Slučajne varijable Materijali za nastavu iz Statistike

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Slučajne varijable Materijali za nastavu iz Statistike"

Transcript

1 Slučajne varijable Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 1

2 Slučajna varijabla Slučajna varijabla je funkcija X koja elementarnim dogadajima pridružuje brojeve. Dakle, X : Ω R. Slučajne varijable dijelimo na: 1. Diskretne slučajne varijable 2. Neprekidne (kontinuirane) slučajne varijable 2 / 1

3 Diskretne slučajne varijable Označimo s R X skup svih različitih vrijednosti koje slučajna varijabla X može poprimiti. Kažemo da je zadan zakon razdiobe ili distribucija slučajne varijable X ako je zadan skup R X = {a 1, a 2, a 3,...}, te niz brojeva p i 0 tako da 1) p i = P(X = a i ) 2) p i = 1 i=1 Zakon razdiobe zapisujemo u obliku tablice: ( ) a1 a X 2 a 3... p 1 p 2 p 3... Budući je skup svih vrijednosti koje slučajna varijabla može poprimiti R X = {a 1, a 2, a 3,...} diskretan (konačan ili prebrojiv) skup, kažemo da je X diskretna slučajna varijabla. 3 / 1

4 Diskretne slučajne varijable Neka je X : Ω R slučajna varijabla. Funkcija vjerojatnosti od X je funkcija f : R X [0, 1] definirana s f (a i ) := P(X = a i ) = p i Funkcija distribucije slučajne varijable X je funkcija F : R [0, 1] definirana s F (x) := P(X x), x R. Vrijedi F (x) = a i x p(a i ). 4 / 1

5 Diskretne slučajne varijable Matematičko očekivanje diskretne slučajne varijable je broj E[X ] definiran s E[X ] = a i R X a i f (a i ) Broj V[X ] := E[X 2 ] (E[X ]) 2 zove se varijanca diskretne slučajne varijable X. Standardna devijacija slučajne varijable X je broj σ X := + V[X ] 5 / 1

6 Zadaci Pokažite da je funkcija f dana tablicom funkcija vjerojatnosti neke slučajne varijable X. Izračunajte E[X ] i V [X ]. x i f (x i ) Odredite konstantu a tako da funkcija f dana tablicom bude funkcija vjerojatnosti slučajne varijable X. Izračunajte E[X ] i V [X ]. x i f (x i ) a 2 a 10 a 5 a 4 a 20 6 / 1

7 Binomna razdioba Osnovna svojstva koja opisuju binomnu razdiobu (distribuciju): 1. Izvodimo pokus koji ima dva moguća ishoda. Jedan ishod ćemo zvati uspjeh a drugi neuspjeh. 2. Vjerojatnost uspjeha jednaka je p. Vjerojatnost neuspjeha je tada q = 1 p. 4. Pokus ponavljamo n puta. Pokusi su medusobno nezavisni. 5. Binomna slučajna varijabla broji broj uspjeha k u tih n pokusa. 7 / 1

8 Binomna razdioba Slučajna varijabla X ima binomnu razdiobu ili distribuciju s parametrima n i p ako je X poprima vrijednosti iz skupa {0, 1, 2,..., n} s vjerojatnostima ( ) n P(X = k) = p k q n k, 0 k n, k gdje je q = 1 p. Slučajnu varijablu X koja ima binomnu razdiobu označavamo s: X B(n, p) Očekivanje binomne razdiobe: E [X ] = np Varijanca binomne razdiobe: V [X ] = npq 8 / 1

9 Zadaci Baca se ispravna kocka 10 puta. Nadite vjerojatnost da se (a) 5 puta pojavi broj 6, (b) barem jednom pojavi broj 6, (c) 7 puta pojavi neparan broj. (d) Koji je očekivani broj pojavljivanja broja većeg od 4? U skladištu je 1000 proizvoda medu kojima je 50 neispravnih. Izvlačimo na sreću 5 proizvoda s vraćanjem. Izračunajte vjerojatnost da je od tih 5 proizvoda (a) točno 1 neispravan, (b) najviše 1 neispravan (c) barem 1 neispravan. 9 / 1

