CURS IV ANOVA. Curs 4 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CURS IV ANOVA. Curs 4 1"

Transcript

1 CURS IV AOVA Cur 4

2 Mtod tattc d aalza factorlor d varabltat î prmtul bologc (AOVA) Să crctăm, î cotuar, problma comparăr ma multor lcţ provt d populaţ p car l ştm ca fd ormal rpartzat, d mplu coctraţl plamatc ralzat d tablt car coţ dfrţ cpţ, dar car au acaş ubtaţă actvă, î acaş doză. Vrm ă vrfcăm potza compuă că acta prov d fapt d acaş populaţ, avâd mda µ ş dpra σ, dc că cpţ foloţ u fluţază mfcatv cdara ş aborbţa ubtaţ actv: H µ µ µ µ 4 : faţă d potza altratvă că cl puţ două md u ut gal. O varată d rzolvar a problm ar f comparara mdlor d lcţ două cât două pr mtodl prztat atror. F, d mplu, rlaţa îtr mdl d lcţ 4. t vdt grşt a aplca o rlaţ d traztvtat ş a pu că µ µ ş µ µ ş µ µ 4 µ µ µ µ 4. Motvul act ror t lgat î prmul râd d volara uu prcpu d bază al tor lcţ: algra la îtâmplar a lcţlor. Or comparara loturlor după crtrul a potror, al mărm mdlor d lcţ t îtr-advăr o abatr d la act prcpu. Ma mult, c măcar µ µ 4 u mplcă î act caz µ µ d cauza dpdţ rzultatulu ttlor d rlaţl îtr dprl populaţlor d car prov lcţl. Ca urmar, problma comparăr ma multor lcţ (lotur) trbu abordată pr alt mtod car ă facă comparara tuturor lcţlor î acla tmp. O atfl d abordar bazază p comparara dprlor d lcţ ş umşt aalză dproală. Aalza dproală t o altă mtodă fudamtală a tattc car, î plu faţă d mloacl d calcul a tdţ ctral a rzultatlor prmtlor rptat, caractrzază ma al varabltata actora ş factor c o dtrmă. Cur 4

3 Varabltata poat datora tţ uor factor cu fluţ tmatc, a uor factor alator d fluctuaţ ma prouţată ş, î fal, factor local, vtabl, dtrmâd o fluctuaţ ma mcă, dfta ca fluctuaţ prmtală. Aalza dproală îş propu parara varabltăţ total î: varabltata datorată factorlor tmatc, varabltata factorlor cu fct alatoar, plu o varabltat rzduală (dfrţa pâă la varabltata totală), car rprztă d fapt varabltata prmtală. D act varabltăţ valuază dprl parţal corpuzătoar dfrţlor factor, calculâdu- mfcaţa rapoartlor lor pr aplcara ttulu F. Prcpal datl prmtal grupază î fucţ d dfrt crtr ş urmărc fctl aupra varabltat î fucţ d act crtr, fct car cuatfcă î raport cu varabltata rzduală. Aalza dproală t cuocută î aplcaţl d bofarmac ş farmacoctcă ub dumra d AOVA (d la Aaly of Varac). Aalza fucţoală ufactorală Ca ma mplă aalză dproală, umtă aalză dproală udmoală au ufactorală (umtă î ltratura glză ş o-way AOVA ) au prmt complt alator, prmt cu grupur parall, corpud ttulu t d aalză a două şatoa dpdt ş compară două au ma mult grupur. D mplu, pacţ ut grupaţ î chm d tratamt. Putm ă comparăm fctl a două mdcamt admtrat la ma mult grupur d volutar, la car poat adauga ş u grup placbo. Volutar dtrbu alator î toat grupurl. După măurara uu paramtru dat, ttază potza ulă că toat valorl paramtrulu ttat ut gal î populaţa corpuzătoar dfrtlor tratamt ttat, dc tratamtl ut chvalt îtr l. I potza că toat grupurl aparţ aclaş populaţ, da ttulu t aca că varabltata î trorul grupurlor trbu ă f d aclaş ord cu varabltata îtr mdl grupurlor. Î cocţă, dpra totală, valuată ca uma a pătratlor dfrţlor îtr valorl dvdual ş mda îtrg populaţ lctat, t parată îtr-o part datortă varaţ îtr grupur (wth), au varabltăţ troar ş o part datortă varabltăţ dtr (btw) grupur:. Cur 4

4 Dacă umărul d grupur t ş umărul d ubcţ î grupul t acată galtat poat f plctată după cum urmază: ud X ( ) X () mda mar Fâd grupul putm cr X ş X t mda grupulu. ( X ) [( X ) ( X X )] ( X ) ( X X ) ( X )( X X ) Ultmul trm t gal cu ş () dv ( X X ) X ( X X )( X X ) ( X X ) ( X ) () rlaţ cuocută ca dttata aalz dproal. Codrăm varabll alatoar:, ş. Ţâd cot d rgula grală dmotrată ma îat că, ( ) σ χ ( ) δ avm, (. ) (. ) ( ) ( ), Dc, σ χ ( ) ( ( ) ) σ χ ( ) Cur 4 4

5 Aalog, χ ( ) (, ) F. S obrvă că d fapt σ ş dc raportul ( X X ) S F S t dtrbut rprztă dpra d lcţ podrată a mdlor d grup faţă d mara md. Abatrl mdlor grupurlor faţă d mda grală dpd atât d hazardul măuratorlor cât ş d factor c ţ d îă atura grupurlor. Abatrl î trorul grupurlor ut dpdt d acşt factor, doarc fcar valoar măurată t raportată la îăş mda grupulu rpctv. l rprztă fluctuaţ alatoar. Varabltata î trorul grupurlor rprztă dfrţa îtr varabltata totală ş varabltata îtr grupur. Ptru mplfcara calcullor î aplcaţl practc -au trodu otaţl ş ş formull prcdt aduc la form chvalt c prupu u volum ma mc d calcul, după cum urmază: ( X ) X X ( ) ( ) ( ) ( ) ( X X ) ( ) mplu: Comparara paramtrlor farmacoctc a uu mdcamt după admtrara p ma mult că Să codrăm cotata d lmar (ablul ) ptru u mdcamt admtrat îtr-o gură doză oral ş.v., ar.m. tmp d tr zl la dfrt grupur. t d aştptat ca lmara ă f dpdtă d cala d admtrar. Cur 4 5

6 Vom compara cotatl d lmar după admtrara orală ş.m. ablul Cotata d lmar 4 m Oral prma doza.m. o doza.m. a-5-doza ( ) 6 ( X ) 5 68 ( ) ( X X ) , (, ) F(,6), F valoar aflată î zoa d accptar 485 ( f 7, 6 f, 9 ),6;97,5,6;99 Aplcăm î cotuar aclaş procdu, troducâd ş admtrara.v. ablul. Cotata d lmar 4 m.m. o doza.m. a-5-doza.v ( ) Cur 4 6

7 ( X ) ( ) ( X X ) , (, ) F(,6), 9 F valoar aflată î zoa d accptar 8 ( f 7, 6ş f, 9 ),6;97,5,6;99 Codţ car ptru aplcara aalz dproal. a) Modlul varabl alatoar upuă măuratorlor Sublm ca c am pu au am prupu ca ş codţ pralabl ptru a puta aplca ttul prztat: ) Ptru ca uml calculat ă f rpartzat χ t oblgatoru ca lcţl ă provă d populaţ rpartzat ormal. Dacă act lucru u îtâmplă, rămâ ă f aplcat tt paramtrc, după cum -a prztat atror. ) Aalza dproală compară dpra îtr grupur cu dpra totală d trorul grupurlor ptru pura î vdţă a fctlor tmc. Dprl î populaţl d car prov grupurl -au prupu gal. Ptru vrfcara act potz poat aplca ttul F dprlor d lcţ luat două cât două, au poat aplca ttul artltt. ) Adtvtata fctlor d tra ş trvarabltat, fom car dpd d atura tmă a fomulu măurat. Ca urmar rzultatul mauratorlor t o varabla alatoar car poat cr: µ ε cu ( ) ε ş ( ) D ε σ ud µ t mda grală a populaţ, Cur 4 7

8 D ( ) σ, t u factor f c varază d la u grup la altul ş t gal cu dfrţa îtr µ ş mda grupulu µ µ, ar ε t roara d măurar. Mda a dtrmăr î trorul uu grup t doarc ş µ ut cotat. Mda grală va f: M X ε µ µ ε ε µ µ ε doarc la u grup la altul ar µ t aclaş ptru îtraga populaţ. Ma dpart ( ) ( ) grupulu va f: ( ) varază d X µ ε µ ε ε ε ş dpra î trorul ( X ) ( ε ε ) ( X ) ( ε ε ) ar mda t σ (d faptul că aşa cum -a arătat ma îat ( ) σ, fd u tmator dplaat al dpr). Sumâd ptru toat grupurl obţ ( w ) Dc ( ) ( ) ( S ) S σ σ advărată au u. Dacă w t u tmator dplaat al lu σ dfrt dacă potza H t... X X ( ) ε ε ( ε ε ) σ ş ε ( ) σ ε Î ca c prvşt avm două cazur î fucţ d cum a fot al: a) t o varabla alatoar (, σ ), atuc ( ) σ σ Cur 4 8

9 b) factor fcş, µ µ ş, atuc ( ) ş ( ) σ Dc rfrm la grup oarcar, al îtâmplator d toat lcţl pobl d îtraga populaţ, t o varablă alatoar car aparţ (, σ ), dar u ma avm ptru o grupă d lcţ oarcar. t cazul câd cocluzl c trază rfră, î prcpal, la îtraga producţ ş u la şarl crctat. Calcul mlar arată că, atuc câd..., ş ( ) σ σ. Ca urmar, potza H t advărată. t o tmat dplaată a lu σ uma atuc câd b) Clafcara rarhcă î trpt. Scdara dpr total î dpr parţal al trptlor. Dacă vom codra roara u mtod d aalză, t d aştptat ca acata ă f gală cu uma rorlor parţal al fazlor aalz. Scdara ror total î rorl parţal al fazlor ofră pobltata pur î vdţă a fazlor c dtrmă dmuara rproductbltăţ ş a loculu ud trbu trvt ptru îmbuătăţra mtod. Aalza dproală multfactorală Î aalza atroară crtrul d împărţr î grupur a fot uul gur cala d admtrar au proada d admtrar. Î cotuar vom ocupa d cazul câd vrm ă dtrmăm podra a do factor î aclaş tmp, folod datl obţut îtru gur prmt. Ptru mplfcara crr prztăm ptru îcput cazul câd ttăm mdcamt cotâd acaş ubtaţă actvă, admtrat î proad dfrt. S codră că fctl dtrmat d c do factor aalzaţ ut varabl alatoar dpdt. Avâd do factor, ttază două potz d ul. Dacă vom aşza datl îtr-o matrc, ll ş coloal corpuzâd rpctv ptru valor dat al prmulu ş al clu d al dola factor, o prmă potză rfră la galtata mdlor Cur 4 9

10 llor, ar a doua la galtata mdlor coloalor. Ipotza altratvă prupu tţa uor dfrţ îtr l au rpctv îtr coloa. Proada ratamt Mdcamt X X X. X X X.... X X. ud.... rprztă mda valorlor d coloaa, ar. rprztă mda valorlor d la. Modlul varabl alatoar. Valorl prmtal l codrăm ca rzultata uor fct adtv corpuzător llor, coloalor ş rorlor îtâmplătoar: µ β ε ud t parta lu datorată l (chm d admtrar), β rprztă cotrbuţa coloa (forma mdcamtoaă), ar ε t roara prmtală. Scdara um pătratlor abatrlor. Suma pătratlor abatrlor valorlor dvdual faţă d mda grala M t: ( M ), pr c poat cr ş î forma: ( M ) [ ( L M ) ( C M ) ( L C M )] ( L M ) ( C M ) ( L C M ) L C R Produl mt u -au ma trcut doarc ut ul. Am cdat aşadar varabltata totală îtr-o compotă dată d l, o compotă dată d coloa ş o compotă rzduală. că: Corpuzător rzultatlor prztat la aalza ufactorală, ac poat arăta ( ) ( CL ) σ L C ( L ) ( C ) σ L β Cur 4

11 ( ) : ( C ) ( L ) σ C β ( ) ( )( ) σ R C L I cazul aalz bfactoral apar două potz d ul p car vrm ă l ttăm: H toat forml d tratamt (ll) ut chvalt, adca ; ( ) : H toat mdcamtl (coloal) ut chvalt, adca β. Idfrt dacă potzl ut advărat au u, ( ) σ. R Dacă cl două potz ut advărat:, R C L ut tmaţl dplaat al lu σ. Ptru a tta potza ( ) L H t atural ă codrăm raportul, ar ptru ( ) C potza H raportul. Î cazul î car ptru fcar combaţ d cauz fac ma mult dtrmăr folod ma mulţ volutar, varabltata poat cda î patru compot: L C R mplul : Varaţa uu paramtru farmacoctc atât î fucţ d cala d admtrar cât ş î fucţ d umărul d admtrar Cotata d lmar 4 m Oral prma doza.m. o doza.m. a-5-doza.v ( ) ( ) 79 Ma dpart codrăm două grupur: volutar cărora mdcamtul l -a admtrat o dată ş volutar car au prmt 5 doz. Cur 4

12 ( r. doz) 6 doz ( 75 4 ) 8 ( r. ) , (, ) F(,9 ) F car aparţ zo d accptar ptru rcul 684, ( f,56) dar u aparţ zo d accptar ptru, 5 ( f 5, ).,9;99 ( ) ( ) ,9;95 U alt factor car poat fluţa coctraţa î âg t cala d admtrar. ( cal) ( X ) ( ) ( 75 4 ) r. doz ( cal) ( r. ) doz Î act fl am obţut următoarl rzultat: 75 Sura d varaţ GL Rapotul F Îtr căl d admtrar 848 f(,6),4 Îtr umarul d doz 5 f(,6), Varaţa tragrupur Varaţa totală 79 ş comparâd cu valorl d tabll d rpartţ Fhr cotată că poat f accptată potza că toat grupurl crctat aparţ aclaş populaţ tattc. Dc, c cala d admtrar ş c umărul d doz u fluţază rata lmăr. mplul : Comparara bodpobltăţ u ubtaţ actv admtrat î prparat dfrt ş î proad dfrt d tratamt. r mdcamt au fot admtrat la ouă ubcţ îtr-u tudu d bodpobltat obţâdu- arl d ub curbă prztat î tabluld ma o: Cur 4

13 Proada Suma Pact 7 C A99 8 Pact A C Pact 98 A9 C8 6 Pact 4 C7 54 A6 88 Pact 5 A9 C7 Pact 6 C A5 9 9 Pact 7 69 A7 C95 55 Pact 8 C88 95 A77 6 Pact 9 A C Suma p proadă I: 6 II: 8 III: 4 99 Suma mdcamt Mda mdcamt p p A: 945 : 969 C: ,7 9,8 Sparăm acum varata î patru compot: pacţ, proadă, mdcamt ş roara î trorul tuturor grupurlor. ( ) ( pact) 6, 9 ( l) ( ) ( mdcamt) ( proada) 984, ( mdcamt) ( ) 9 ( ) I II III 9 6,5 64, ( pact) ( mdcamt) ( ) 947, proada P acata cal obţm: Sura d varaţ DF Suma pătratlor Mda Raportul F Îtr pacţ 8 984, 79, Îtr mdcamt 6, 558,,5 Îtr proad 64,,,75 Varaţa tragrupur 4 947, 77 otal 6 6, Doarc f, 74 u tă dfrţ mfcatv îtr cl două,4;,99 mdcamt după admtrar ucă au admtrăr multpl. Cur 4

CURSUL I PROBABILITATI DISTRIBUTII VARIABILE ALEATOARE. Curs 1 1

CURSUL I PROBABILITATI DISTRIBUTII VARIABILE ALEATOARE. Curs 1 1 CURSUL I ROBABILITATI DISTRIBUTII VARIABILE ALEATOARE Curs ELEMENTE DE TEORIA ROBABILITĂŢILOR CÂMURI DE ROBABILITATE Tora matmatcă a probabltăţlor porşt d la faptul că fcăru rzultat posbl al uu xprmt alator,

Διαβάστε περισσότερα

Laborator Transportul şi distribuţia energiei electrice - B. Neagu

Laborator Transportul şi distribuţia energiei electrice - B. Neagu Laborator Trasportul ş dstrbuţa rg lctrc - B. Nagu ALGORITM ŞI PROGRAM DE CALCL DETINATE ANALIZEI REGIMRILOR PERMANENTE IMETRICE DE FNCŢIONARE ALE ITEMELOR DE DITRIBŢIE FOLOIND METODA TENINILOR NODALE.

Διαβάστε περισσότερα

Teorema Rezidurilor şi Bucuria Integralelor Reale

Teorema Rezidurilor şi Bucuria Integralelor Reale Torma Ridurilor şi Bucuria Intgrallor Ral Prntar d Alandru Ngrscu Intgral cu funcţii raţional c dpind d sin t şi cos t u notaţia it, avm: cos t ( + sin t ( i dt d i, iar intgrara s va fac d-a lungul crcului

Διαβάστε περισσότερα

Lucian Maticiuc. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 9.

Lucian Maticiuc. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 9. Capitolul V: Şiruri şi srii d fucţii. Lct. dr. Lucia Maticiuc Facultata d Hidrothică, Godzi şi Igiria Mdiului Matmatici Suprioar, Smstrul I, Lctor dr. Lucia MATICIUC SEMINAR 9. Cap. V Şiruri şi srii d

Διαβάστε περισσότερα

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z : Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet

Διαβάστε περισσότερα

Sondajul statistic- II

Sondajul statistic- II 08.04.011 odajul statstc- II EŞATIOAREA s EXTIDEREA REZULTATELOR www.amau.ase.ro al.sac-mau@cse.ase.ro Data : 13 aprle 011 Bblografe : ursa I,cap.VI,pag.6-70 11.Aprle.011 1 odajul aleator smplu- cu revere

Διαβάστε περισσότερα

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs

Διαβάστε περισσότερα

Eşantionarea semnalelor

Eşantionarea semnalelor Eşantionara smnallor Eşantionara = prlvara d prob dintr-un smnal la momnt d timp dcalat intr l cu cu frcvnta d şantionar, f =/. xˆ t x k t k k = ( = δ ( Smnalul şantionat idal:. Spctrul Xˆ = X ( k k =

Διαβάστε περισσότερα

Cursul 10 T. rezultă V(x) < 0.

Cursul 10 T. rezultă V(x) < 0. ursul uţol ătrtă V: X R V s lsă stl: ) V st oztv tă ă X u X rzultă V(). ) V st tv tă ă X u X rzultă V()

Διαβάστε περισσότερα

SERII RADIOACTIVE. CINETICA DEZINTEGRĂRILOR Serie radioactivă- ansamblu de elemente radioactive care derivă unele din altele prin dezintegrări α şi β

SERII RADIOACTIVE. CINETICA DEZINTEGRĂRILOR Serie radioactivă- ansamblu de elemente radioactive care derivă unele din altele prin dezintegrări α şi β SERII RDIOTIVE. IETI DEZITEGRĂRILOR Sr radoacvă- ansamblu d lmn radoacv car drvă unl dn all prn dzngrăr α ş β ca rzula al lg ransmuaţ radoacv -prn dzngrar α, numărul d masă scad cu 4 unăţ ş numărul aomc

Διαβάστε περισσότερα

Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic

Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Platformă d -larg ș crrclă -tt tr îvățămâtl sror thc lmt d lctrocă Aalogcă 6. Trazstoar bolar (TBIP Trazstorl bolar-rocs fzc Itrodcr Smdctor trog dotat c mrtăţ astfl îcât s formază doă ocţ : rga d mloc

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

9. CIRCUITE ELECTRICE IN REGIM NESINUSOIDAL

9. CIRCUITE ELECTRICE IN REGIM NESINUSOIDAL 9. CRCE ELECRCE N REGM NESNSODAL 9.. DESCOMPNEREA ARMONCA Ateror am studat regmul perodc susodal al retelelor electrce, adca regmul permaet stablt retele lare sub actuea uor t.e.m. susodale s de aceeas

Διαβάστε περισσότερα

lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D;

lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D; Limit d fucńii Aliz mtmtică, cls XI- Limit d fucńii NotŃii: f :D R, D R, α - puct d cumulr lui D DfiiŃii l iti DfiiŃi f ( = l, l R, dcă ptru oric vciătt V lui l istă o vciătt α U lui α stfl îcât D U, α,

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

CAPITOLUL IV SERII FOURIER

CAPITOLUL IV SERII FOURIER CAPITOLUL IV SERII FOURIER Sr Fourr ptru uţ Fuţ prod Trsormt prodă Dzvotr î sr Fourr u uţ prod u prod Empu Fuţ prod osttu u d s d uţ r dtortă proprtăţor or trv rvt î dvrs prom tort ş prt U mjo d rprztr

Διαβάστε περισσότερα

ECUAŢII DIFERENŢIALE ŞI CU DERIVATE PARŢIALE PRIN EXERCIŢII ŞI PROBLEME

ECUAŢII DIFERENŢIALE ŞI CU DERIVATE PARŢIALE PRIN EXERCIŢII ŞI PROBLEME Codruţa Stoica ECUAŢII DIFERENŢIALE ŞI CU DERIVATE PARŢIALE PRIN EXERCIŢII ŞI PROBLEME Ediţia a II-a rvăută şi compltată Editura MIRTON Timişoara v CUPRINS Capitolul. ECUAŢII DIFERENŢIALE DE ORDINUL.....

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

LEGI CLASICE DE PROBABILITATE

LEGI CLASICE DE PROBABILITATE 7. LEGI CLASICE DE PROBABILITATE Fi (Ω, K, P u câmp d probabilitat şi f : Ω R, o variabilă alatoar. Am văzut că varibili f i s poat asocia o fucţi d rpartiţi F, cotiuă la stâga şi o fucţi caractristică

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

Modele matematice pentru îmbunătăţirea calităţii sistemelor electrice

Modele matematice pentru îmbunătăţirea calităţii sistemelor electrice Modl matmatic pntru îmbunătăţira calităţii sistmlor lctric Lct.univ.dr.ing. Ghorgh RAŢIU. Introducr Ţinând sama d tndinţl modrn al proictării sistmlor lctric (chipamntlor lctric) d înlocuir a uni proictări

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε. ΑΣΚΗΣΗ 1 ΟΜΑ Α 2 Στην ακόλουθη άσκηση σας δίνονται τα έξοδα ανά µαθητή και οι ετήσιοι µισθοί (κατά µέσο όρο) των δασκάλων για 51 πολιτείες της Αµερικής. Τα δεδοµένα είναι για τη χρονιά 1985. Οι µεταβλητές

Διαβάστε περισσότερα

Procese stocastice (2) Fie un proces stocastic de parametru continuu si avand spatiul starilor discret. =

Procese stocastice (2) Fie un proces stocastic de parametru continuu si avand spatiul starilor discret. = Xt () Procese stocastce (2) Fe u proces stocastc de parametru cotuu s avad spatul starlor dscret. Cu spatul starlor S = {,,, N} sau S = {,, } Defta : Procesul X() t este u proces Markov daca: PXt { ( )

Διαβάστε περισσότερα

def def punctul ( x, y )0R 2 de coordonate x = b a

def def punctul ( x, y )0R 2 de coordonate x = b a Cetrul de reutte rl-mhl Zhr CENTE E GEUTTE Î prtă este evoe să se luleze r plălor ple de ee vom det plăle ple u mulńm Ştm ă ms este o măsură ttăń de mtere dtr-u orp e ms repreztă o uńe m re soză eăre plă

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4

Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4 Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4 Ε Π Ι Σ Τ Ο Λ Η Δ Ι Ο Ι Κ Η Τ Η Α Υ Γ Ο Υ Σ Τ Ο Σ Μ η ν ι α ί α Ε π ι σ τ ο λ ή ι ο ι κ η τ ή 1 Π ε ρ ι ε χ ό μ ε ν α Σ ε λ ί δ ε ς Τ ο μ ή ν υ μ α τ

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

ELEMENTE DE TEORIA PROBABILITĂŢILOR

ELEMENTE DE TEORIA PROBABILITĂŢILOR CAPITOLUL ELEMENTE DE TEORIA PROAILITĂŢILOR Câmp de evemete U feome îtâmplător se poate observa, de regulă, de ma multe or Faptul că este îtâmplător se mafestă pr aceea că u ştm date care este rezultatul

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

2. Metoda celor mai mici pătrate

2. Metoda celor mai mici pătrate Metode Nuerce Curs. Metoda celor a c pătrate Fe f : [a, b] R o fucţe. Fe x, x,, x + pucte dstcte d tervalul [a, b] petru care se cuosc valorle fucţe y = f(x ) petru orce =,,. Aproxarea fucţe f prtr-u polo

Διαβάστε περισσότερα

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite.

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite. CAPITOLUL SERII FOURIER Ser trgoometrce Ser Fourer Fe fucţ f :[, Remtm că puctu [, ] se umeşte puct de b dscotutte de prm speţă fucţe f dcă mtee tere f ( ş f ( + estă ş sut fte y Defţ Fucţ f :[, se umeşte

Διαβάστε περισσότερα

Cu ajutorul noţiunii de corp se defineşte noţiunea de spaţiu vectorial (spaţiu liniar): Fie V o mulţime nevidă ( Ø) şi K,,

Cu ajutorul noţiunii de corp se defineşte noţiunea de spaţiu vectorial (spaţiu liniar): Fie V o mulţime nevidă ( Ø) şi K,, Cursul 1 Î cele ce urmează vom prezeta o ouă structură algebrcă, structura de spaţu vectoral (spaţu lar) utlzâd structurle algebrce cuoscute: mood, grup, el, corp. Petru îceput să reamtm oţuea de corp:

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

Evaluare : 1. Continuitatea funcţiilor definite pe diferite spaţii metrice. 2. Răspunsuri la problemele finale.

Evaluare : 1. Continuitatea funcţiilor definite pe diferite spaţii metrice. 2. Răspunsuri la problemele finale. Modulul 4 APLICAŢII CONTINUE Subecte :. Cotutatea fucţlor defte pe spaţ metrce.. Uform cotutatate. 3. Lmte. Dscotutăţ lmte parţale lmte terate petru fucţ de ma multe varable reale. Evaluare :. Cotutatea

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

3. ERORI DE MÃSURARE

3. ERORI DE MÃSURARE 6 Mtrologi, Stadardizar si Masurari 3.. Dfiira rorii d masurar 3. ERORI DE MÃSURARE Î practica, s obsrva ca îtotdaua valoara umrica rala a ui mari fizic masurat st difrita d valoara m idicata d aparatul

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g. II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric

Διαβάστε περισσότερα

Pentru această problemă se consideră funcţia Lagrange asociată:

Pentru această problemă se consideră funcţia Lagrange asociată: etoda ultplcatorlor lu arae ceastă etodă de optzare elară elă restrcţle de tp ealtate cluzâdu-le îtr-o ouă fucţe oectv ş ărd sulta uărul de varale al prolee de optzare. e urătoarea proleă: < (7. Petru

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

9. UTILIZAREA TRANSFORMATELOR LAPLACE ŞI Z ÎN STUDIUL SEMNALELOR

9. UTILIZAREA TRANSFORMATELOR LAPLACE ŞI Z ÎN STUDIUL SEMNALELOR 9. UIIAREA RASFORMAEOR APACE ŞI Î SUDIU SEMAEOR rform Forr (ră ş vră) rlă o rformr rprăr ml oml mp î oml frvţă ( ω) ş vr. Grlâ vrbl mgră ω omplă: σ ω (frvţ omplă), obţ mol m grl rprr mllor, m rform pl.

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

cu f(x), probabilitatea ca acest semnal să aibă o anumită valoare x într-o durată de timp T 0

cu f(x), probabilitatea ca acest semnal să aibă o anumită valoare x într-o durată de timp T 0 ..6 În cazl în car prrbaţa v zgomol nflnţază pţn mărma şr rapor zgomo/mnal nmnfcav, acaa poa f gnoraă în conroll procl nologc; anc cân prformanţl mp mărm şr n nvl rca rb laă în conrar ş cala prn car propagă

Διαβάστε περισσότερα

CALCULUL NUMERIC AL CÂMPULUI ELECTROMAGNETIC

CALCULUL NUMERIC AL CÂMPULUI ELECTROMAGNETIC CLCULUL UMERIC L CÂMPULUI ELECTROMGETIC Calculul corct al câmpulu lctromagntc prsupun cunoaştra unu modl tortc d câmp adcvat. Ecuaţl afrnt acstu modl trbu să satsfacă torml d stnţă ş unctat al soluţlor,

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

3 Măsurarea tensiunilor şi a curenţilor electrici

3 Măsurarea tensiunilor şi a curenţilor electrici Măurara nunlor ş a curnţlor lcrc MĂSĂ ÎN ELECONCĂ Ş ELECOMNCAŢ 3 Măurara nunlor ş a curnţlor lcrc 3. Apc gnral 3.. Procul d ăurar A ăura înană a copara o ăr ncunocuă,, cu o ala, d acaş naură, u, luaă drp

Διαβάστε περισσότερα

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Couplage dans les applications interactives de grande taille

Couplage dans les applications interactives de grande taille Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

2. Sisteme de ecuaţii neliniare

2. Sisteme de ecuaţii neliniare Ssteme de ecuaţ elare 9 Ssteme de ecuaţ elare Î acest catol abordăm roblema reolvăr umerce a sstemelor de ecuaţ alebrce elare Cosderăm următorul sstem de ecuaţ î care cel uţ ua d ucţle u este lară Sub

Διαβάστε περισσότερα

MICROMASTER Vector MIDIMASTER Vector

MICROMASTER Vector MIDIMASTER Vector s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.

Διαβάστε περισσότερα

The importance of human biomonitoring for assessing occupational safety in research labs

The importance of human biomonitoring for assessing occupational safety in research labs Evmtal Egg Dp. f Chmcal Egg Schl f Egg Attl Uv. f Thalk Th mptac f huma bmtg f ag ccupatal afty ach lab D A. Saga 1,2 1 Evmtal Egg Dpatmt f Chmcal Egg 2 HERACLES Rach Ct th Expm ad Halth Ct f Itdcplay

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Capitolul I ECUAŢII DIFERENŢIALE. 1 Matematici speciale. Probleme. 1. Să de integreze ecuaţia diferenţială de ordinul întâi liniară

Capitolul I ECUAŢII DIFERENŢIALE. 1 Matematici speciale. Probleme. 1. Să de integreze ecuaţia diferenţială de ordinul întâi liniară Mamaici spcial Problm c solţia apioll I EUAŢII DIFERENŢIALE Să d ingrz caţia difrnţială d ordinl înâi liniară g cos d Solţi: Ecaţia omognă aaşaă s: - g sa g d ln - ln cos ln sa Pnr rzolvara caţii cos nomogn

Διαβάστε περισσότερα

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é

Διαβάστε περισσότερα

Curs 3. Spaţii vectoriale

Curs 3. Spaţii vectoriale Lector uv dr Crsta Nartea Curs Spaţ vectorale Defţa Dacă este u îtreg, ş x, x,, x sut umere reale, x, x,, x este u vector -dmesoal Mulţmea acestor vector se otează cu U spaţu vectoral mplcă patru elemete:

Διαβάστε περισσότερα

SISTEME ELECTROENERGETICE

SISTEME ELECTROENERGETICE SISTEME ELECTROEERGETICE Captolul 3 CALCLL REGIMLI PERMAET DE FCTIOARE AL SEE Trmnolog Dfnt: Calculul rgmulu prmannt d funcţonar al SEE urmarst dtrmnara tuturor mărmlor d star caractrstc al sstmulu, pornnd

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Sisteme cu partajare - continut. M / M /1 PS ( numar de utilizatori, 1 server, numar de pozitii pentru utilizatori)

Sisteme cu partajare - continut. M / M /1 PS ( numar de utilizatori, 1 server, numar de pozitii pentru utilizatori) Ssteme cu partajare - cotut Recaptulare: modelul smplu de trafc M / M / PS ( umar de utlzator, server, umar de pozt petru utlzator) M / M / PS ( umar de utlzator, servere, umar de pozt petru utlzator)

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

cele mai ok referate

cele mai ok referate Permur www.refereo.ro cele m o refere.noue de permure. Fe A o mulme f de elemee, dc A{,, 3,, }. O fuce becv σ:aàa e umee permure ubue de grdul. P:Numrul uuror permurlor de ord ee egl cu!..produul compuere

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

Prelucrarea numerică a semnalelor, Capitolul 2 2. SINTEZA FILTRELOR NUMERICE

Prelucrarea numerică a semnalelor, Capitolul 2 2. SINTEZA FILTRELOR NUMERICE rlucrara umrică a smallor, Capitolul Silviu Ciocia. SITEZA FILTRELOR UMERICE roictara uui filtru umric prsupu parcurgra următoarlor tap : - Sita fucţii d trasfr c satisfac codiţiil impus; - Algra ui structuri

Διαβάστε περισσότερα

4.2. Amplificatoare elementare

4.2. Amplificatoare elementare 4.2. Aplfcatoa lnta 4.2.. Conxunl aplfcatoalo n taj al unu aplfcato, ca conţn ca lnt actv un tanzsto, poat f dus la o scă lntaă, splfcată. Atât pntu aplfcatoal cu tanzstoa bpola cât ş pntu aplfcatoal cu

Διαβάστε περισσότερα

5. FILTRE ADAPTIVE BAZATE PE MI IMIZAREA ERORII MEDII PATRATICE

5. FILTRE ADAPTIVE BAZATE PE MI IMIZAREA ERORII MEDII PATRATICE 5. FILTRE ADAPTIVE BAZATE PE MIIMIZAREA ERORII MEDII PATRATICE 5. FILTRE ADAPTIVE BAZATE PE MIIMIZAREA ERORII MEDII PATRATICE fucţia cost st roara di pătratică, () cuaţiil Wir-opf u ofră o soluţi practică

Διαβάστε περισσότερα

CURS 10. Regresia liniară - aproximarea unei functii tabelate cu o functie analitica de gradul 1, prin metoda celor mai mici patrate

CURS 10. Regresia liniară - aproximarea unei functii tabelate cu o functie analitica de gradul 1, prin metoda celor mai mici patrate Y CURS 0 Regresa lară - aproxmarea ue fuct tabelate cu o fucte aaltca de gradul, pr metoda celor ma mc patrate 30 300 90 80 70 60 50 40 30 0 y = -78.545x + 33.4 R² = 0.983 0 0. 0.4 0.6 0.8. X Fe o fucţe:

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

TIPURI DE DEZINTEGRĂRI NUCLEARE. Dezintegrarea α

TIPURI DE DEZINTEGRĂRI NUCLEARE. Dezintegrarea α TIPURI D DZINTGRĂRI NUCLR Dzitgaa -mita d căt ul ucl adioactiv, stuctui compact d doi potoi şi doi utoi (ucl d hliu şi a ui catităţi apciabil d gi Q Z X 4 Z Y Q 38 9 4.47 ai U 9 34 9 Th Q (4.7 V s îtâlşt

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

Na/K (mole) A/CNK

Na/K (mole) A/CNK Li, W.-C., Chen, R.-X., Zheng, Y.-F., Tang, H., and Hu, Z., 206, Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China: GSA

Διαβάστε περισσότερα

ACI sécurité informatique KAA (Key Authentification Ambient)

ACI sécurité informatique KAA (Key Authentification Ambient) ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,

Διαβάστε περισσότερα

Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία

Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία - Ορισμός. Ένα παίγνιο ονομάζεται παίγνιο πλήρους πληροφόρησης (game of complete information) όταν κάθε παίκτης διαθέτει πλήρη πληροφόρηση για τις συναρτήσεις

Διαβάστε περισσότερα

页面

页面 订单 - 配售 Εξετάζουμε την αγορά...luăm în considerare posibi 正式, 试探性 Είμαστε στην ευχάριστη Suntem θέση να încântați δώσουμε την să plasăm παραγγελία μας στην εταιρεία comandă σας pentru... για... Θα θέλαμε

Διαβάστε περισσότερα

CAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât

CAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât Cp 2 INTEGRALA RIEMANN 9 CAPITOLUL 2 INTEGRALA RIEMANN 2 SUME DARBOUX CRITERIUL DE INTEGRABILITATE DARBOUX Defţ 2 Se umeşte dvzue tervlulu [, ] orce sumulţme,, K,, K, [, ] stfel îcât = { } = < < K< <

Διαβάστε περισσότερα

CAPITOLUL 4 CERCETAREA STATISTICĂ PRIN SONDAJ

CAPITOLUL 4 CERCETAREA STATISTICĂ PRIN SONDAJ CAPITOLUL 4 CERCETAREA STATISTICĂ PRIN SONDAJ Coderaţ prelmare Î captolele precedete am dcutat depre pobltăţle de culegere a datelor pe baza metodelor de obervare totală au parţală, ca ş depre modaltăţle

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

Original Lambda Lube-Free Roller Chain

Original Lambda Lube-Free Roller Chain ambda (ub-fr) llr Ca Orgal ambda ub-fr llr Ca ambda a rass prduvy ad savs my. du maa m. Elma prdu ama. du dwm. g lf ad lw maa ambda as us spal l-mprgad busgs prvd lubra ad prlg war lf. mb Tmpraur: 10 C

Διαβάστε περισσότερα