Παράδειγμα συνόρθωσης οριζόντιου δικτύου
|
|
- Σήθι Αθανασίου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος Παράδειγμα συνόρθωσης οριζόντιου δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
2 Οριζόντιο Δίκτυο 3 5 y x Γνωστός σταθμός αναφοράς Νέο σημείο
3 Παρατηρήσεις Μέτρηση (grad, m) Ακρίβεια (cc, cm) Μέτρηση (grad, m) Ακρίβεια (cc, cm) δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ S δ S δ S δ S
4 Προσεγγιστικές συντεταγμένες i x o (m) y o (m) (*) Τα σημεία 1, 2, 3 είναι γνωστοί σταθμοί αναφοράς και οι προσεγγιστικές τιμές των συντεταγμένων τους ταυτίζονται με τις επίσημες συντεταγμένες τους στο σύστημα αναφοράς στο οποίο θέλουμε να γίνει η συνόρθωση του δικτύου.
5 Προκαταρκτικά βήματα 1. Υπολογισμός προσεγγιστικών τιμών των παρατηρήσεων. - απλούστατος για τις οριζόντιες αποστάσεις.. - για τις οριζόντιες διευθύνσεις χρειάζεται πρώτα να υπολογιστούν οι προσεγγιστικές τιμές των σταθερών προσανατολισμού καθώς και τα προσεγγιστικά αζιμούθια όλων των σκοπευόμενων πλευρών του δικτύου.. 2. Υπολογισμός των ανηγμένων παρατηρήσεων. 3. Υπολογισμός του συνολικού πίνακα σχεδιασμού. 4. Υπολογισμός του πίνακα βάρους των παρατηρήσεων. Τα παραπάνω εκτελέστηκαν σε προηγούμενο παράδειγμα
6 Επόμενα βήματα 1. Δημιουργία των κανονικών εξισώσεων. Περιέχουν δύο ομάδες αγνώστων: (α) τις διορθώσεις δx στις προσεγγιστικές συντεταγμένες όλων των σημείων (β) τις διορθώσεις δθ στις προσεγγιστικές τιμές των σταθερών προσ/μού 2. Απαλοιφή των αγνώστων δθ από το αρχικό σύστημα κανονικών εξισώσεων και δημιουργία των ανηγμένων κανονικών εξισώσεων. 3. Επιλογή δεσμεύσεων για τον ορισμό του ΣΑ του δικτύου. 4. Εφαρμογή κατάλληλου αλγορίθμου λύσης και υπολογισμός όλων των απαραίτητων ποσοτήτων.
7 Δημιουργία κανονικών εξισώσεων Σύστημα εξισώσεων παρατηρήσεων δx b A A v δθ 2 o 1 v ~ (, P ) Σύστημα κανονικών εξισώσεων T T T A PA A PA δxˆ A Pb T T ˆ T A PA A PA δθ A Pb
8 Αρχικός πίνακας κανονικών εξισώσεων (διαστάσεις 1515) Συμμετρ Συμμετρ Συμμετρ
9 Αρχικός πίνακας κανονικών εξισώσεων (διαστάσεις 1515) δx δθ δx N xx N xθ δθ N θx N T xθ N θθ
10 Αρχικός πίνακας κανονικών εξισώσεων (διαστάσεις 1515) x 4 y Το σημείο 4 δεν εμπλέκεται στη σειρά μετρήσεων οριζόντιων διευθύνσεων από το σημείο στάσης 3 (βλέπε πίνακα παρατηρήσεων) θ