10 Hipergeometrijska razdioba Osnovna svojstva koja opisuju hipergeometrijsku razdiobu: 1 U skupu od N elemenata njih M ima neko svojstvo, dok preostalih N M nema to svojstvo 2 Pokus se sastoji od slučajnog izvlačenja, bez vraćanja, n elemenata iz skupa od N elemenata 3 Hipergeometrijska slučajna varijabla broji broj uspjeha (odnosno elemenata koji imaju neko svojstvo) k u izvlačenju ukupno n elemenata. 10 / 1

11 Hipergeometrijska razdioba Slučajna varijabla X ima hipergeometrijsku razdiobu ili distribuciju u oznaci X Hg(M, N, n) ako je funkcija gustoće te slučajne varijable zadana s: ( M )( N M ) k n k P(X = k) = ( N, max (0, n (N M)) k min (M, n) n) Očekivanje hipergeometrijske razdiobe: E [X ] = nm N Napomena: Za dovoljno velike n vrijedi Hg(M, N, n) B(n, p). Riješite prethodni zadatak uz uvjet da se proizvodi ne vraćaju. 11 / 1

12 Zadaci Odredite očekivani broj dječaka u obitelji s 8 djece pod pretpostavkom da je spol djeteta jednakovjerojatan. Kolika je vjerojatnost da će se ostvariti očekivani broj dječaka? Vjerojatnost da je proizvod proizveden u tvornici neispravan je Pošiljka od proizvoda poslana je u prodaju. Nadite očekivanje i standardnu devijaciju broja neispravnih proizvoda. Vjerojatnost da strijelac pogodi cilj je Strijelac 7 puta gada cilj. Izračunajte vjerojatnost da pogodi cilj barem dvaput. 12 / 1

13 Poissonova razdioba Slučajna varijabla X ima Poissonovu razdiobu ili distribuciju s parametrom λ > 0 ako je funkcija gustoće te slučajne varijable zadana formulom: P(X = k) = λk k! e λ, k = 0, 1, 2, 3,... Slučajnu varijablu X koja ima Poissonovu razdiobu označavamo s: X P(λ) Očekivanje Poissonove razdiobe: E [X ] = λ Varijanca Poissonove razdiobe: V [X ] = λ Binomna razdioba B(n, p) može se aproksimirati Poissonovom razdiobom P(np), to jest λ = np. Aproksimacija je to bolja što je parametar n veći, a parametar p manji. 13 / 1

14 Zadaci Vjerojatnost da je proizvod neispravan iznosi 1%. Iz skladišta uzimamo paket od 100 proizvoda. Kolika je vjerojatnost da od tih 100 proizvoda (a) je 5 neispravnih, (b) broj neispravnih nije veći od 10? Ako je vjerojatnost da je jedna osoba alergična na pelud 0.002, odredite vjerojatnost da su od 4000 osoba na pelud (a) alergične 4 osobe (b) alergične više od 2 osobe. Pretpostavimo da je 2% proizvoda neke tvornice neispravno. Nadite vjerojatnost da u uzorku od 100 proizvoda postoje 3 neispravna. 14 / 1

15 Neprekidne slučajne varijable Za slučajnu varijablu X kažemo da je neprekidna ako vrijedi sljedeće: (i) R X je interval ili unija intervala u R (ii) postoji nenegativna funkcija f : R R tako da za svaka dva broja a, b (a < b) vrijedi P(a X b) = b a f (t)dt Funkciju f zovemo funkcija gustoće od X. Vjerojatnost da vrijednost slučajne varijable X upadne u interval [a, b] jednaka je dakle površini ispod grafa funkcije gustoće na tom intervalu. 15 / 1

16 Funkcija distribucije Funkcija distribucije F od X definirana je s: Vrijedi: F (x) := P(X x) = x f (t)dt P(a X b) = F (b) F (a) Svojstva neprekidne slučajne varijable: (1) Za svaki broj a R je P(X = a) = 0 (2) f (t)dt = P( < X < ) = 1 što znači da je ukupna površina ispod grafa funkcije gustoće jednaka / 1

17 Matematičko očekivanje i varijanca od X Matematičko očekivanje od X definirano je s: E[X ] = t f (t)dt, a za varijancu vrijedi relacija kao i kod diskretnih slučajnih varijabli V [X ] = E[X 2 ] (E[X ]) 2 gdje je sada E[X 2 ] = t 2 f (t)dt. 17 / 1

18 Zadaci Dokažite da je funkcija (a) f (x) = { 2 9 x 4 9 za x [2, 5] 0 za x / [2, 5] (b) f (x) = { cos x za x [0, π 2 ] 0 za x / [0, π 2 ] funkcija gustoće vjerojatnosti neke slučajne varijable X. Nacrtajte graf funkcije f te izračunajte E[X ]. 18 / 1

19 Normalna razdioba Kažemo da je slučajna varijabla X normalno distribuirana, ako je ona kontinuirana, R x = R, i ako je funkcija vjerojatnosti dana formulom f (x) = 1 σ 2π e 1 gdje su µ, σ (σ > 0) proizvoljne konstante. Pišemo: X N(µ, σ 2 ) E[X ] = µ, V [X ] = σ 2 2 ( x µ σ )2 19 / 1

20 Gaussova krivulja Μ Σ Μ Μ Σ Krivulja ovog tipa zove se Gaussova zvonolika krivulja, pa se normalna razdioba nekad zove i Gaussova razdioba. 20 / 1

21 Standardna normalna razdioba Posebno je važna normalna razdioba s parametrima µ = 0 i σ 2 = 1, tj. normalna razdioba N(0, 1). Ta razdioba se naziva standardna normalna razdioba, pišemo X N(0, 1). Standardna normalna funkcija gustoće vjerojatnosti ϕ(x) = 1 2π e 1 2 x2 Standardna normalna funkcija distribucije Φ(z) = 1 2π z Vrijednosti od Φ(z) su tabelirane. e 1 2 t 2 dt 21 / 1

22 Veza izmedu N(µ, σ 2 ) i N(0, 1) distribucije Ako X ima N(µ, σ 2 ) distribuciju, onda Z = X µ σ ( ) b µ P(a X b) = Φ Φ σ ima N(0, 1) distribuciju. ( a µ Napomena: Pomoću normalne razdiobe može se aproksimirati binomna razdioba ako je n velik, a p nije blizu broja 0 ili 1 (u praksi np 10). σ ). X B(n, p) tada je Z = X np npq N(0, 1) 22 / 1

23 Primjer Primjer Pretpostavimo da je visina studenata nekog sveučilišta slučajna varijabla, normalno distribuirana, X N(172, ). Nadite vjerojatnost da je: a) visina slučajno odabranog studenta izmedu 175cm i 185cm b) slučajno odabrani student niži od 170cm c) slučajno odabrani student viši od 160cm d) visina slučajno odabranog studenta izmedu 165cm i 180cm e) Koliki je očekivani broj studenata viših od 195cm, ako ima ukupno 3000 studenata? 23 / 1

24 Zadaci U jednom skladištu od 1000 proizvoda je 20% proizvoda prve klase. Zbog kontrole kvalitete 100 puta je uziman 1 proizvod uz vraćanje. Nadite vjerojatnost da je broj proizvoda prve klase: a) manji od 16 b) najmanje / 1

25 Zadaci Neka je X slučajna varijabla da standardnom normalnom distribucijom N(0, 1). Nadite: a) P(X 1.42) b) P( 1.37 X 2.01) c) P(X 1.13) d) P( X 0.5) e) P(0.65 X ) 25 / 1

26 Zadaci Neka je X slučajna varijabla sa standardnom normalnom distribucijom N(0, 1). Odredite t ako je: a) P(0 X t) = b) P(X t) = c) P(t X 2) = / 1

27 Zadaci Ako je X N(8, 4 2 ) skicirajte graf funkcije gustoće i odredite t tako da vrijedi: a) P(X t) = 0.14 b) P(X t) = c) P( X 8 t) = 0.9 Pretpostavimo da je temperatura T u mjesecu lipnju normalno distribuirana s očekivanjem 20 o C i standardnom devijacijom 3 o C. Nedite vjerojatnost da je temperatura 15. lipnja izmedu 21 o C i 27 o C. 27 / 1

28 Zadaci Pretpostavimo da je na populaciji od 800 stanovnika slučajna varijabla visina V normalno distribuirana s očekivanjem 170cm i standardnom devijacijom Nadite broj stanovnika s visinom: a) izmedu 165.1cm i 177.8cm b) većom ili jednakom cm 28 / 1

