poissonove raspodjele znamo samo koliko se puta neki događaj pojavio.

16 Poissonova distribucija ib ij Npr. F osoba god broj nesreća na poslu zadnjih 10

17 NORMALNA (GAUSSOVA) DISTRIBUCIJA je najvažnija distribucija u statističkoj teoriji. M

18 Graf normalne distribucije naziva se normalna ili zvonolika ki krivulja. Takav oblik distribucije rezultat je dvije tendencije ili sile koje djeluju j na rezultate: tendencija koncentriranja rezultata t kj koja je uvjetovana jt konstantnim t faktorima (najčešće je to veličina pojave ili predmeta mjerenja ili opažanja) tendencija raspršivanja rezultata koja je uvjetovana nesistematskim varijabilnim faktorima

19 Tendencijagrupiranja i raspršenja rezultata Ako mnogo puta mjerimo neku pojavu koja je takva kakva je (to je tendencija postizanja jednakog rezultata), pri mjerenju radimo (svjesno ili nesvjesno) manje ili veće pogreške, pa se zato rezultati pojedinačnih mjerenja razlikuju (to je tendencija razlikovanja rezultata). Nesistematski varijabilni faktori po slučaju skreću mjereni rezultat čas na jednu čas na drugu stranu, pa se ta skretanja najčešće međusobno ukidaju te zato dobivamo i najviše rezultata koji odgovaraju pravoj vrijednosti mjerene pojave, koja odgovara konstantnim faktorima.

20 Galtonova daska s čavličima: kuglice se sipaju pj kroz lijevak u kutiju s čavlićima: stavljanje kuglica u sredinu tendencija grupiranja čavlići koji ometaju kuglice tendencija raspršenja

21 Da bi se pri nekom mjerenju dobila normalna distribucija, moraju biti ispunjeni neki uvjeti: Ono što mjerimo moralo bi se i u prirodi normalno distribuirati (prevladava mišljenje da se gotovo sve u prirodi normalno distribuira, ali to nije točno, npr. bilirubin u krvi daje asimetričnu raspodjelu, dijametar srca daje bimodalnu raspodjelu, težina blago asimetričnu raspodjelu itd) Da postoji veliki broj rezultata zakon vjerojatnosti (kod malog broja mjerenja neke pojave pa bila ona i idealno normalno distribuirana u prirodi, pukim slučajem možemo dobiti distribuciju koja nimalo ne sliči normalnoj) Da su sva mjerenja j provedena istom it metodom i u što sličnijim iji vanjskim jki prilikama (npr. mjerenje težine s odjećom/bez odjeće) Skupina na kojoj se vrše mjerenja morala bi biti homogena po ostalim svojstvima, a heterogena po svojstvu koje se mjeri. Npr. kod mjerenjavisine da su homogeni po dobi, spolu i sl, a heterogeni po visini.

22 Normalna distribucija je matematički tički posve točno č definirana dfii (kompleksna k formula), te je posve definirana ako joj znamo aritmetičku sredinu i sd. Mjesto infleksije (gdje iz konveksne prelazi u konkavnu) iznad ±1sd Potpuno je simetrična distribucija, zvonkolikog oblika, koja se asimptomatski približava osi apscisi. Svi koeficijenti asimetrije kod normalne krivulje su nula, budući da su kod simetrične distribucije M i C jednaki (npr. indeks asimetrije α3 = [3*(M C) / sd] ili α3 = m3/sd 3 ). Vrijednost koeficijenta zaobljenosti ili kurtičnosti je kod normalne distribucije jednak 3 (α4 = m4/sd 4 )

23 Moment je fizikalni pojam kojeg je uveo K. Pearson. U statistici postoji više momenata, a definiraju se razlikom između svakog pojedinog rezultata i aritmetičke sredine svih rezultata. Matematički je definiran kao x i mi N

24 mi x i N gdje je: mi moment prvog, drugog, trećeg ili četvrtog reda x i odstupanje svakog pojedinog rezultata od aritmetičke sredine u nekoj distribuciji rezultata podignuto na i tu potenciju (potencija momenta prvog reda je 1, drugog 2 itd.) N broj rezultata koji čini neku distribuciju.

25 Moment prvog reda iznosi nula i njime je definirana aritmetička sredina m1 = (X M) / N Moment drugog reda varijanca m2 = (X M) 2 / N

26 Momenttrećeg trećeg reda (a)simetričnost m3 = (X M) 3 / N Kada je m3= 0 distribucija je simetrična, m3>0 pozitivno asimetrična, m3<0 negativno asimetrična (slika). Koeficijent asimetrije α3 je omjer trećeg momenta oko sredine i sd podignute na treću potenciju α3= m3/sd 3. Koef asimetrije ij poprima vrijednosti i od najčešće +/ 2

27 Moment četvrtog reda kurtičnost ili zaobljenost m4 = (X M) 4 / N Koef zaobljenosti α4 = m4/sd /d 4 Koef zaobljenosti normalne distribucije je 3. Takva distribucija je mezokurtična. Ako je veći od 3, distribucija je leptokurtična (šiljastija višeg i uegvrha), užeg ako je manji od 3 platokurtična (plosnatija).

28 Primjer 1 v 2 m1 (v-6,78) 3 m2 4 m3 5 m4 1 5,00-1,78 3,17-5,64 10,04 2 5,00-1,78 3,17-5,64 10,04 3 6,00-0,78 0,61-0,47 0,37 4 6,00-0,78 0,61-0,47 0,37 5 6,00-0,78 0,61-0,47 0,37 6 7,00 0,22 0,05 0,01 0,00 7 8,00 1,22 1,49 1,82 2,22 8 9,00 2,22 4,93 10,94 24,29 9 9,00 2,22 4,93 10,94 24,29 SUM case 1-0, , , , m1=-0,0022 m2=2,17 m3=1,22 m4=7,99 α3=0,39, α4=1,71,

29 Var1 frekvencija

30 Leptokurtična Platokurtična No of obs o 4 No of obs Var1 Var1

31 f obs No of 3 f obs No of Var1 Var2 Pozitivno asimetrična Negativno asimetrična

32 Još o normalnoj distribuciji Normalna distribucija je jedan od osnovnih pojmova statističkog rezoniranja jer je osnova za razumijevanje glavnih statističkih pojmova vjerojatnosti. Ukupna površina normalne distribucije se bilježi sa 1,0 ili 100 %.

33 Ako aritmetičkoj sredini dodamo lijevo i desno po jednu standardnu devijaciju, obuhvatili smo površinu koja čini i oko 68% cijele površine krivulje, odnosno 68,26% svih rezultata. S dvije s.d oko aritmetičke sredine, obuhvaćamo oko 95, 44% svih rezultata, a s tri standardne devijacije gotovo sve rezultata, tj. 99,73% rezultata. Doslovno se ne mogu obuhvatiti svi rezultati i s nekoliko s.d.,,jer se krivulja normalne distribucije asimptomatski približava apscisi, pa se teoretski spajaju u beskonačnost. -3 s -2s -1s M +1s +2s +3s 68, 26% 95, 44% 99, 73 %

34 Zašto je to važno? Ako je neki rezultat t točno č na +1s, onda je lako izračunati koliko je udaljen od drugih rezultata: postoji oko 16 % rezultata koji su bolji od njega oko 34 % rezultata do aritmetičke sredine ili oko 84 % rezultata koji su slabiji od njega jg

35 Primjer 1. Na jednom testu iz statistike prosječno osvojeni broj bodova bio je 20, a standardna devijacija bila je 3. Odrediti koliki broj bodova se može očekivati kod najslabijeg studenta u grupi, ukoliko se rezultati ove grupe približno raspoređuju prema normalnoj distribuciji.

36 Primjer 2. Odrediti površinu ispod normalne krivulje a) lijevo od x=0,33 b) lijevo od x=1,25 c) desno od x=1,25 d) između x=-0,54 i x=0,57.

37 Primjer 3. Broj kupaca u jednom supermarketu ima približno normalan raspored sa srednjom vrijednošću M=180 i SD=9. Odrediti vjerojatnost da će u toku dana broj kupaca biti veći od 200 manji od 155.

38 Primjer 4. Broj mušterija subotom u jednom kozmetičkom salonu ima približno normalan raspored sa srednjom vrijednošću M=28 i SD=4. Odrediti vjerojatnost da će do sljedećeg petka broj mušterija biti a. veći od 35 b. manji od 22 c. veći od 22 a manji od 35.

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa Slučajne varijable Statistički podaci su distribuirani po odredenoj zakonitosti. Za matematičko (apstraktno) opisivanje te zakonitosti potrebno je definirati slučajnu varijablu kojoj pripada odredena razdioba

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Slučajne varijable Materijali za nastavu iz Statistike

Slučajne varijable Materijali za nastavu iz Statistike Slučajne varijable Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 1 Slučajna varijabla Slučajna varijabla je funkcija X koja elementarnim dogadajima pridružuje

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

KONTINUIRANE SLUČAJNE VARIJABLE

KONTINUIRANE SLUČAJNE VARIJABLE KONTINUIRANE SLUČAJNE VARIJABLE Kontinuirana slučajna varijabla može poprimiti neprebrojivo (beskonačno mnogo vrijednosti. KONTINUIRANE SLUČAJNE VARIJABLE UVOD Razlike diskretnih i kontinuiranih slučajnih

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

PISMENI ISPIT IZ STATISTIKE

PISMENI ISPIT IZ STATISTIKE 1. a) Trgovina odjeće prodaje odjeću u tri različite veličine: 32% veličine S, 44% veličine M i ostatak veličine L. Pokazalo se da je postotak odjeće s greškom redom 1%, 5% i 2%. Ako je trgovina ustanovila

Διαβάστε περισσότερα

Aritmetička sredina Medijan Mod. Harmonijska sredina

Aritmetička sredina Medijan Mod. Harmonijska sredina MJERE CENTRALNE TENDENCIJE Aritmetička sredina Medijan Mod Geometrijska sredina Harmonijska sredina MJERA CENTRALNE TENDENCIJE ili središnja vrijednost jest brojčana vrijednost koja reprezentira skupinu

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

2. OSNOVNI POJMOVI TEORIJE VJEROJATNOSTI

2. OSNOVNI POJMOVI TEORIJE VJEROJATNOSTI 2. OSNOVNI POJMOVI TEORIJE VJEROJATNOSTI 2. ALGEBRA DOGAĐAJA 2.. Intuitivna definicija Slučajan pokus (eksperiment) jest takav pokus čiji ishodi nisu jednoznačno određeni skupom uvjeta pokusa. Sa Ω označavamo

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

5. lekcija. Kontinuirane slučajne varijable.

5. lekcija. Kontinuirane slučajne varijable. 5. lekcija. Kontinuirane slučajne varijable. Diskretne slučajne varijable povezane su s prebrojavanjem u nekom pokusu. One primaju konačan skup vrijednosti (ili možda beskonačan, ali je tada nužno prebrojiv

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET SVEUČILIŠTE U RIJECI. Specijalistički diplomski stručni studij građevinarstva NORMALNA RAZDIOBA.

GRAĐEVINSKI FAKULTET SVEUČILIŠTE U RIJECI. Specijalistički diplomski stručni studij građevinarstva NORMALNA RAZDIOBA. GRAĐEVINSKI FAKULTET SVEUČILIŠTE U RIJECI Specijalistički diplomski stručni studij građevinarstva NORMALNA RAZDIOBA Seminarski rad KOLEGIJ: Odabrana poglavlja inženjerske matematike AKADEMSKA GODINA: 2016/2017

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Binomna, Poissonova i normalna raspodela

Binomna, Poissonova i normalna raspodela Binomna, Poissonova i normalna raspodela Dejana Stanisavljević januar, 2012. godine Identifikacija empirijske raspodele učestalosti Teorijske raspodele verovatnoća opisuju očekivano variranje ishoda nekog

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA 2. kolokvij lipnja 2016.

VJEROJATNOST I STATISTIKA 2. kolokvij lipnja 2016. Broj zadataka: 5 Vrijeme rješavanja: 0 min Ukupan broj bodova: 50 Zadatak.. kolokvij - 0. lipnja 0. (a Ako su X i Y diskretne slučajne varijable, dokažite da vrijedi formula E [X + Y ] = E [X] + E [Y ].

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima.

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Sažetak vjerojatnost Skup ishoda U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Jednostavne događaje u nekom pokusu zvat

Διαβάστε περισσότερα

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1 χ 2 test (Hi-kvadrat test) Jedan od prvih statističkih testova je χ 2 -test. Predložio ga je K. Pearson 900. godine, pa je poznat i pod nazivom Pearsonov test. χ 2 test je neparametarski test. Pomoću χ

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

4. MJERE DISPERZIJE. Josipa Perkov, prof., pred. 1

4. MJERE DISPERZIJE. Josipa Perkov, prof., pred. 1 4. MJERE DISPERZIJE Josipa Perkov, prof., pred. 1 Kod mnogih mjerenja se može opaziti da se rezultati grupiraju i skupljaju oko jedne srednje vrijednosti Srednja vrijednost dobro reprezentira rezultate

Διαβάστε περισσότερα

Kontinuirane slučajne varijable.

Kontinuirane slučajne varijable. Kontinuirane slučajne varijable. Diskretne slučajne varijable povezane su s prebrojavanjem u nekom pokusu. One primaju konačan skup vrijednosti (ili možda beskonačan, ali je tada nužno prebrojiv i diskretan).

Διαβάστε περισσότερα

Edukacijsko-rehabilitacijski fakultet Sveučilišta u Zagreb S T A T I S T I K A. Skripta. Pripremio: Branko Nikolić. Zagreb 2015./2016.

Edukacijsko-rehabilitacijski fakultet Sveučilišta u Zagreb S T A T I S T I K A. Skripta. Pripremio: Branko Nikolić. Zagreb 2015./2016. Edukacijsko-rehabilitacijski fakultet Sveučilišta u Zagreb S T A T I S T I K A Skripta Pripremio: Branko Nikolić Zagreb 05./06. LITERATURA: Obvezna:. Petz B., Kolesarić, V., Ivanec, D. (0): Petzova statistika.

Διαβάστε περισσότερα

GLAZBENA UMJETNOST. Rezultati državne mature 2010.

GLAZBENA UMJETNOST. Rezultati državne mature 2010. GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Izbor statističkih testova Ana-Maria Šimundić

Izbor statističkih testova Ana-Maria Šimundić Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog

Διαβάστε περισσότερα