11 Αρχικός πίνακας κανονικών εξισώσεων (διαστάσεις 1515) θ Οι παράμετροι θ 2 και θ 3 δεν εμπλέκονται μαζί σε κάποια παρατήρηση του δικτύου θ
12 Αρχικός πίνακας κανονικών εξισώσεων (διαστάσεις 1515) x 3 y Το σημείο 3 δεν εμπλέκεται στη σειρά μετρήσεων οριζόντιων διευθύνσεων από το σημείο στάσης 4 (βλέπε πίνακα παρατηρήσεων) θ
13 Απαλοιφή πρόσθετων παραμέτρων Σύστημα κανονικών εξισώσεων (αρχικό) T T T AN ˆ xx PA AN xθ PA δx AuPb x T T δθˆ T ANPA θx ANPA θθ AuPb θ Σύστημα κανονικών εξισώσεων (ανηγμένο) 1 1 xx xθ θθ θx ˆ x xθ θθ θ N N N N δx u N N u Εκτίμηση πρόσθετων παραμέτρων 1 θθ θ θx δθˆ N ( u N δxˆ )
14 Ανηγμένος πίνακας κανονικών εξισώσεων (διαστάσεις 11) xx xθ θθ θx N N N N N Συμμετρ
15 Αρχικό διάνυσμα κανονικών εξισώσεων (151) T x Au Pb T Au θpb Ανηγμένο διάνυσμα κανονικών εξισώσεων (11) 1 x xθ θθ θ u u N N u
16 Υπολογισμός και σύγκριση λύσεων συνόρθωσης με (α) ελάχιστες δεσμεύσεις και (β) απόλυτες πλεονάζουσες δεσμεύσεις
17 Λύση 1 Ελάχιστες δεσμεύσεις xˆ 1 yˆ 1 xˆ σημείο σταθερό Λύση 2 Πλεονάζουσες απόλυτες δεσμεύσεις xˆ 1 yˆ 1 xˆ 2 yˆ 2 xˆ 3 yˆ 3 3 σημεία σταθερά
18 Λύση 1 Ελάχιστες δεσμεύσεις Η = 1 1 c = 1 Λύση 2 Πλεονάζουσες απόλυτες δεσμεύσεις 1 1 Η = c =
19 Υπολογισμός λύσεων Αφού μελετήσετε τις σχετικές διαφάνειες προηγούμενων παρουσιάσεων, εντοπίστε και αναγνωρίστε τους αλγορίθμους με τους οποίους μπορούν να υπολογιστούν οι λύσεις 1 και 2.
20 Διορθώσεις προσεγγιστικών συντεταγμένων ΛΥΣΗ 1 δx 1. δy 1. δx 2. δy δx δy δx 4-2. δy δx δy (*) τιμές σε cm ΛΥΣΗ 2 δx 1. δy 1. δx 2. δy 2. δx 3. δy 3. δx δy δx δy
21 Συνορθωμένες συντεταγμένες ΛΥΣΗ 1 ΛΥΣΗ 2 x y x y x y x y x y x y x y x y x y x y (*) τιμές σε m
22 Συνορθωμένες συντεταγμένες ΛΥΣΗ 1 ΛΥΣΗ 2 x y x y x y x y x y x y x y x y x y x y (*) τιμές σε m παραμόρφωση > 1 cm κατά y
23 Συνορθωμένα σφάλματα παρατηρήσεων v (cc, cm) v (cc, cm) Λύση 1 Λύση 2 Λύση 1 Λύση 2 δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ S δ S δ S δ S !
24 Συνορθωμένα σφάλματα παρατηρήσεων (λύση 1) v (cc, cm) Ακρίβεια (cc, cm) v (cc, cm) Ακρίβεια (cc, cm) δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ S δ S δ S δ S !
25 Συνορθωμένα σφάλματα παρατηρήσεων (λύση 1) v (cc, cm) Ακρίβεια (cc, cm) v (cc, cm) Ακρίβεια (cc, cm) δ δ δ δ δ δ δ δ o σˆ.78 δ δ δ δ δ δ δ S δ S δ S δ S !
26 Συνορθωμένα σφάλματα παρατηρήσεων (λύση 2) v (cc, cm) Ακρίβεια (cc, cm) v (cc, cm) Ακρίβεια (cc, cm) δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ S δ S δ S δ S
27 Συνορθωμένα σφάλματα παρατηρήσεων (λύση 2) v (cc, cm) Ακρίβεια (cc, cm) v (cc, cm) Ακρίβεια (cc, cm) δ δ δ δ δ δ δ δ o σˆ 1.4 δ δ δ δ δ δ δ S δ S δ S δ S
28 Σχόλια o o o Η λύση 2 παρουσιάζει λίγο μεγαλύτερα συνορθωμένα σφάλματα σε σχέση με την λύση 1 (ιδιαίτερα για τις παρατηρήσεις αποστάσεων). Το γεγονός αυτό αντανακλά τη (μικρή) γεωμετρική παραμόρφωση που υφίσταται το δίκτυο εξαιτίας της επίδρασης των απόλυτων πλεοναζουσών δεσμεύσεων. Η παραμόρφωση αυτή δεν είναι κατ ανάγκη κακή, προβληματική ή σημαντική αυτό εξαρτάται από την ποιότητα των παρατηρήσεων του δικτύου και των σταθερών συντεταγμένων των σταθμών αναφοράς. o μπορεί να είναι αμελητέα και μέσα στα όρια της στατιστικής αβεβαιότητας που έχουν οι μετρήσεις πεδίου. o μπορεί να αντιστοιχεί σε μια ουσιαστική βελτίωση της λύσης δικτύου.
29 Σχόλια (συνεχ.) o o Τα συνορθωμένα σφάλματα της λύσης 1 είναι γενικά μικρότερα από τις αρχικές τυπικές αποκλίσεις των μετρήσεων (ιδιαίτερα για τις παρατηρήσεις αποστάσεων). Το γεγονός αυτό υποδεικνύει πιθανή αστοχία στην επιλογή του στοχαστικού μοντέλου για το δίκτυο. (υποτιμημένες αρχικές ακρίβειες για τις αποστάσεις) 2 o ˆ.78 < 1 o Σε τέτοιες περιπτώσεις συνήθως διορθώνουμε το αρχικό στοχαστικό μοντέλο των μετρήσεων (πίνακα βάρους P) και μετά προχωρούμε στην τελική συνόρθωση του δικτύου.
30 Να θυμάστε ότι o o Τα συνορθωμένα σφάλματα μιας λύσης πλεοναζουσών απόλυτων δεσμεύσεων (ΠΑΔ) είναι συνήθως μεγαλύτερα από τα συνορθωμένα σφάλματα μιας λύσης ελαχίστων δεσμεύσεων (ΕΔ) για το ίδιο δίκτυο και με τις ίδιες παρατηρήσεις. Το γεγονός αυτό οφείλεται στους εξής παράγοντες: το διάνυσμα ˆv στη λύση ΕΔ αντανακλά μόνο τα σφάλματα των παρατηρήσεων πεδίου. το διάνυσμα ˆv στη λύση ΠΑΔ αντανακλά τα σφάλματα των παρατηρήσεων πεδίου και την επιπλέον παραμόρφωση που υφίσταται το συνορθωμένο δίκτυο προκειμένου να αναπαράξει τις πλεονάζουσες δεσμεύσεις.
31 Αποτελέσματα συνόρθωσης δικτύου Λύση 1 Λύση 2 Βαθμοί ελευθερίας 1 13 T vˆ P vˆ A-posteriori εκτίμηση της μεταβλητότητας αναφοράς Ελάχιστες δεσμεύσεις Πλεονάζουσες απόλυτες δεσμεύσεις
32 Υπολογισμός και σύγκριση λύσεων συνόρθωσης με (α) απόλυτες πλεονάζουσες δεσμεύσεις και (β) χαλαρές πλεονάζουσες δεσμεύσεις
33 Λύση 2 Πλεονάζουσες απόλυτες δεσμεύσεις xˆ 1 yˆ 1 xˆ 2 yˆ 2 xˆ 3 yˆ 3 3 σημεία σταθερά Λύση 3 Πλεονάζουσες δεσμεύσεις με βάρη x o x x v x y o y y v y 1 1 x o x x v x y o y y v y 2 2 x o x x v x y o y y v y σημεία ως ψευδο-παρατηρήσεις
34 Λύσεις 2 & 3 Πλεονάζουσες δεσμεύσεις 1 1 Η = c = Λύση 2 (απόλυτες δεσμεύσεις) Λύση 3 (χαλαρές δεσμεύσεις) W W 1 2 I 1 cm
35 Υπολογισμός λύσεων Αφού μελετήσετε τις σχετικές διαφάνειες προηγούμενων παρουσιάσεων, εντοπίστε και αναγνωρίστε τους αλγορίθμους με τους οποίους μπορούν να υπολογιστούν οι λύσεις 2 και 3.
36 Διορθώσεις προσεγγιστικών συντεταγμένων ΛΥΣΗ 2 δx 1. δy 1. δx 2. δy 2. δx 3. δy 3. δx δy δx δy (*) τιμές σε cm ΛΥΣΗ 3 δx 1.56 δy δx 2.27 δy δx δy δx δy 4.26 δx δy
37 Διορθώσεις προσεγγιστικών συντεταγμένων ΛΥΣΗ 3 δx 1.56 δy δx 2.27 δy δx δy δx δy 4.26 δx δy περαιτέρω χαλάρωμα των δεσμεύσεων δx 1.56 δx 1.57 δx δy δy δy δx 2.28 δx 2.28 δx 2.45 δy δy δy 2.41 δx δx δx δy δy δy 3.64 δx δx δx δy 4.27 δy 4.26 δy δx δx δx δy δy δy W 1 2 I 1 cm W 1 2 I 5 cm W 1 2 I 1 cm W 1 2 I 1 cm
38 Διορθώσεις προσεγγιστικών συντεταγμένων ΛΥΣΗ 2 δx 1. δy 1. δx 2. δy 2. δx 3. δy 3. δx δy δx δy αύξηση βάρους δεσμεύσεων δx 1.1 δx 1.38 δy δy δx 2.1 δx 2.17 δy δy δx δx δy 3.4 δy 3.98 δx δx δy δy 4.14 δx δx δy δy ΛΥΣΗ 3 δx 1.56 δy δx 2.27 δy δx δy δx δy 4.26 δx δy W W 1 2 I.1 cm W 1 2 I 1 cm W 1 2 I 1 cm
39 Συνορθωμένες συντεταγμένες ΛΥΣΗ 2 ΛΥΣΗ 3 x y x y x y x y x y x y x y x y x y x y (*) τιμές σε m
40 Συνορθωμένα σφάλματα παρατηρήσεων v (cc, cm) v (cc, cm) Λύση 2 Λύση 3 Λύση 2 Λύση 3 δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ S δ S δ S δ S !
41 Συνορθωμένα σφάλματα παρατηρήσεων v (cc, cm) v (cc, cm) Λύση 1 Λύση 3 Λύση 1 Λύση 3 δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ S δ S δ S δ S !
42 Συνορθωμένα σφάλματα παρατηρήσεων (λύση 3) v (cc, cm) Ακρίβεια (cc, cm) v (cc, cm) Ακρίβεια (cc, cm) δ δ δ δ δ δ δ δ o σˆ.6 δ δ δ δ δ δ δ S δ S δ S δ S
43 Σχόλια o Η λύση 3 (πλεονάζουσες δεσμεύσεις με βάρη) δίνει σχεδόν παρόμοια συνορθωμένα σφάλματα με την λύση 1 (ελάχιστες δεσμεύσεις). o Το παραπάνω γεγονός δεν είναι απαραίτητο να συμβαίνει πάντα σε επιλύσεις δικτύων η λύση με πλεονάζουσες δεσμεύσεις εξαρτάται άμεσα από την επιλογή του πίνακα βάρους W. o Το πλεονέκτημα των πλεοναζουσών χαλαρών δεσμεύσεων είναι ότι μπορούν να λάβουν εξαρχής υπόψη την ακρίβεια των σταθμών αναφοράς και να μειώσουν τη γεωμετρική παραμόρφωση του δικτύου.
44 Αποτελέσματα συνόρθωσης δικτύου Λύση 1 Λύση 2 Λύση 3 Βαθμοί ελευθερίας T vˆ P vˆ A-posteriori εκτίμηση της μεταβλητότητας αναφοράς Ελάχιστες δεσμεύσεις Πλεονάζουσες απόλυτες δεσμεύσεις Πλεονάζουσες χαλαρές δεσμεύσεις
45 ΛΥΣΗ 1 ΛΥΣΗ 2 ΛΥΣΗ 3 X Y X Y X Y X Y X Y
46 ΛΥΣΗ 1 ΛΥΣΗ 2 ΛΥΣΗ 3 X Y X Y X Y Y συστήματος αναφοράς στο συγκεκριμένο δίκτυο! X αναφέρονται οι γνωστές συντεταγμένες Και οι τρεις λύσεις αποτελούν εναλλακτικές υλοποιήσεις του ίδιου Το κοινό σύστημα αναφοράς των τριών λύσεων είναι αυτό ως προς το οποίο των 3 σταθμών αναφοράς του δικτύου X Y
47 Παράδειγμα συνόρθωσης οριζόντιου δικτύου (με εσωτερικές δεσμεύσεις)
48 Οριζόντιο Δίκτυο 3 5 y x Γνωστός σταθμός αναφοράς Νέος σταθμός
49 Παρατηρήσεις Μέτρηση (grad, m) Ακρίβεια (cc, cm) Μέτρηση (grad, m) Ακρίβεια (cc, cm) δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ S δ S δ S δ S
50 Προσεγγιστικές συντεταγμένες i x o (m) y o (m)
51 x y x y x y x y x y δx Διαχωρισμένη μορφή του διανύσματος διορθώσεων των προσεγγιστικών συντ/νων 1 δx 2 δx Αναφέρεται στους σταθμούς αναφοράς του δικτύου Αναφέρεται στους νέους σταθμούς του δικτύου
52 Λύση 1 Ελάχιστες δεσμεύσεις ˆ x1 y1 ˆ x ˆ σημείο σταθερό Λύση 2 Μερικές εσωτερικές δεσμεύσεις (χρήση μόνο των 3 σταθμών αναφοράς) E1δx ˆ 1 Λύση 3 Ολικές εσωτερικές δεσμεύσεις (χρήση όλων των σημείων του δικτύου) Eδxˆ
53 Γενικός αλγόριθμος για ελάχιστες δεσμεύσεις T 1 T ˆ ( ) ( ) δx N H H u H c ˆ o x x δx Θα ισχύει: ˆ ˆ Hδx c ˆ Nδx u Στη συνέχεια παραθέτουμε τη μορφή του πίνακα Η και του διανύσματος c για κάθε ένα από τα τρία επιλεγμένα σενάρια συνόρθωσης δικτύου.
54 Λύση 1 Ελάχιστες δεσμεύσεις (με 3 σταθερές συντ/νες) Η = 1 1 c = 1 Λύση 2 Μερικές εσωτερικές δεσμεύσεις Η = c = y 1 -x 1 y 2 -x 2 y 3 -x 3 Λύση 3 Ολικές εσωτερικές δεσμεύσεις Η = c = y 1 -x 1 y 2 -x 2 y 3 -x 3 y 4 -x 4 y 5 -x 5
55 Λύση 2 H E 1 Η = y 1 -x 1 y 2 -x 2 y 3 -x 3 Πίνακας μερικών εσωτερικών δεσμεύσεων Λύση 3 H E E E 1 2 Η = y 1 -x 1 y 2 -x 2 y 3 -x 3 y 4 -x 4 y 5 -x 5 Πίνακας ολικών εσωτερικών δεσμεύσεων
56 Διορθώσεις προσεγγιστικών συντεταγμένων (τιμές σε cm) ΛΥΣΗ 1 δx 1. δy 1. δx 2. δy δx δy δx 4-2. δy δx δy ΛΥΣΗ 2 δx 1.6 δy δx 2.3 δy δx δy δx 4-2. δy 4.3 δx δy ΛΥΣΗ 3 δx 1.8 δy δx 2.8 δy δx 3.1 δy δx δy 4 -. δx δy T ˆ ˆ 2.1 δx δx T ˆ ˆ δx δx T ˆ ˆ 9.68 δx δx
57 Διορθώσεις προσεγγιστικών συντεταγμένων (τιμές σε cm) ΛΥΣΗ 1 δx 1. δy 1. δx 2. δy δx δy δx 4-2. δy δx δy ΛΥΣΗ 2 δx 1.6 Οι ολικές εσωτερικές δy δεσμεύσεις (λύση 3) δίνουν δx 2 την.3 καλύτερη προσαρμογή στις δy 2 προσεγγιστικές -.5 συντεταγμένες δxόλων των σημείων του δy δικτύου δx 4-2. δy 4.3 δx δy ΛΥΣΗ 3 δx 1.8 δy δx 2.8 δy δx 3.1 δy δx δy 4 -. δx δy T ˆ ˆ 2.1 δx δx T ˆ ˆ δx δx T ˆ ˆ 9.68 δx δx
58 Διορθώσεις προσεγγιστικών συντεταγμένων (τιμές σε cm) ΛΥΣΗ 1 δx 1. δy 1. δx 2. δy δx δy ΛΥΣΗ 2 δx 1.6 δy δx 2.3 δy δx δy ΛΥΣΗ 3 δx 1.8 δy δx 2.8 δy δx 3.1 δy T 1 1 δxˆ δxˆ 6.51 T 1 1 δxˆ δxˆ 3.84 T 1 1 δxˆ δxˆ 6.11 Οι μερικές εσωτερικές δεσμεύσεις (λύση 2) δίνουν την καλύτερη προσαρμογή στις προσεγγιστικές συντεταγμένες των τριών γνωστών σταθμών αναφοράς του δικτύου.
59 Σχόλια o Και οι τρεις λύσεις είναι λύσεις ελαχίστων δεσμεύσεων και συνεπώς δεν παραμορφώνουν το δίκτυο (οδηγούν στην ίδια συνορθωμένη γεωμετρική μορφή του). o Το πλεονέκτημα των μερικών εσωτερικών δεσμεύσεων είναι ότι τοποθετούν το δίκτυο σε μια τέτοια θέση και προσανατολισμό ώστε να προσαρμόζεται βέλτιστα στις γνωστές συντ/νες ΟΛΩΝ των σταθμών αναφοράς. o Το παραπάνω γεγονός εξασφαλίζει την πιο αξιόπιστη ένταξη του δικτύου στο ΣΑ στο οποίο αναφέρονται οι γνωστές συντεταγμένες των 3 σταθμών αναφοράς.
Παράδειγμα συνόρθωσης οριζόντιου δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 216-217 Παράδειγμα συνόρθωσης οριζόντιου δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο
Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 06-07 Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική
Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και
Ανάλυση ακρίβειας συντεταγμένων από διαφορετικά σενάρια συνόρθωσης δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 08-09 Ανάλυση ακρίβειας συντεταγμένων από διαφορετικά σενάρια συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών
Παραδείγματα ανάλυσης αξιοπιστίας δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Παραδείγματα ανάλυσης αξιοπιστίας δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο
Παράδειγμα συνόρθωσης υψομετρικού δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Παράδειγμα συνόρθωσης υψομετρικού δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίνεται
Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 8: Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 016-017 Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 6: Σχηματισμός κανονικών εξισώσεων και το πρόβλημα ορισμού του ΣΑ Χριστόφορος Κωτσάκης Άδειες
Ανάλυση αξιοπιστίας δικτύων (μέρος Ι)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανάλυση αξιοπιστίας δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η έννοια
Αλγόριθμοι συνόρθωσης δικτύων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Μου
Αλγόριθμοι συνόρθωσης δικτύων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Μου τη
Σύντομη σύγκριση μεθόδων ένταξης δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Σύντομη σύγκριση μεθόδων ένταξης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Bασικές
Η έννοια και χρήση των εσωτερικών δεσμεύσεων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για την συνόρθωση ενός τοπογραφικού
Η έννοια και χρήση των εσωτερικών δεσμεύσεων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 10 Σε ένα κατακόρυφο δίκτυο έχουν μετρηθεί, μέσω διπλής γεωμετρικής χωροστάθμησης, οι υψομετρικές διαφορές μεταξύ όλων των σημείων
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για τη συνόρθωση ενός τοπογραφικού
Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 18-19 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα
Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 16-17 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 7: Γενική λύση συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Μερικά διδακτικά παραδείγματα
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 207-208 Μερικά διδακτικά παραδείγματα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Σημείωση Τα παρακάτω
Μερικά διδακτικά παραδείγματα
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 206-207 Μερικά διδακτικά παραδείγματα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα Παράδειγμα
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων
Σύντομος οδηγός του προγράμματος DEROS
Τοπογραφικά Δίκτυα και Υπολογισμοί Σύντομος οδηγός του προγράμματος DEROS Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική Σχολή ΑΠΘ SUPPLEMENTARY COURSE NOTES Για περισσότερες λεπτομέρειες
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΥ ΔΙΚΤΥΟΥ)
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΥ ΔΙΚΤΥΟΥ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 9: Η έννοια και η χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν
ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΛΥΣΕΙΣ ΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση (α) Οι συνορθωμένες συντεταγμένες του σημείου P είναι: ˆ 358.47 m, ˆ 4.46 m (β) Η a-psteriri εκτίμηση της μεταβλητότητας
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ 1) Ποιός είναι ο βασικός ρόλος και η χρησιμότητα των δικτύων στη Γεωδαισία και την Τοπογραφία; 2) Αναφέρετε ορισμένες
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 11: Ανάλυση αξιοπιστίας δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr
Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Ένα
Γενική λύση συνόρθωσης δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Γενική λύση συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Πως ξεπερνάμε το
Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Ένα
Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 017-018 Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο Ακαδημαϊκό Έτος 017-018 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή
Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 2: Ανασκόπηση θεωρίας εκτίμησης παραμέτρων και συνόρθωσης παρατηρήσεων Χριστόφορος Κωτσάκης Άδειες
Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Έστω
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το
Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο Ακαδημαϊκό Έτος 018-019 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 1 Για τον υπολογισμό των συντεταγμένων ενός σημείου P μετρήθηκαν οι οριζόντιες αποστάσεις προς τρία γνωστά σημεία (βλέπε σχήμα).
Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική
Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής (Least squares collocation) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος
Ανάλυση πινάκων συμ-μεταβλητοτήτων σε παραμετρικές συνιστώσες
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2017-2018 Ανάλυση πινάκων συμ-μεταβλητοτήτων σε παραμετρικές συνιστώσες Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών
Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Έστω ότι έχουμε διαθέσιμες
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και
Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο
Οδηγός λύσης θέματος 3
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Οδηγός λύσης θέματος 3 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ ανά 5 λεπτά ανά 1 λεπτό
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr
Οδηγός λύσης θέματος 2
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Οδηγός λύσης θέματος 2 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Τι προσπαθούμε να κάνουμε
Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύου Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύου Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο Μεταλλικού Τ1-Τ10
Οδηγός λύσης για το θέμα 2
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 218-219 Οδηγός λύσης για το θέμα 2 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Τι προσπαθούμε
Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο
Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση η : Αρχές εκτίμησης παραμέτρων Μέρος ο Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας
Εντάξεις δικτύων GPS. 6.1 Εισαγωγή
6 Εντάξεις δικτύων GPS 6.1 Εισαγωγή Oι απόλυτες (X, Y, Z ή σχετικές (ΔX, ΔY, ΔZ θέσεις των σηµείων, έτσι όπως προσδιορίζονται από τις µετρήσεις GPS, αναφέρονται στο γεωκεντρικό σύστηµα WGS 84 (Wrld Gedetic
Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών
Εισαγωγικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΠΙΛΥΣΗ ΟΔΕΥΣΗΣ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΠΙΛΥΣΗ ΟΔΕΥΣΗΣ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις, Ασκήσεις, Σημειώσεις,
Οδηγός λύσης θέματος 1
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Οδηγός λύσης θέματος 1 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Αρχείο δεδομένων (DataSet1.txt)
Οδηγός λύσης θέματος 4
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 217-218 Οδηγός λύσης θέματος 4 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Τι προσπαθούμε να
Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος Χριστόφορος Κωτσάκης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;
Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών
Ενημερωτικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΓΩΝΙΟΜΕΤΡΗΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΓΩΝΙΟΜΕΤΡΗΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΥΨΟΜΕΤΡΙΚΩΝ ΔΙΚΤΥΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΥΨΟΜΕΤΡΙΚΩΝ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 5: Προ επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν
ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ
ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ Για το μάθημα των Ασκήσεων Υπαίθρου (και όχι μόνο..) Χ. Κωτσάκης ΤΑΤΜ ΑΠΘ Ιούλιος 2016 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Βασικές σχέσεις.3 Γραμμική vs. μη-γραμμική προσέγγιση του
Χρήση εναλλακτικών τεχνικών συνόρθωσης δικτύων μέσω στοχαστικών δεσμεύσεων και εκτίμησης συνιστωσών μεταβλητότητας αναφοράς
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Μεταπτυχιακό Πρόγραμμα Σπουδών στη Γεωπληροφορική Κατεύθυνση: Τοπογραφικές Εφαρμογές Υψηλής Ακρίβειας Χρήση
ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ
ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ Για το μάθημα των Ασκήσεων Υπαίθρου (και όχι μόνο..) Χ. Κωτσάκης ΤΑΤΜ ΑΠΘ Ιούλιος 2017 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Βασικές σχέσεις.3 Γραμμική vs. μη-γραμμική προσέγγιση του
Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα (Ridge regression) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών
Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;
Αναλυτική Φωτογραμμετρία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 6: Βασικά Φωτογραμμετρικά προβλήματα II Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Αυτοματοποιημένη χαρτογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 4: Ψηφιακός χάρτης - Διαχείριση 2o μέρος Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Αναλυτική Φωτογραμμετρία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 5: Βασικά Φωτογραμμετρικά προβλήματα I Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις, Ασκήσεις,
Θέματα Εξετάσεων Σεπτεμβρίου 2012:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΤΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ (μονάδες ) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (?,?),
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr
Σύντομος οδηγός του μαθήματος
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Σύντομος οδηγός του μαθήματος Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Γενικές πληροφορίες
ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ ΕΙΔΙΚΕΣ ΟΔΗΓΙΕΣ. προς τους φοιτητές/τριες που θα πάρουν μέρος στις ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 2016
Θεσσαλονίκη, 13 Ιουνίου 2016 ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 8 Ο ΕΞΑΜΗΝΟ ΤΑΤΜ/ΑΠΘ ΕΙΔΙΚΕΣ ΟΔΗΓΙΕΣ προς τους φοιτητές/τριες που θα πάρουν μέρος στις ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 2016 Αντικείμενο του μαθήματος Το αντικείμενο των
Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2017-2018 Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών
ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ
SMANET1 Πρόγραµµα Συνόρθωσης και Ελέγχου Γεωµετρικών Συνθηκών σε 3 Τοπογραφικά ίκτυα ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Χριστόφορος Κωτσάκης Επίκουρος Καθηγητής ΤΑΤΜ/ΑΠΘ Τοµέας Γεωδαισίας και Τοπογραφίας Τµήµα
Ανάλυση χωροσταθμικών υψομέτρων στο κρατικό τριγωνομετρικό δίκτυο της Ελλάδας
3 ο Πανελλήνιο Συνέδριο ΑΤΜ Ανάλυση χωροσταθμικών υψομέτρων στο κρατικό τριγωνομετρικό δίκτυο της Ελλάδας Χ. Κωτσάκης, Μ. Ζουλίδα, Δ. Τερζόπουλος, Κ. Κατσάμπαλος Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική
Σύντομος οδηγός του μαθήματος
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Σύντομος οδηγός του μαθήματος Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Γενικές πληροφορίες
Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Υψομετρικές τεχνικές
ΤΕΥΧΟΣ ΧΩΡΟΣΤΑΘΜΙΚΟΥ ΔΙΚΤΥΟΥ
Ιωάννη Χαλκίδη 63 - ΤΚ 56123 Αµπελόκηποι - Θεσσαλονίκη- - 2310-725900 2310-725900 email: spido_gr@hol.gr ΤΕΥΧΟΣ ΧΩΡΟΣΤΑΘΜΙΚΟΥ ΔΙΚΤΥΟΥ των Πολεοδομικων Ενοτητων ΠΕ 06 & ΠΕ 07 της Δημοτικης Κοινοτητας Αμπελοκηπων
Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών
Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Υψομετρικές τεχνικές στο δίκτυο του
Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Εφαρμογές Παγκοσμίου
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο ΠΑΛΙΟ http://eclass.survey.teiath.gr NEO
Αυτοματοποιημένη χαρτογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 9: Σύγκριση ντετερμινιστικών / στοχαστικών μοντέλων Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 11 Πάτρα 2008 Προσαρμοστικός LQ έλεγχος για μη ελαχίστης