29 Zadaci Prema izvješću Hrvatskog auto kluba očekivano vrijeme izmedu poziva i dolaska do mjesta nesreće je 25 minuta. Pretpostavimo da se radi o normalno distribuiranoj slučajnoj varijabli sa standardnom devijacijom 4.5 minute. Ako slučajno izaberemo 80 poziva, na koliko njih će biti reagirano u roku manjem 15 minuta? 29 / 1

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa Slučajne varijable Statistički podaci su distribuirani po odredenoj zakonitosti. Za matematičko (apstraktno) opisivanje te zakonitosti potrebno je definirati slučajnu varijablu kojoj pripada odredena razdioba

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Uvod u vjerojatnost i matematičku statistiku

Uvod u vjerojatnost i matematičku statistiku Uvod u vjerojatnost i matematičku statistiku - vježbe - Danijel Krizmanić 28. rujna 2007. Sadržaj Osnove vjerojatnosti 2 2 Kombinatorika i vjerojatnost 5 3 Uvjetna vjerojatnost. Nezavisnost 9 4 Geometrijske

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI Sadrˇzaj Sadrˇzaj DVODIMENZIONALNI. DISKRETNI DVODIMENZIONALNI............................ KONTINUIRANI -dim tko želi znati više.............................. 5. KOVARIJANCA, KORELACIJA, PRAVCI REGRESIJE........

Διαβάστε περισσότερα

(BIO)STATISTIKA. seminari. smjer: Prehrambena tehnologija i Biotehnologija. pripremila: dr.sc. Iva Franjić

(BIO)STATISTIKA. seminari. smjer: Prehrambena tehnologija i Biotehnologija. pripremila: dr.sc. Iva Franjić (BIO)STATISTIKA seminari smjer: Prehrambena tehnologija i Biotehnologija pripremila: dr.sc. Iva Franjić Sadržaj DESKRIPTIVNA STATISTIKA 4. Grafički prikaz podataka..................... 4. Srednje vrijednosti

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima.

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Sažetak vjerojatnost Skup ishoda U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Jednostavne događaje u nekom pokusu zvat

Διαβάστε περισσότερα

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1 χ 2 test (Hi-kvadrat test) Jedan od prvih statističkih testova je χ 2 -test. Predložio ga je K. Pearson 900. godine, pa je poznat i pod nazivom Pearsonov test. χ 2 test je neparametarski test. Pomoću χ

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Slučajna varijabla i vjerojatnost.

Slučajna varijabla i vjerojatnost. Statistika, Prehrambeno-tehnološki fakultet 1 Slučajna varijabla i vjerojatnost. Primjer 1: Promotrimo pokus koji se sastoji od zagrijavanja određene količine vode pod normalnim atmosferskim tlakom na

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Parametarski zadane neprekidne distribucije

Parametarski zadane neprekidne distribucije Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Kristijan Šućur Parametarski zadane neprekidne distribucije Završni rad Osijek, 217. Sveučilište

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Ako između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti, tada je

Ako između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti, tada je Višekomponentne slučajne varijable Srednje vrijednosti i momenti Definicija srednje vrijednosti Ako između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti,

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Karakteristične funkcije

Karakteristične funkcije Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Matea Spajić Karakteristične funkcije Završni rad Osijek, 2015. Sveučilište J. J. Strossmayera u

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Skupovi brojeva Materijali za nastavu iz Matematike 1

Skupovi brojeva Materijali za nastavu iz Matematike 1 Skupovi brojeva Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 32 Podsjetnik teorije skupova Operacije sa skupovima: A B = {x : x A x B} A B = {x : x A

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

PRIMIJENJENA MATEMATIKA

PRIMIJENJENA MATEMATIKA SVEUČILIŠTE U RIJECI POMORSKI FAKULTET U RIJECI BISERKA DRAŠČIĆ BAN, TIBOR POGANJ PRIMIJENJENA MATEMATIKA Autorizirana predavanja i vježbe Rijeka, 2009. Sadržaj Poglavlje 1. Kombinatorika 5 1. Permutacije

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

Vjerojatnost i matematička statistika

Vjerojatnost i matematička statistika Vjerojatnost i matematička statistika Ante Mimica Poslijediplomski specijalistički studij aktuarske matematike 29. siječnja 2016. Sadržaj kolegija 1. Opisna analiza podataka 2. Slučajne varijable 3. Funkcije

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Statistika i osnovna mjerenja

Statistika i osnovna mjerenja Statistika i osnovna mjerenja Teorija vjerojatnosti M. Makek 2016/2017 Uvod Pokus bilo koji postupak ili proces koji rezultira opažanjem Ishod moguć rezultat pokusa (različiti ishodi se međusobno isključuju)

Διαβάστε περισσότερα

1 Osnovni pojmovi Tipovi varijabli Skale mjerenja... 3

1 Osnovni pojmovi Tipovi varijabli Skale mjerenja... 3 Sadržaj Predgovor iii 1 Osnovni pojmovi 1 1.1 Tipovi varijabli............................ 2 1.2 Skale mjerenja............................ 3 2 Organizacija i prikazivanje podataka 5 2.1 Sirovi podatci.............................

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Testiranje statističkih hipoteza Materijali za nastavu iz Statistike

Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 39 Uvod Osnovna zadaća Statistike je na temelju uzorka ocijeniti kakvu razdiobu

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA

ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA Sveučilište u Zagrebu PMF-Matematički odsjek Franka Miriam Brückler, Vedran Čačić, Marko Doko, Mladen Vuković ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA Zagreb, 2009. Sadržaj 1 Osnovno o skupovima, relacijama

Διαβάστε περισσότερα

Derivacija funkcije Materijali za nastavu iz Matematike 1

Derivacija funkcije Materijali za nastavu iz Matematike 1 Derivacija funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 45 Definicija derivacije funkcije Neka je funkcija f definirana u okolini točke x 0 i

Διαβάστε περισσότερα

1 Aksiomatska definicija skupa realnih brojeva

1 Aksiomatska definicija skupa realnih brojeva 1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna

Διαβάστε περισσότερα

Redovi funkcija. Redovi potencija. Franka Miriam Brückler

Redovi funkcija. Redovi potencija. Franka Miriam Brückler Franka Miriam Brückler Redovi funkcija 1 + (x 2) + 1 + x + x 2 + x 3 + x 4 +... = (x 2)2 2! + (x 2)3 3! + +... = sin(x) + sin(2x) + sin(3x) +... = x n, + + n=1 (x 2) n, n! sin(nx). Redovi funkcija 1 +

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

Vjerojatnost. 1. Novčić bacamo 5 puta. Kolika je vjerojatnost da ćemo pritom ostvariti 3 puta pismo i 2 puta glava? (R: P = 5

Vjerojatnost. 1. Novčić bacamo 5 puta. Kolika je vjerojatnost da ćemo pritom ostvariti 3 puta pismo i 2 puta glava? (R: P = 5 ZADACI SA VJEŽBI IZ KOLEGIJA STATISTIKA I OSNOVE FIZIKALNIH MJERENJA Vjerojatnost 1. Novčić bacamo 5 puta. Kolika je vjerojatnost da ćemo pritom ostvariti 3 puta pismo i 2 puta glava? (R: P = 5 16.) 2.

Διαβάστε περισσότερα

MATEMATIKA 3. (vjerojatnost - zadaća)

MATEMATIKA 3. (vjerojatnost - zadaća) http://www.fsb.hr/matematika/ MATEMATIKA 3 (vjerojatnost - zadaća) Vjerojatnost. Kolika je vjerojatnost da bacanjem dviju kockica dobijemo zbroj veći od 6? 2. Strijelac A i strijelac B ga daju metu 3 puta.

Διαβάστε περισσότερα

VVR,EF Zagreb. November 24, 2009

VVR,EF Zagreb. November 24, 2009 November 24, 2009 Homogena funkcija Parcijalna elastičnost Eulerov teorem Druge parcijalne derivacije Interpretacija Lagrangeovog množitelja Ako je (x, y) R 2 uredjeni par realnih brojeva, onda je s (x,

Διαβάστε περισσότερα

f(x) = a x, 0<a<1 (funkcija strogo pada)

f(x) = a x, 0<a<1 (funkcija strogo pada) Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

Monte Carlo metode Bojan Basrak, PMF MO Zagreb. Financijski praktikum 29. veljače 2016.

Monte Carlo metode Bojan Basrak, PMF MO Zagreb. Financijski praktikum 29. veljače 2016. Monte Carlo metode Bojan Basrak, PMF MO Zagreb Financijski praktikum 29. veljače 2016. 1 Monte Carlo metode 2 Primjene modeliranje složenih sustava upravljanje portfeljima u financijama i osiguranju procjena

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Statistika. primjeri i zadaci. Ante Mimica, Marina Ninčević. 30. kolovoza 2010.

Statistika. primjeri i zadaci. Ante Mimica, Marina Ninčević. 30. kolovoza 2010. Statistika primjeri i zadaci Ante Mimica, Marina Ninčević 3. kolovoza. Sadržaj Opisna statistika 5. Zadaci za vježbu................................ 4 Neprekidne slučajne varijable 47. Normalna distribucija..............................

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα

Teorija skupova. Matko Males Split. lipanj 2003.

Teorija skupova. Matko Males Split. lipanj 2003. Teorija skupova Matko Males Split lipanj 2003. 2 O pojmu skupa A, B, C,... oznake za skupove a, b, c,... oznake za elemente skupa a A, a / A Skup je posve odredjen svojim elementima, tj u potpunosti je

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

1. Topologija na euklidskom prostoru R n

1. Topologija na euklidskom prostoru R n 1 1. Topologija na euklidskom prostoru R n Euklidski prostor R n je okruženje u kojem ćemo izučavati realnu analizu. Kao skup R n se sastoji od svih uredenih n-torki realnih brojeva: R n = {(x 1,...,x

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

4 Testiranje statističkih hipoteza

4 Testiranje statističkih hipoteza 4 Testiranje statističkih hipoteza 1 4.1. Statistička hipoteza Promatramo statističko obilježje X. Statistička hipoteza je (bilo koja) pretpostavka o (populacijskoj) razdiobi od X. Kažemo da je statistička

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

Procjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2.

Procjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2. 4 Procjea parametara Neka je X slučaja varijabla čiju distribuciju proučavamo. Defiicija: Slučaji uzorak duljie za X je iz od ezavisih i jedako distribuiraih slučajih varijabli X 1, X,..., X koje imaju

Διαβάστε περισσότερα

Optimalnost u procjeni Nepristran procjenitelj minimalne varijance Cramer-Rao donja granica - ekasnost Konzistentnost. Vjeºbe - Statistika II.

Optimalnost u procjeni Nepristran procjenitelj minimalne varijance Cramer-Rao donja granica - ekasnost Konzistentnost. Vjeºbe - Statistika II. Vjeºbe - Statistika II. dio Optimalnost u procjeni Procjenitelja ima puno, pa treba imati kriterije za usporedbu izmežu njih. Radi jednostavnosti promatramo samo jednodimenzionalne parametre θ Θ R Funkcija

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013.

VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. 1. Novqi se baca tri puta. (a) Zapisati skup svih mogu ih ishoda. (b) Oznaqimo sa A k događaj da je u k-tom bacanju palo pismo, k {1, 2, 3}. Koriste

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 8 Pojam funkcije, grafa i inverzne funkcije Poglavlje 1 Funkcije Neka su X i Y dva neprazna skupa. Ako je po nekom pravilu, ozna imo ga

Διαβάστε περισσότερα

Statističko zaključivanje jedna varijabla

Statističko zaključivanje jedna varijabla Poglavlje 5 Statističko zaključivanje jedna varijabla 5.1 Procjena distribucije, očekivanja i varijance U prethodnim poglavljima naučili smo da se veličine promatrane na jedinkama obuhvaćenim nekim istraživanjem

Διαβάστε περισσότερα

Slučajni proces i njegova svojstva

Slučajni proces i njegova svojstva Slučajni proces i njegova svojsva omislav Peković sudeni 29. 1. Slučajni proces Definicija 1.1. (Slučajni proces). Slučajni ili sohasički proces je familija slučajnih varijabli X(, ω) 1. Slučajni proces

Διαβάστε περισσότερα

Sintaksa i semantika u logici

Sintaksa i semantika u logici Sintaksa i semantika u logici PMF Matematički odsjek Sveučilište u Zagrebu 13. listopad 2012., Zadar Sintaksa i semantika u logici 1 / 51 1. Logika sudova 1.1. Sintaksa jezik 1.2. Semantika logike sudova

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα