The split variational inequality problem and its algorithm iteration

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "The split variational inequality problem and its algorithm iteration"

Transcript

1 Available online at J. Nonlinear Sci. Appl., 10 (017), Research Article Journal Homepage: The split variational inequality problem and its algorithm iteration Yonghong Yao a, Xiaoxue Zheng a, Limin Leng a, Shin Min Kang b,c, a Department of Mathematics, Tianjin Polytechnic University, Tianjin , China. b Center for General Education, China Medical University, Taichung 4040, Taiwan. c Department of Mathematics and the RINS, Gyeongsang National University, Jinju 588, Korea. Communicated by X. Qin Abstract The split variational inequality problem under a nonlinear transformation has been considered. An iterative algorithm is presented to solve this split problem. Strong convergence results are obtained. c 017 All rights reserved. Keywords: Split variational inequality, iterative algorithm, nonlinear transformation. 010 MSC: 49J53, 49M37, 65K10, 90C5. 1. Introduction Let H be a real Hilbert space with its inner product, and norm. Let C H be a nonempty closed convex set. Let A : C H and ψ : C C be three nonlinear operators. Now we consider the following variational inequality of finding u C such that Au, ψ(v) ψ(u) 0, v C. (1.1) Denote the set of the solutions of (1.1) by VI(A, ψ, C). If ψ I, then (1.1) reduces to the variational inequality of finding u C such that Au, v u 0, v C. (1.) Denote the set of the solutions of (1.) by VI(A, C). Variational inequalities have played a critical and significant part in the study of several unrelated problems arising in physics, finance, economics, network analysis, elasticity, optimization, water resources, medical images and structural analysis. For some related work, please refer to Ceng et al. [5, 6], Cianciaruso et al. [1], Glowinski [13], Iusem [16], Korpelevič [17], Noor [1], Qin and Cho [19], Qin and Yao [0], Yao et al. [7, 9, 31, 3], Zegeye et al. [34], and Zhang et al. [35]. Corresponding author addresses: yaoyonghong@aliyun.com (Yonghong Yao), zhengxiaoxue1991@aliyun.com (Xiaoxue Zheng), lenglimin@aliyun.com (Limin Leng), smkang@gnu.ac.kr (Shin Min Kang) doi:10.436/jnsa Received

2 Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), Recently, the split feasibility problem has been studied extensively, see [ 4, 7 9, 4 6, 8, 33]. The split feasibility problem is formulated as finding ˆv such that ˆv C and ψ(ˆv) Q, (1.3) where C and Q are two closed convex subsets of two Hilbert spaces H 1 and H, respectively, and ψ : H 1 H is a bounded linear operator. Such problems arise in the field of intensity-modulated radiation therapy. Special cases. (i) If C = Fix(S) and Q = Fix(T), then (1.3) reduces to the split common fixed point problem which was first introduced by Censor and Segal [11]. The reader can refer to He and Du [14, 15] and Yao et al. [30]. (ii) If C = VI(A, D) and Q = VI(B, E), then (1.3) reduces to the split variational inequality problem which was studied in [10]. In the present manuscript, we focus on the following split variational inequality problem of finding a point ˆv such that ˆv VI(A, ψ, C) and ψ(ˆv) VI(B, C). (1.4) Remark 1.1. In the existing literature, the split problem that requires to find a point of an operator in one space whose image under a linear transformation is a point of another operator in the image space. However, in (1.4), the transformation ψ is nonlinear. In order to solve (1.4), we introduce a new iterative algorithm. Under some mild assumptions, we show the strong convergence of the presented algorithm.. Preliminaries Let C be a nonempty closed convex subset of a real Hilbert space H. Definition.1. An operator ϑ : C C is said to be L-Lipschitz continuous if there exists a constant L > 0 such that ϑ(u) ϑ(u ) L u u for all u, u C. Definition.. An operator A : C H is said to be (1) monotone if Au Au, u u 0, u, u C; () strongly monotone if there exists a constant δ > 0 such that Au Au, u u δ u u, u, u C; (3) inverse strongly monotone if there exists η > 0 such that Let ψ : C C be a nonlinear operator. Au Au, u u η Au Au, u, u C. Definition.3. An operator A : C H is said to be η-inverse strongly ψ-monotone iff for all u, u C and for some η > 0. Au Au, ψ(u) ψ(u ) η Au Au

3 Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), Let A : H H be a set-valued operator. The effective domain of A is denoted by dom(a), that is, dom(a) = {x H : Ax }. Definition.4. A set-valued operator A is said to be monotone on H iff for all x, y dom(a), u Ax and v Ay. x y, u v 0 A monotone operator A on H is said to be maximal iff its graph is not strictly contained in the graph of any other monotone operator on H. For every point u H, there exists a unique nearest point in C, denoted by proj C [u] such that u proj C [u] u u for all u C. The mapping proj C is called the metric projection of H onto C. It is well-known that proj C is a typical firmly nonexpansive mapping and is characterized by the following property u proj C [u], u proj C [u] 0, u H, u C. (.1) Lemma.5 ([]). Let C be a nonempty closed convex subset of a real Hilbert space H and A : C H be a ξ-inverse strongly monotone mapping. Then, where δ > 0 is a constant. (I δa)u (I δa)u x y + δ(δ ξ) Au Au, u, u C, (.) Lemma.6 ([3]). Let {ϖ n } [0, ), {µ n } (0, 1), and {ρ n } be three sequences such that Assume the following restrictions are satisfied (i) n=1 µ n = ; (ii) lim n ρ n µ n 0 or n=1 ρ n <. Then lim n ϖ n = 0. ϖ n+1 (1 µ n )ϖ n + ρ n, n 1. Lemma.7 ([18]). Let {w n } be a sequence of real numbers. Assume {w n } does not decrease at infinity, that is, there exists at least a subsequence {w nk } of {w n } such that w nk w nk +1 for all k 0. For every n N 0, define an integer sequence {τ(n)} as τ(n) = max{i n : w ni < w ni +1}. Then τ(n) as n and for all n N 0 max{w τ(n), w n } w τ(n) Main results In this section, we study the split variational inequality problem and the convergence analysis of its iterative algorithm. Let H be a real Hilbert space and C H be a nonempty closed convex set. Let ψ : C C be a weakly continuous and δ-strongly monotone mapping such that its range R(ψ) = C. Let A : C H be an η-inverse strongly ψ-monotone mapping. Let B : C H be a ξ-inverse strongly monotone mapping.

4 Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), Remark 3.1. For u, v C, since ψ is δ-strongly monotone, we get Then, δ u v ψ(u) ψ(v), u v ψ(u) ψ(v) u v. ψ(u) ψ(v) δ u v, u, v C. (3.1) In view of the assumptions on the operator ψ, we know ψ 1 is single-valued and Lipschitz continuous. Problem 3.. The split variational inequality problem is to find û such that û VI(A, ψ, C) and ψ(û) VI(B, C). (3.) Denote the set of solutions of (3.) by Λ, i.e., Λ = VI(A, ψ, C) ψ 1 (VI(B, C)). Throughout, we assume Λ. Algorithm 3.3. For given initial value x 0 C, define the sequence {x n } by the following form u n = proj C [ψ(x n ) ζ n Ax n ], v n = proj C [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )], ψ(x n+1 ) = ξ n ψ(x n ) + (1 ξ n )v n, n 0, (3.3) where ϑ : C H is an L-Lipschitz continuous mapping, {η n }, {ξ n }, and {δ n } are three real number sequences in [0, 1], {ζ n } is a real number sequence in (0, ), and 0 < µ < δ/l is a constant. Remark 3.4. The solution of the variational inequality of finding x Λ such that µϑ(x ) ψ(x ), ψ(x) ψ(x ) 0, x Λ (3.4) is unique. As a matter of fact, assume that both x and x solve (3.4). Then, µϑ(x ) ψ(x ), ψ( x) ψ(x ) 0 and µϑ( x) ψ( x), ψ(x ) ψ( x) 0. Adding up the above two inequalities, we deduce It follows that µϑ( x) ψ( x) µϑ(x ) + ψ(x ), ψ(x ) ψ( x) 0. ψ(x ) ψ( x) µ ϑ(x ) ϑ( x), ψ(x ) ψ( x) µ ϑ(x ) ϑ( x) ψ(x ) ψ( x). This together with (3.1) implies that δ x x ψ(x ) ψ( x) µ ϑ(x ) ϑ( x) µl x x. We get x = x immediately because of µl < δ. So, the variational inequality (3.4) has a unique solution denoted by û. Proposition 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C H be an η-inverse strongly ψ-monotone mapping. Then, Proof. In fact, (ψ(x) ζax) (ψ(y) ζay) ψ(x) ψ(y) + ζ(ζ η) Ax Ay, x, y C. (3.5) (ψ(x) ζax) (ψ(y) ζay) = ψ(x) ψ(y) ζ Ax Ay, ψ(x) ψ(y) + ζ Ax Ay ψ(x) ψ(y) ζη Ax Ay + ζ Ax Ay ψ(x) ψ(y) + ζ(ζ η) Ax Ay.

5 Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), Theorem 3.6. Assume the following conditions are satisfied: (C1): lim n η n = 0 and n η n = ; (C): 0 < lim n ξ n lim n ξ n < 1 and δ (Lµ, η); (C3): 0 < lim n ζ n lim n ζ n < η and 0 < lim n δ n lim n δ n < ξ. Then the sequence {x n } generated by (3.3) converges strongly to û Λ which solves the variational inequality (3.4). Proof. Note that û VI(A, ψ, C) and ψ(û) VI(B, C). Using (.1), we deduce ψ(û) = proj C [ψ(û) ζ n Aû] = proj C [ψ(û) δ n Bψ(û)] for all n 0. First, from (.), we have (u n δ n Bu n ) (ψ(û) δ n Bψ(û)) u n ψ(û) + δ n (δ n ξ) Bu n Bψ(û) u n ψ(û). By (3.5), we get u n ψ(û) = proj C [ψ(x n ) ζ n Ax n ] proj C [ψ(û) ζ n Aû] (ψ(x n ) ζ n Ax n ) (ψ(û) ζ n Aû) ψ(x n ) ψ(û) + ζ n (ζ n η) Ax n Aû ψ(x n ) ψ(û) and ψ(x n+1 ) ζ n+1 Ax n+1 (ψ(x n ) ζ n+1 Ax n ) ψ(x n+1 ) ψ(x n ) + ζ n+1 (ζ n+1 η) Ax n+1 Ax n. From (3.1), (3.3), (3.6), and (3.7), we have v n ψ(û) = proj C [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )] proj C [ψ(û) δ n Bψ(û)] η n (µϑ(x n ) ψ(û) + δ n Bψ(û)) + (1 η n )((u n δ n Bu n ) (ψ(û) δ n Bψ(û))) η n µϑ(x n ) µϑ(û) + η n µϑ(û) ψ(û) + δ n Bψ(û) + (1 η n ) (u n δ n Bu n ) (ψ(û) δ n Bψ(û)) η n µl x n û + η n µϑ(û) ψ(û) + δ n Bψ(û) + (1 η n ) u n ψ(û) η n µl/δ ψ(x n ) ψ(û) + η n µϑ(û) ψ(û) + δ n Bψ(û) + (1 η n ) ψ(x n ) ψ(û) = [1 (1 µl/δ)η n ] ψ(x n ) ψ(û) + η n µϑ(û) ψ(û) + δ n Bψ(û) [1 (1 µl/δ)η n ] ψ(x n ) ψ(û) + η n ( µϑ(û) ψ(û) + ξ Bψ(û) ). (3.6) (3.7) (3.8) By combination of (3.6), (3.7), and (3.8), we obtain v n ψ(û) η n (µϑ(x n ) ψ(û) + δ n Bψ(û)) + (1 η n )((u n δ n Bu n ) (ψ(û) δ n Bψ(û))) η n µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n ) (u n δ n Bu n ) (ψ(û) δ n Bψ(û)) η n µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n )[ u n ψ(û) + δ n (δ n ξ) Bu n Bψ(û) ] η n µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n )[ ψ(x n ) ψ(û) + δ n (δ n ξ) Bu n Bψ(û) + ζ n (ζ n η) Ax n Aû ] η n µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n ) ψ(x n ) ψ(û). (3.9) According to (3.3) and (3.8), we have ψ(x n+1 ) ψ(û) ξ n ψ(x n ) ψ(û) + (1 ξ n ) v n ψ(û)

6 Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), ξ n ψ(x n ) ψ(û) + (1 ξ n )[1 (1 µl/δ)η n ] ψ(x n ) ψ(û) + (1 ξ n )η n ( µϑ(û) ψ(û) + ξ Bψ(û) ) = [1 (1 µl/δ)(1 ξ n )η n ] ψ(x n ) ψ(û) µϑ(û) ψ(û) + ξ Bψ(û) + (1 µl/δ)(1 ξ n )η n. 1 µl/δ By induction { ψ(x n ) ψ(û) max ψ(x 0 ) ψ(û), } µϑ(û) ψ(û) + ξ Bψ(û). 1 µl/δ It follows that x n û 1 δ ψ(x n) ψ(û) 1 δ max { ψ(x 0 ) ψ(û), } µϑ(û) ψ(û) + ξ Bψ(û). 1 µl/δ Hence, {ψ(x n )}, {x n }, {u n }, and {v n } are all bounded. From (3.3), we have ψ(x n+1 ) ψ(x n ) = (1 ξ n )(v n ψ(x n )). (3.10) Thus, Observe that ψ(x n+1 ) ψ(x n ), ψ(x n ) ψ(û) = (1 ξ n ) v n ψ(x n ), ψ(x n ) ψ(û). (3.11) ψ(x n+1 ) ψ(x n ), ψ(x n ) ψ(û) = ψ(x n+1 ) ψ(û) ψ(x n ) ψ(û) ψ(x n+1 ) ψ(x n ) (3.1) and v n ψ(x n ), ψ(x n ) ψ(û) = v n ψ(û) ψ(x n ) ψ(û) v n ψ(x n ). (3.13) By virtue of (3.11), (3.1), and (3.13), we deduce ψ(x n+1 ) ψ(û) ψ(x n ) ψ(û) ψ(x n+1 ) ψ(x n ) = (1 ξ n )[ v n ψ(û) ψ(x n ) ψ(û) v n ψ(x n ) ]. (3.14) Combining (3.9), (3.10) with (3.14), we have ψ(x n+1 ) ψ(û) ψ(x n ) ψ(û) = (1 ξ n )[ v n ψ(û) ψ(x n ) ψ(û) v n ψ(x n ) ] + (1 ξ n ) v n ψ(x n ) = (1 ξ n )[ v n ψ(û) ψ(x n ) ψ(û) ] ξ n (1 ξ n ) v n ψ(x n ) (1 ξ n )[η n µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n ) u n ψ(û) ψ(x n ) ψ(û) ] ξ n (1 ξ n ) v n ψ(x n ). (3.15) Returning to (3.8), we get v n ψ(û) [1 (1 µl/δ)η n ] ψ(x n ) ψ(û) + (1 µl/δ)η n ( µϑ(û) ψ(û) + ξ Bψ(û) (1 µl/δ) ). (3.16) Next, we consider two possible cases. Case 1. Assume there exists some integer m > 0 such that { ψ(x n ) ψ(û) } is decreasing for all n m.

7 Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), In this case, we know that lim n ψ(x n ) ψ(û) exists. From (3.15) and (3.16), we have ξ n (1 ξ n ) v n ψ(x n ) ψ(x n ) ψ(û) ψ(x n+1 ) ψ(û) + (1 ξ n )[ v n ψ(û) ψ(x n ) ψ(û) ] ψ(x n ) ψ(û) ψ(x n+1 ) ψ(û) + (1 µl/δ)η n ( µϑ(û) ψ(û) + ξ Bψ(û) (1 µl/δ) 0. ) This together with (C) implies that Furthermore, it follows from (3.10) that lim v n ψ(x n ) = 0. n By the convexity of the norm and (3.9), we have lim n ψ(x n+1) ψ(x n ) = 0. (3.17) ψ(x n+1 ) ψ(û) = ξ n (ψ(x n ) ψ(û)) + (1 ξ n )(v n ψ(û)) ξ n ψ(x n ) ψ(û) + (1 ξ n ) v n ψ(û) ξ n ψ(x n ) ψ(û) + η n (1 ξ n ) µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n )(1 ξ n ) ψ(x n ) ψ(û) + (1 η n )(1 ξ n )δ n (δ n ξ) Bu n Bψ(û) + (1 η n )(1 ξ n )ζ n (ζ n η) Ax n Aû ψ(x n ) ψ(û) + η n (1 ξ n ) µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n )(1 ξ n )δ n (δ n ξ) Bu n Bψ(û) + (1 η n )(1 ξ n )ζ n (ζ n η) Ax n Aû. (3.18) Thus, (1 η n )(1 ξ n )δ n (ξ δ n ) Bu n Bψ(û) + (1 η n )(1 ξ n )ζ n (η ζ n ) Ax n Aû ψ(x n ) ψ(û) ψ(x n+1 ) ψ(û) + η n (1 ξ n ) µϑ(x n ) ψ(û) + δ n Bψ(û) ( ψ(x n ) ψ(û) + ψ(x n+1 ) ψ(û) ) ψ(x n+1 ) ψ(x n ) + η n (1 ξ n ) µϑ(x n ) ψ(û) + δ n Bψ(û) 0 (by (C1) and (3.17)). Since lim inf n (1 ξ n )(1 η n )ζ n (η ζ n ) > 0 and lim inf n (1 η n )(1 ξ n )δ n (ξ δ n ) > 0, we obtain lim n Ax n Aû = 0 and lim n Bu n Bψ(û) = 0. (3.19) Set z n = ψ(x n ) ζ n Ax n (ψ(û) ζ n Aû) for all n. Using the property (.1) of projection, we get u n ψ(û) = proj C [ψ(x n ) ζ n Ax n ] proj C [ψ(û) ζ n Aû] z n, u n ψ(û) = 1 { zn + u n ψ(û) z n u n + ψ(û) } 1 { ψ(xn ) ψ(û) + u n ψ(û) ψ(x n ) u n ζ n (Ax n Aû) }

8 Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), = 1 { ψ(xn ) ψ(û) + u n ψ(û) ψ(x n ) u n ζ n Ax n Aû + ζ n ψ(x n ) u n, Ax n Aû }. It follows that u n ψ(û) ψ(x n ) ψ(û) ψ(x n ) u n + ζ n ψ(x n ) u n Ax n Aû. (3.0) Set z n = u n δ n Bu n (ψ(û) δ n Bψ(û)) for all n. We also have v n ψ(û) = proj C [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )] proj C [ψ(û) δ n Bψ(û)] η n (µϑ(x n ) ψ(û) + δ n Bψ(û)) + (1 η n )z n, v n ψ(û) = 1 { ηn (µϑ(x n ) ψ(û) + δ n Bψ(û)) + (1 η n )z n + v n ψ(û) η n (µϑ(x n ) ψ(û) + δ n Bψ(û)) + (1 η n )z n v n + ψ(û) } 1 { ηn µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n ) u n ψ(û) + v n ψ(û) η n (µϑ(x n ) ψ(û) + δ n Bψ(û) z n) + u n v n δ n (Bu n Bψ(û)) } = 1 { ηn µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n ) u n ψ(û) + v n ψ(û) u n v n η n µϑ(x n ) ψ(û) + δ n Bψ(û) z n + δ n η n Bu n Bψ(û), µϑ(x n ) ψ(û) + δ n Bψ(û) z n δ n Bu n Bψ(û) + δ n u n v n, Bu n Bψ(û) η n u n v n, µϑ(x n ) ψ(û) + δ n Bψ(û) z n }. It follows that v n ψ(û) η n µϑ(x n ) ψ(û) + δ n Bψ(û) + (1 η n ) u n ψ(û) + δ n η n Bu n Bψ(û) µϑ(x n ) ψ(û) + δ n Bψ(û) z n u n v n + δ n u n v n Bu n Bψ(û) + η n u n v n µϑ(x n ) ψ(û) + δ n Bψ(û) z n. (3.1) In the light of (3.18), (3.0), and (3.1), we derive ψ(x n+1 ) ψ(û) ξ n ψ(x n ) ψ(û) + (1 ξ n ) v n ψ(û) ψ(x n ) ψ(û) + η n µϑ(x n ) ψ(û) + δ n Bψ(û) (1 η n ) ψ(x n ) u n (1 ξ n ) u n v n + ζ n ψ(x n ) u n Ax n Aû + δ n u n v n Bu n Bψ(û) + δ n η n Bu n Bψ(û) µϑ(x n ) ψ(û) + δ n Bψ(û) z n + η n u n v n µϑ(x n ) ψ(û) + δ n Bψ(û) z n. Then, (1 η n ) ψ(x n ) u n + (1 ξ n ) u n v n ( ψ(x n ) ψ(û) + ψ(x n+1 ) ψ(û) ) ψ(x n+1 ) ψ(x n ) + ζ n ψ(x n ) u n Ax n Aû + δ n u n v n Bu n Bψ(û) + δ n η n Bu n Bψ(û) µϑ(x n ) ψ(û) + δ n Bψ(û) z n

9 Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), Therefore, + η n u n v n µϑ(x n ) ψ(û) + δ n Bψ(û) z n + η n µϑ(x n ) ψ(û) + δ n Bψ(û) 0 (by (C1), (3.17), and (3.19)). lim n ψ(x n ) u n = 0 and lim n u n v n = 0. (3.) Now, we prove lim n µϑ(û) ψ(û), v n ψ(û) 0. Choose a subsequence {v ni } of {v n } such that lim n µϑ(û) ψ(û), v n ψ(û) = lim i µϑ(û) ψ(û), v ni ψ(û). (3.3) Since {x ni } is bounded, there exists a subsequence {x nij } of {x ni } which converges weakly to some point z C. Without loss of generality, we may assume that x ni z. This implies that ψ(x ni ) ψ(z) due to the weak continuity of ψ. Thus, v ni ψ(z) by (3.). Next, we show z VI(A, ψ, C). Set { Au + N C (u), u C, Ru =, u C. By [35], we know that R is maximal ψ-monotone. Let (u, w) G(R). Since w Bu N C (u) and x n C, we have ψ(u) ψ(x n ), w Au 0. Noting that u n = proj C [ψ(x n ) ζ n Ax n ], we get ψ(u) u n, u n (ψ(x n ) ζ n Ax n ) 0. It follows that Then, ψ(u) u n, u n ψ(x n ) ζ n + Ax n 0. ψ(u) ψ(x ni ), w ψ(u) ψ(x ni ), Av ψ(u) ψ(x ni ), Au ψ(u) u ni, u n i ψ(x ni ) ψ(u) u ni, Ax ni ζ ni = ψ(u) ψ(x ni ), Au Ax ni + ψ(u) ψ(x ni ), Ax ni ψ(u) u ni, u n i ψ(x ni ) ψ(u) u ni, Ax ni ζ ni ψ(u) u ni, u n i ψ(x ni ) ψ(x ni ) u ni, Ax ni. ζ ni (3.4) Since ψ(x ni ) u ni 0 and ψ(x ni ) ψ(z), we deduce that ψ(u) ψ(z), w 0 by taking i in (3.4). Thus, z R 1 0 by the maximal ψ-monotonicity of R. Hence, z VI(A, ψ, C). Next, we need to prove ψ(z) VI(B, C). Set { R Bv + N C (v), v C, v =, v C. By [1], we know that R is maximal monotone. Let (v, w) G(R ). Since w Bv N C (v) and v n C, we have v v n, w Bv 0. Noting that v n = proj C [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )], we get v v n, v n [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )] 0. It follows that v v n, v n u n + Bu n η n (µϑ(x n ) u n + δ n Bu n ) 0. δ n δ n

10 Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), Then, v v ni, w v v ni, Bv v v ni, Bv v v ni, v n i u ni v v ni, Bu ni δ ni + η n i v v ni, µϑ(x ni ) u ni + δ ni Bu ni δ ni = v v ni, Bv Bv ni + v v ni, Bv ni v v ni, v n i u ni δ ni v v ni, Bu ni + η n i v v ni, µϑ(x ni ) u ni + δ ni Bu ni δ ni v v ni, v n i u ni v v ni, Bu ni Bv ni δ ni + η n i δ ni v v ni, µϑ(x ni ) u ni + δ ni Bu ni. (3.5) Since v ni u ni 0 and v ni ψ(z), we deduce that v ψ(z), w 0 by taking i in (3.5). Thus, ψ(z) R 1 0 by the maximal monotonicity of R. Hence, ψ(z) VI(B, C). Therefore, z Λ. From (3.3), we obtain lim n µϑ(û) ψ(û), v n ψ(û) = lim i µϑ(û) ψ(û), ψ(x ni ) ψ(û) = µϑ(û) ψ(û), ψ(z) ψ(û) 0. (3.6) Note that v n ψ(û) = proj C [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )] proj C [ψ(û) (1 η n )δ n Bψ(û)] It follows that Therefore, η n (µϑ(x n ) ψ(û)) + (1 η n )z n, v n ψ(û) η n µ ϑ(x n ) ϑ(û), v n ψ(û) + η n µϑ(û) ψ(û), v n ψ(û) + (1 η n ) u n δ n Bu n (ψ(û) δ n Bψ(û)) v n ψ(û) η n Lµ x n û v n ψ(û) + η n µϑ(û) ψ(û), v n ψ(û) + (1 η n ) u n ψ(û) v n ψ(û) η n (µl/δ) ψ(x n ) ψ(û) v n ψ(û) + η n µϑ(û) ψ(û), v n ψ(û) + (1 η n ) ψ(x n ) ψ(û) v n ψ(û) = [1 (1 Lµ/δ)η n ] ψ(x n ) ψ(û) v n ψ(û) + η n µϑ(û) ψ(û), v n ψ(û) 1 (1 Lµ/δ)η n ψ(x n ) ψ(û) + 1 v n ψ(û) + η n µϑ(û) ψ(û), v n ψ(û). v n ψ(û) [1 (1 Lµ/δ)η n ] ψ(x n ) ψ(û) + η n µϑ(û) ψ(û), v n ψ(û). ψ(x n+1 ) ψ(û) ξ n ψ(x n ) ψ(û) + (1 ξ n ) v n ψ(û) ξ n ψ(x n ) ψ(û) + (1 ξ n )[1 (1 µl/δ)η n ] ψ(x n ) ψ(û) + (1 ξ n )η n µϑ(û) ψ(û), v n ψ(û) = [1 (1 µl/δ)(1 ξ n )η n ] ψ(x n ) ψ(û) (3.7) + (1 ξ n )η n µϑ(û) ψ(û), v n ψ(û) = [1 (1 µl/δ)(1 ξ n )η n ] ψ(x n ) ψ(û)

11 Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), ( ) + (1 µl/δ)(1 ξ n )η n 1 µl/δ µϑ(û) ψ(û), v n ψ(û). We can apply Lemma.6 to (3.7) to conclude that ψ(x n ) ψ(û) and x n û. Case. Assume there exists an integer n 0 such that ψ(x n0 ) ψ(û) ψ(x n0 +1) ψ(û). At this case, we set ω n = { ψ(x n ) ψ(û) }. Then, we have ω n0 ω n0 +1. Define an integer sequence {τ n } for all n n 0 as follows: τ(n) = max{l N n 0 l n, ω l ω l+1 }. It is clear that τ(n) is a non-decreasing sequence satisfying and lim τ(n) = n ω τ(n) ω τ(n)+1, for all n n 0. By the similar argument as that of (3.6) and (3.7), we can prove that lim n µϑ(û) ψ(û), v τ(n) ψ(û) 0 (3.8) and ω τ(n)+1 [1 (1 µl/δ)(1 ξ τ(n))η τ(n) ]ω τ(n) ( ) + (1 µl/δ)(1 ξ τ(n) )η τ(n) 1 µl/δ µϑ(û) ψ(û), v τ(n) ψ(û). Since ω τ(n) ω τ(n)+1, we have from (3.9) that (3.9) ω τ(n) 1 µl/δ µϑ(û) ψ(û), v τ(n) ψ(û). (3.30) Combining (3.8) with (3.30), we have and hence From (3.8) and (3.9), we also obtain lim n ω τ(n) 0, lim ω τ(n) = 0. (3.31) n This together with (3.31) implies that Applying Lemma.7 we get lim n ω τ(n)+1 lim n ω τ(n). lim ω τ(n)+1 = 0. n 0 ω n max{ω τ(n), ω τ(n)+1 }. Therefore, ω n 0. That is, x n û. This completes the proof. Algorithm 3.7. For given initial value x 0 C, define the sequence {x n } by the following form u n = proj C [x n ζ n Ax n ], v n = proj C [η n µϑ(x n ) + (1 η n )(u n δ n Bu n )], x n+1 = ξ n x n + (1 ξ n )v n, n 0, (3.3) where ϑ : C H is an L-Lipschitz continuous mapping, {η n }, {ξ n }, and {δ n } are three real number sequences in [0, 1], {ζ n } is a real number sequence in (0, ), and 0 < µ < 1/L is a constant.

12 Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), Corollary 3.8. Assume the following conditions are satisfied: (C1): lim n η n = 0 and n η n = ; (C): 0 < lim n ξ n lim n ξ n < 1; (C3): 0 < lim n ζ n lim n ζ n < η and 0 < lim n δ n lim n δ n < ξ. Then the sequence {x n } generated by (3.3) converges strongly to û VI(A, C) VI(B, C) which solves the following variational inequality µϑ(û) û, ˆv û 0, ˆv VI(A, C) VI(B, C). References [1] M. Aslam Noor, Some developments in general variational inequalities, Appl. Math. Comput., 15 (004), [] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 0 (004), [3] L.-C. Ceng, Q. H. Ansari, J.-C. Yao, An extragradient method for solving split feasibility and fixed point problems, Comput. Math. Appl., 64 (01), [4] L.-C. Ceng, Q. H. Ansari, J.-C. Yao, Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem, Nonlinear Anal., 75 (01), [5] L.-C. Ceng, M. Teboulle, J.-C. Yao, Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems, J. Optim. Theory Appl., 146 (010), [6] L.-C. Ceng, J.-C. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math., 10 (006), [7] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (006), [8] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), [9] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 1 (005), [10] Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (01), ii [11] Y. Censor, A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16 (009), i [1] F. Cianciaruso, G. Marino, L. Muglia, Y.-H. Yao, On a two-step algorithm for hierarchical fixed point problems and variational inequalities, J. Inequal. Appl., 009 (009), 13 pages. 1 [13] R. Glowinski, Numerical methods for nonlinear variational problems, Springer Series in Computational Physics, Springer-Verlag, New York, (1984). 1 [14] Z.-H. He, W.-S. Du, On hybrid split problem and its nonlinear algorithms, Fixed Point Theory Appl., 013 (013), 0 pages. i [15] Z.-H. He, W.-S. Du, On split common solution problems: new nonlinear feasible algorithms, strong convergence results and their applications, Fixed Point Theory Appl., 014 (014), 16 pages. i [16] A. N. Iusem, An iterative algorithm for the variational inequality problem, Mat. Apl. Comput., 13 (1994), [17] G. M. Korpelevič, An extragradient method for finding saddle points and for other problems, (Russian) Ékonom. i Mat. Metody, 1 (1976), 1 (1976), [18] P. E. Mainge, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 35 (007), [19] X.-L. Qin, S. Y. Cho, Convergence analysis of a monotone projection algorithm in reflexive Banach spaces, Acta Math. Sci. Ser. B Engl. Ed., 37 (017), [0] X.-L. Qin, J.-C. Yao, Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators, J. Inequal. Appl., 016 (016), 9 pages. 1 [1] R.-T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 14 (1976), [] W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (003), [3] H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., (00), [4] H.-K. Xu, A variable Krasnoselskiĭ-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, (006), [5] H.-K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Problems, 6 (010), 17 pages. [6] Y.-H. Yao, R. P. Agarwal, M. Postolache, Y.-C. Liou, Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem, Fixed Point Theory Appl., 183 (014), 14 pages. 1

13 Y.-H. Yao, X.-X. Zheng, L.-M. Leng, S.-M. Kang, J. Nonlinear Sci. Appl., 10 (017), [7] Y.-H. Yao, R.-D. Chen, H.-K. Xu, Schemes for finding minimum-norm solutions of variational inequalities, Nonlinear Anal., 7 (010), [8] Y.-H. Yao, W. Jigang, Y.-C. Liou, Regularized methods for the split feasibility problem, Abstr. Appl. Anal., 01 (01), 13 pages. 1 [9] Y.-H. Yao, Y.-C. Liou, S. M. Kang, Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method, Comput. Math. Appl., 59 (010), [30] Y.-H. Yao, Y.-C. Liou, J.-C. Yao, Split common fixed point problem for two quasi-pseudo-contractive operators and its algorithm construction, Fixed Point Theory Appl., 015 (015), 19 pages. i [31] Y.-H. Yao, M. A. Noor, Y.-C. Liou, Strong convergence of a modified extragradient method to the minimum-norm solution of variational inequalities, Abstr. Appl. Anal., 01 (01), 9 pages. 1 [3] Y.-H. Yao, M. A. Noor, Y.-C. Liou, S. M. Kang, Iterative algorithms for general multivalued variational inequalities, Abstr. Appl. Anal., 01 (01), 10 pages. 1 [33] Y.-H. Yao, M. Postolache, Y.-C. Liou, Strong convergence of a self-adaptive method for the split feasibility problem, Fixed Point Theory Appl., 013 (013), 1 pages. 1 [34] H. Zegeye, N. Shahzad, Y.-H. Yao, Minimum-norm solution of variational inequality and fixed point problem in Banach spaces, Optimization, 64 (015), [35] L. J. Zhang, J. M. Chen, Z. B. Hou, Viscosity approximation methods for nonexpansive mappings and generalized variational inequalities, (Chinese) Acta Math. Sinica (Chin. Ser.), 53 (010), , 3

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Fixed point theorems of φ convex ψ concave mixed monotone operators and applications

Fixed point theorems of φ convex ψ concave mixed monotone operators and applications J. Math. Anal. Appl. 339 (2008) 970 98 www.elsevier.com/locate/jmaa Fixed point theorems of φ convex ψ concave mixed monotone operators and applications Zhang Meiyu a,b a School of Mathematical Sciences,

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 28(28), No. 146, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

ON RANDOM COINCIDENCE POINT AND RANDOM COUPLED FIXED POINT THEOREMS

ON RANDOM COINCIDENCE POINT AND RANDOM COUPLED FIXED POINT THEOREMS Palestine Journal of Mathematics Vol. 4(2) (2015), 348 359 Palestine Polytechnic University-PPU 2015 ON RANDOM COINCIDENCE POINT AND RANDOM COUPLED FIXED POINT THEOREMS Animesh Gupta Erdal Karapınar Communicated

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Limit theorems under sublinear expectations and probabilities

Limit theorems under sublinear expectations and probabilities Limit theorems under sublinear expectations and probabilities Xinpeng LI Shandong University & Université Paris 1 Young Researchers Meeting on BSDEs, Numerics and Finance 4 July, Oxford 1 / 25 Outline

Διαβάστε περισσότερα

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q) Online Appendix I Appendix D Additional Existence Proofs Denote B q = {q : A E A S [0, +r ]}, Bψ = {ψ : Y E A S S}, B W = {W : I E A S R}. I slightly abuse the notation by defining B q (L q ) the subset

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

On Numerical Radius of Some Matrices

On Numerical Radius of Some Matrices International Journal of Mathematical Analysis Vol., 08, no., 9-8 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/ijma.08.75 On Numerical Radius of Some Matrices Shyamasree Ghosh Dastidar Department

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Operation Approaches on α-γ-open Sets in Topological Spaces

Operation Approaches on α-γ-open Sets in Topological Spaces Int. Journal of Math. Analysis, Vol. 7, 2013, no. 10, 491-498 Operation Approaches on α-γ-open Sets in Topological Spaces N. Kalaivani Department of Mathematics VelTech HighTec Dr.Rangarajan Dr.Sakunthala

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα