56. ročník Fyzikálnej olympiády v školskom roku 2014/2015 Kategória F domáce kolo Texty úloh
|
|
- Ἥλιος Λειβαδάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 56. rčník Fyzikálnej lymiády v šklskm rku 04/05 Kategória F dmáce kl Texty úlh. lak a) tanice: Kšice, Kysak, PradTatry, itvský Mikuláš, Žilina, Trenčín, Trnava, Bratislava b) KE KY PT M ŽA TRE TRN BA Príchd 9:3 0:6 :08 :08 3:5 3:56 4:3 Odchd 9:9 9:33 0:9 :0 : 3:7 3:58 zdialensť /km b Úseky KE KY PT M ŽA TRE TRN KY PT M ŽA TRE TRN BA Rýchlsť / km/h 80,0 96, 89, 85,9 74, 0,0 0,4 b c) v 85, km/h, v 6,3 km/h. d) t = 5 hd 7 min, t = 5 hd 04 min, t = 3 min. e) t 3 = 4 hd 04 min, t = 5 hd 04 min, t = hd. f) Za čas t z rejde vlak vzdialensť s z = v z t z. Pôvdnu riemernu rýchlsťu v Z by vlak rešiel tút vzdialensť za čas t z0 = s z /v Z. Oneskrenie vzniknuté smalením t z = t z t z0 = t z ( v z /v z0 ) = 8,0 min.. áha a) Obr. RF- x Os y Phár Závažie Obr. RF b) Rvnváhu na váhe nastavíme tak, že ramen váh bude vdrvne a ručička váhy bude vtedy nasmervaná na nulu v strede stunice. Ďalej redkladáme, že jedn ramen váh má vzdialensť d si táčania x, druhé y.
2 Teles s neznámu hmtnsťu m vyvážime najskôr na jednej strane váhy a tm na druhej. Pre rvnváhu na váhe latí m g x m g y, m g x m g y. 4 b Riešením tejt sústavy dstaneme mer m m, m m dtiaľ skutčnú hmtnsť telieska m mm = 559 g. 4 b 3. da z ľadvca a) Hmtnsť ľadvéh blku m = a b c, re dané hdnty m,4 miliónv tn. b) Objem ľadvca je = a b c. Objem nrenej časti = O. Pdľa Archimedvh zákna je vztlakvá sila F vu = M g, a tá je rvná tiažvej sile ľadvca F = m g. Máme tak rvnicu g = M ( O ) g, z ktrej určíme bjem časti ľadvca vyčnievajúcej nad hladinu M O. Pre dané hdnty veličín O 40 tisíc m 3. M c) da bude mať rvnakú hmtnsť ak ľadvec, ale má väčšiu husttu. Keďže lárne ľadvce vznikli kndenzáciu atmsférických zrážk, vzniká ich rztením sladká vda. Ak značíme bjem vdy, ktrá vznikne rztením ľadvca, máme = a dtiaľ. Pre dané hdnty veličín,4 miliónv m 3. d) Celkvá energia dadajúceh žiarenia za jednu sekundu E = E = E a b. Pre dané hdnty E 34 MJ/s = 34 MW. e) Tel Q trebné na rztenie ľadu na vdu s bjemm v, tzn. ľadu s hmtnsťu m = v je Q = m v l. Za jednu sekundu sa využije energia slnečnéh žiarenia Q = k E, kde k = 30 %. Objem získanej vdy mv Q k E v. Pre dané hdnty veličín v 30,5 litra vdy za sekundu. l l
3 4. Prúdenie vzduchu (vetranie, rievan) a) etranie je remiešavanie vzduchu v miestnsti s vzduchm vnku. Na vetranie vlýva niekľk faktrv, najmä telta vzduchu v miestnsti a vnku a chemické zlženie (bsah vdy vlhksť, bsah rôznych lynv a d.). Pri vetraní sa ulatňuje rúdenie vzduchu a difúzia (remiešavanie ríklad šírenie vône d zdrja d klitéh riestru). Na rúdenie má vlyv hlavne rzdielna hustta vzduchu závislá d telty. zduch s vyššu teltu má ri danm tlaku menšiu husttu ak vzduch chladný. Pdľa Archimédvh zákna vzduch s vyššu husttu vytláča vzduch s nižšu husttu (a tým vyššu teltu) nahr. Pret sa chlad v miestnsti drží ri zemi a telý vzduch je ri stre. Pri tvrení kna sa chladnejší vzduch z vnka tlačí ri sdnm kraji dvnútra a telý vzduch uniká ri hrnm kraji vn. Ak je v miestnsti chladnejšie ak vnku je rúdenie ačné. O smere rúdenia sa môžeme resvedčiť mcu vychyľvania lameňa hriacej sviečky. Ak by bl rzlženie hustty vzduchu na vnútrnej a vnkajšej strane kna rvnaké (č je veľmi zriedkavé), ôsbí ri tvrení kna difúzia, ri ktrej sa vyrvnáva medzi miestnsťu a klím vlhksť, bsah CO a iných lynv (naríklad vetraním sa dstráni záach v miestnsti aleb ačne záach z klia sa dstane d miestnsti a d.) Pzn.: Mžn akcetvať aj iné fyzikálne rzumné vysvetlenie. b) Prievan v uvedených dmienkach je rúdenie vzduchu v dôsledku tlakvéh rzdielu medzi výchdnu a záadnu časťu dmu (s rzdielnu teltu a tým aj husttu vzduchu sú sjené neatrné tlakvé dchýlky d riemernéh atmsférickéh tlaku) ríade, že telty vzduchu v týcht častiach sú rzdielne). Rán sa začne slnečným žiarením zhrievať výchdná strana dmu a d nej vzduch. Zvýšenie telty vzduchu sôsbí kles jeh hustty a tým rúdenie smerm nahr zdĺž steny. Ak sú tvrené kná narieč dmm, dchádza k renikaniu chladnéh vzduchu s vyššu husttu z záadnej strany d vnútra a k vysávaniu vzduchu na výchdnej strane, kde je hustta vzduchu menšia. Odludnia sa mery zmenia, lnk zhrieva záadnú stranu a výchdná chladne. mer rúdenia vzduchu narieč dmm sa zmení. Ak je telta z bidvch strán (na ludnie aleb v nci), je rúdenie minimálne. Tiet úvahy si mžn veriť nar. mcu záclny aleb ribuchnutia dverí ri rievane. Pri týcht úvahách sa redkladá bezvetrie. ietr môže smer rievanu výzanamne vlyvniť. Pzn.: Mžn akcetvať aj iné fyzikálne rzumné vysvetlenie. 4b c) Údaj telmeru (rtuťvéh aleb elektrnickéh) ri meraní telty vzduchu je závislý d th, či cez čidl telmera vzduch rúdi aleb je v kji, či sa krýva zrážkami (vda, sneh), či je na slnečnej strane aleb v tieni. Telmery metestaníc sú ulžené v šeciálnych búdkach, ktré chraňujú telmer red riamym slnečným žiarením, red silným rúdením vzduchu a zrážkami. Ich údaj sa važuje za teltu vzduchu, ak sa uvádzajú v záznamch. Pcitvá telta je subjektívny údaj, ak ju ciťuje a hdntí člvek. Nedá sa bjektívne určiť. Pcitvú teltu vlyvňuje najmä vlhksť vzduchu a rúdenie (vietr). Na reguláciu telty rganizmu siln vlýva darvanie tu z vrchu tela, ri ktrm sa 3
4 z tela dvádza výarné tel. Odarvanie sa znižuje ri vyskej vlhksti vzduchu, ret v vlhkm vzduchu (trické dnebie, skleník s vysku vlhksťu vzduchu a d.) je citvá telta vyššia ak ri rvnakej telte suchéh vzduchu. Odarvanie tu z vrchu tela sa zvyšuje ri fukvaní tela. Pcitvá telta ri vetre je nižšia ak ri bezvetrí. Prti vlyvu vetra chránime vrch tela blečením, ret je citvá telta blečenéh člveka vyššia ak člveka vyzlečenéh. Pcitvá telta mkréh člveka je nižšia ak člveka suchéh. Teelná vdivsť vdy je väčšia ak nehybnéh vzduchu, ret citvá telta v vde s teltu 0 C je nižšia ak v vzduchu s rvnaku teltu atď. 5. Kcka ľadu Riešenie: a) Objem nrenej časti určíme z Archimedvh zákna 0 =. ytlačenie vdy s bjemm vedie na zvýšenie hladiny h = /. ýška hladiny je tm 0 h Δh. Pre dané hdnty veličín h 0,8 cm. b) Pri rztení zalní vda z ľadu bjem. lyvm rztenia ľadu sa výška hladiny nezmení a je teda h = h. b c) Guľôčka má bjem g = m / a ľad bjem = 0 g. Hmtnsť kcky s guľôčku m = m + ( 0 m / ). Hmtnsť vdy vytlačenej nrenu časťu kcky m =. Pdmienka lávania kcky je < 0. Z dmienky m = m ri lávaní máme m m m m ( 0 ) 0 a dtiaľ naríklad bmedzenie re hmtnsť guľôčky m 0 m max. Pre dané hdnty m max,5 g. Pre danú hmtnsť guľôčky kcka ľadu s guľôčku klesne na dn. d) P vlžení kcky sa zväčší výška hladiny h 3 = 0 /, takže výška hladiny bude 0 h3. Pre dané hdnty h3 0,83 cm 0,8 cm.. b e) P rztení kcky zstane na dne guľôčka s bjemm g = m / a vda s bjemm m m ( 0 ). ýška hladiny bude m m ( 0 ) g m h 4 0. Pre dané hdnty veličín h 4 0,76 cm 0,8 cm. P rztení ľadu klesne hladina 0,7 mm. 3 b 3 b 4
5 6. ýťah a) Účinnsť výťahu je vlyvnená účinnsťu mtra a stratami trením v sústave. ríade, keď je hmtnsť kabíny s sádku väčšia ak hmtnsť závažia, mtr ri dvíhaní kabíny nahr kná užitčnú kladnú rácu a dberá z siete elektrický výkn. Pri ceste kabíny nadl však musí mtr brzdiť, ričm rzdiel tenciálnej energie sa mení na stratvé tel. Ak je kabína s sádku ľahšia ak závažie, je tmu ačne. Aby sa bmedzil maximálny výkn ri ťahu i ri brzdení, kabína výťahu sa vyvažuje. Ak je hmtnsť kabíny s sádku rvná hmtnsti závažia, v bidvch smerch mtr kná minimálnu rácu iba na reknanie trenia. Ak sa redkladá bežná hmtnsť sádky 50 kg (dve sby), je timálne rtizávažie 650 kg. Extrémne hdnty zaťaženia výťahu (rázdna kabína a maximálne zaťažená kabína) sú tak rvnak 50 kg dlišné d timálneh zaťaženia. Bez rtizávažia by bli extrémy zaťaženia sústavy veľa väčšie. ýhdu rtizávažia je i t, že nie je trebný navijak lana v strjvni výťahu, ale lan sa vedie iba cez kladky a znižuje sa výkn strebvaný na reknávanie tiaže lana. 4b b) ýkn mtra je súčinm výslednej sily a rýchlsti. Ak uvážime účinnsť sústavy je ríkn P = (m z m k ) g v 0 /. Pre dané hdnty P =,4 kw. c) Pri rerave sôb smerm nahr je rvnakým sôsbm ríkn mtra P = (m k + M m z ) g v 0 / =,6 kw. 7. Hustta lávajúceh telesa - exerimentálna úlha Pri meraní mžn užiť nasledujúcu metódu: D dmernéh valca nalejeme vhdné mnžstv vdy s bjemm, ktrý určíme na stunici valca. Ptm d vdy vlžíme teles. Hladina vdy v valci sa zvýši a na stunici rečítame bjem. Rzdiel = redstavuje bjem vytlačený nrenu časťu telesa a dľa Archimedvh zákna je hmtnsť vytlačenej vdy rvná hmtnsti telesa m =. Ptm teles celé zatlačíme d hladinu a na stunici rečítame bjem 3. Rzdiel = 3 redstavuje bjem telesa. Hustta telesa je m. Pdľa úrvne sracvania max. 0 b Δ rčník Fyzikálnej lymiády Úlhy dmáceh kla kategórie F Autr úlh: Iv Čá (, 6, 7), Ľubmír Knrád (, 3), Daniel Kluvanec (4), Mária Kladivvá (5) Recenzia a úrava úlh: Daniel Kluvanec, Iv Čá Redakcia: Ľubmír Knrád lvenská kmisia fyzikálnej lymiády ydal: IUENTA lvenský inštitút mládeže, Bratislava 04 5
Pohyb vozíka. A. Pohyb vďaka tiaži závažia. V tomto prípade sila, ktorá spôsobuje rovnomerne zrýchlený pohyb vozíka je rovná tiaži závažia: F = G zav.
Phyb vzíka Rvnmerný phyb vzíka sa uskutčňuje pri knštantnej rýchlsti v, ktrá sa nemení s časm. Pri takmt phybe vzík za určitý čas t prejde dráhu s s = v t (). V prípade, že rýchlsť vzíka rastie rvnmerne
9 Štruktúra a vlastnosti plynov
9 Štruktúra a vlastnsti lynv 9. ideálny lyn - ri dvdzvaní záknv latných re lyn sa naiest reálneh lynu zavádza zjedndušený del, ktrý nazývae ideálny lyn - lekulách ideálneh lynu vyslvujee tri redklady:
Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)
ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
14 Obvod striedavého prúdu
4 Obvd striedavéh prúdu - nútené elektragnetické kitanie á veľký význa naä pri prense elektricke energie a v rzličných elektrnických zariadeniach. V týcht prípadch elektragnetické kitanie nazývae striedavý
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Riešenia úloh
58. ročník Fyzikálnej olympiády školskom roku 2016/2017 Okresné kolo kategórie F Riešenia úloh 1. Sladká ľadoá hádanka a) Čln je yrobený z ľadu, ktorého hustota je menšia ako hustota ody, teda ak je prázdny,
PDF created with pdffactory Pro trial version
7.. 03 Na rozraní sla a vody je ovrc vody zarivený Na rozraní sla a ortuti je ovrc ortuti zarivený JAY NA OZHANÍ PENÉHO TELES A KAPALINY alebo O ailárnej elevácii a deresii Povrc vaaliny je dutý, vaalina
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
13 Elektrický prúd v látkach
13 Elektrický prúd v látkach - z hľadiska vedenia elektrickéh prúdu rzdeľujeme látky na vdiče (merný elektrický dpr je rádv 10-7 až 10-8 Ω.m), plvdiče (merný elektrický dpr je rádv v intervale 10 - až
ZONES.SK Zóny pre každého študenta
/5 MO 30: KRUŽNICA Kružnica: Kružnicu s stredm S a plmerm r > 0 nazývame mnžinu všetkých bdv X v rvine, pre ktré platí SX = r. bvd = O = πr Kruh: Mnžinu všetkých bdv X v rvine, pre ktré platí SX r nazývame
2742/ 207/ /07.10.1999 «&»
2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
11 Štruktúra a vlastnosti kvapalín
11 Štruktúra a vlastnsti kvapalín - štruktúra kvapalných látk je pdbná štruktúre arfných látk - každá častica kvapaliny kitá kl istej rvnvážnej plhy a p veľi krátk čase (rádv 1 ns) zauje nvú rvnvážnu plhu.
18 Kmitavý pohyb. 1 = Hz (jednotkou frekvencie je Herz)
8 Kitavý hb - echanický hb sústav charakterizvaný veičinai, ktré sú eridickýi funkciai času - každé zariadenie, ktré ôže vľne bez vnkajšieh ôsbenia) kitať, nazýva sa sciátr - eridick akujúca sa časť kitavéh
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.
ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,
Skrutka je valcovité teleso, na obvode ktorého je závit skrutkovice.
. SKRUTKY Skrutky rzdeľujeme dľa účelu na krutky jvaie re tatiké zaťaženie, krutky jvaie re dynamiké zaťaženie a krutky hybvé. Z uvedenéh je zrejmé, že jvaie krutky lúžia re ľahk rzberateľné je. Phybvé
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Austrotherm GrPS 70 F Austrotherm GrPS 70 F Reflex Austrotherm Resolution Fasáda Austrotherm XPS TOP P Austrotherm XPS Premium 30 SF Austrotherm
1 Kinematika hmotného bodu
Kinemik hmnéh bdu - kinemik berá určením plôh bd ich mien če (kinemik phb ele piuje, neberá príčinmi phbu) - pri ereickm šúdiu mechnickéh phbu (prce, pri krm mení plh jednéh ele hľdm n iné ele) ád pjem
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Lineárne funkcie. Lineárna funkcia je každá funkcia určená predpisom f: y = a.x + b, kde a, b R a.a 0 D(f) = R. a > 0 a < 0
Lineárne funkcie Lineárna funkcia je každá funkcia určená predpism f: a. b, kde a, b R a.a 0 D(f) R a > 0 a < 0 Vlastnsti lineárnej funkcie : D(f) R, H(f) R D(f) R, H(f) R - rastúca - klesajúca - nie je
Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 2011. Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής
Θερ ικοί Αισθητήρες Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 011 Θερμικοί αισθητήρες 1. Αισθητήρας Μέτρησης Ροής Θερ ικοί Αισθητήρες Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 011 Συγκεντρωτικά Εφαρμογές
Επιτραπέζια μίξερ C LINE 10 C LINE 20
Επιτραπέζια μίξερ C LINE 10 Χωρητικότητα κάδου : 10 lt Ναί Βάρος: 100 Kg Ισχύς: 0,5 Kw C LINE 20 Χωρητικότητα κάδου : 20 lt Βάρος: 105 Kg Ισχύς: 0,7 Kw Ναί Επιδαπέδια μίξερ σειρά C LINE C LINE 10 Χωρητικότητα
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
). = + U = -U U= mgy (y= H) =0 = mgh. y=0 = U=0
3761 5226 9585 ). = + U = -U U= mgy (y= H) =0 = mgh. y=0 = U=0 y = mgh mgy, 3761 5226 ) ) =mg 2 F=ma F-B=ma Fmg=m.2g F=3mg F=3B B = F/3 3763 5208 ) ) W 1 = -mgh W 2 =mgh W = W 1 + W 2 = -mgh + mgh=0 3763
16 Electromagnetic induction
Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013)
Termodynamika Teelný ohyb Teelná rozťažnosť látok Stavová rovnica ideálneho lynu nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu
ZADANIE 2 _ ÚLOHA 10
ZADANIE _ ÚLOHA 0 _ Rčý phyb ele ZADANIE _ ÚLOHA 0 ÚLOHA 0.: Zvčík piemee 3m áčl vmee áčkmi = 90 /mi. Odľhčeím j jeh áčky vmee zýchľvli k že z dbu 0 dihli 0 /mi. N ých vých áčkch j uáli. Uče: zčičú kečú
Fyzika 4 roč. Gymnázium prvý polrok Vlnové vlastnosti svetla
Fyzika 4 rč. Gymnázium prvý plrk Vlnvé vlastnsti svetla Svetl je elektrmagnetické žiarenie, ktré je vaka svjej vlnvej dĺžke viditeľné ľudským km. Všebecnejšie je svetl elektrmagnetické vlnenie z intervalu
a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa
1 2 1 2 3 4 5 0.24 0.24 4.17 4.17 6 a m a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 7 max min m a r 8 9 1 ] ] S [S] S [S] 2 ] ] S [S] S [S] 3 ] ] S
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Trapézové profily Lindab Coverline
Trapézové profily Lindab Coverline Trapézové profily - produktová rada Rova Trapéz T-8 krycia šírka 1 135 mm Pozink 7,10 8,52 8,20 9,84 Polyester 25 μm 7,80 9,36 10,30 12,36 Trapéz T-12 krycia šírka 1
Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.
Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500
ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
RENAULT MEGANE HATCH drive THE CHANGE
RENAULT MEGANE HATCH drive the change ΕΔΩ ΚΑΙ 111 ΧΡΟΝΙΑ, ΕΡΓΑΖΟΜΑΣΤΕ ΜΕ ΤΗΝ ΠΕΠΟΙ- ΘΗΣΗ ΟΤΙ ΓΙΑ ΝΑ ΠΑΡΑΜΕΝΕΙ ΕΝΑ ΑΥΤΟΚΙΝΗΤΟ ΠΑ- ΝΤΑ ΣΥΓΧΡΟΝΟ ΣΤΗΝ ΕΠΟΧΗ ΤΟΥ, ΠΡΕΠΕΙ ΝΑ ΕΞΕΛΙΣ- ΣΕΤΑΙ ΣΥΝΕΧΩΣ. μια δεσμευση
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30
Dimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 2000-10 V1.4
3 ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 000-0 V.4 4 Περιεχόμενα 5 Ειαγωγή...9 Ανοχή χαλύβων...9 3 Φόριη... 4 Υπολογιμός ε δυναμική θραύη... 4. Ονομαικές άεις (ημιεύρος δυναμικής
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#
! "# " #!$ %""! &'( )'&* $!"#$% &$'#( )*+#'(,#* /$##+(#0 &1$( #& 23 #(&&# +, -. % ($4 ($4 ##!$2 $567 56 $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&# 6 < 6 6 6 66 6< <
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Βιολογία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΚΩΣΤΑΣ ΓΚΑΤΖΕΛΑΚΗΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Βιολογία Γ Λυκείου Επιμέλεια: ΚΩΣΤΑΣ ΓΚΑΤΖΕΛΑΚΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1 2010 2011 µ..., µ..,... 2011. 1:, 19-21
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili
Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru
ΣΤΗΝ ΒΑΣΙΚΗ ΤΟΥΣ ΕΚΔΟΣΗ
4 ΣΤΗΝ ΒΑΣΙΚΗ ΤΟΥΣ ΕΚΔΟΣΗ ΜΟΤΕΡ 800m 3 ΔΥΟ ΕΙΣΟΔΩΝ ΤΡΕΙΣ ΠΕΡΣΙΔΕΣ ΑΛΟΥΜΙΝΙΟΥ ΕΣΩΤΕΡΙΚΕΣ ΗΛΕΚΤΡΟΝΙΚΟΣ ΘΕΡΜΟΣΤΑΤΗΣ ΜΙΑ ΠΕΡΣΙΔΑ ΕΚΤΟΝΩΣΗΣ ΠΕΡΣΙΔΑ ΑΛΟΥΜΙΝΙΟΥ ΕΞΩΤΕΡΙΚΗ ΣΩΛΗΝΕΣ ΑΛΟΥΜΙΝΙΟΥ Φ120 ΚΕΡΑΜΙΚΑ ΚΡΥΣΤΑΛΛΑ
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
Podloge za predavanja iz Mehanike 1 STATIČKI MOMENT SILE + SPREG SILA. Laboratori j z a m umerič k u m e h a n i k u
Plge a preavanja i ehanike 1 STATIČKI OENT SILE + SPREG SILA Labratri j a m umerič k u m e h a n i k u 1 Statički mment sile Sila u insu 225 N jeluje na ključ prema slici. Oreiti mment sile birm na tčku
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Technická univerzita v Košiciach. ROČNÍKOVÁ PRÁCA č. 3 PRIBLIŽNÝ VÝPOČET TEPELNÉHO OBEHU LTKM
Technická univerzita Letecká fakulta Katedra leteckého inžinierstva ROČNÍKOVÁ PRÁCA č. 3 PRIBLIŽNÝ VÝPOČET TEPELNÉHO OBEHU LTKM Študent: Cvičiaci učiteľ: Peter Majoroš Ing. Marián HOCKO, PhD. Košice 6
ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ
. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ ΣΩΤΗΡΗΣ ΤΣΙΒΙΛΗΣ, Καθ. ΕΜΠ Παραδόσεις μαθήματος, Ακ. Έτος 2018-19 1 ΒΑΣΙΚΕΣ ΔΙΑΣΤΑΣΕΙΣ ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ Διάσταση Μήκος
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013)
Hyomechanika II Viskózna kvaaina Povchové naäie Kaiáne javy Donkové maeiáy k enáškam z yziky I e E Dušan PUDIŠ (013 Lamináne vs. Tubuenné úenie Pi úení eánej kvaainy ôsobia mezi voma susenými vsvami i
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
KAGEDA AUTORIZOVANÝ DISTRIBÚTOR PRE SLOVENSKÚ REPUBLIKU
DVOJEXCENTRICKÁ KLAPKA je uzatváracia alebo regulačná armatúra pre rozvody vody, horúcej vody, plynov a pary. Všetky klapky vyhovujú smernici PED 97/ 23/EY a sú tiež vyrábané pre výbušné prostredie podľa
58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Kategória E domáce kolo Riešenie úloh
58. ročník Fyzikálnej olympiády v školskom roku 06/07 Kategória E domáce kolo Riešenie úloh. Fyzikálne veličiny a ich jednotky eľa užitočných informácií možno nájsť na internete. a) Dĺžka m, čas s, hmotnosť
SINH-VIEÂN PHAÛI GHI MAÕ-SOÁ SINH-VIEÂN LEÂN ÑEÀ THI VAØ NOÄP LAÏI ÑEÀ THI + BAØI THI
SINHVIEÂN PHAÛI GHI MAÕSOÁ SINHVIEÂN LEÂN ÑEÀ THI VAØ NOÄP LAÏI ÑEÀ THI BAØI THI THÔØI LÖÔÏNG : 45 PHUÙT KHOÂNG SÖÛ DUÏNG TAØI LIEÄU MSSV: BÀI 1 (H1): Ch : i1 t 8,5 2.sin50t 53 13 [A] ; 2 i3 t 20 2.sin50t
..,..,.. ! " # $ % #! & %
..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,
Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 222/5
18.8.2012 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 222/5 ΕΚΤΕΛΕΣΤΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) αριθ. 751/2012 ΤΗΣ ΕΠΙΤΡΟΠΗΣ της 16ης Αυγούστου 2012 για τη διόρθωση του κανονισμού (ΕΚ) αριθ. 1235/2008 για τον καθορισμό
ITU-R P ITU-R P (ITU-R 204/3 ( )
1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.
VOX Feel Pretty MARA et Trois Filles - N 12 BERNSTEN Leonrd Adpttion F. Pissloux Violons Contrebsse A 2 7 2 7 Allegro qd 69 1 2 4 5 6 7 8 9 B 10 11 12 1 14 15 16 17 18 19 20 21 22 2 24 C 25 26 27 28 29
Modul pružnosti betónu
f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Riadenie elektrizačných sústav
Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký
Προϋπολογισμός Μελέτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΝΑΤΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ Περιφερειακή Ενότητα Δράμας ΟΤΑ : Δήμος Κάτω Νευροκοπίου ΥΠΟΕΡΓΟ 1: ΤΟΥ ΕΡΓΟΥ: ΠΡΟΥΠΟΛΟΓΙΣΜΟΣ: Ανάπλαση οδών-πεζοδρομίων & ηλεκτροφωτισμού περιμετρικά
Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.
Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον
Povrch a objem ihlana
Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky
05-01 Οικονομικά συστημάτων λιγνοκυτταρινούχας βιομάζας
Κεφάλαιο 05-01 σελ. 1 05-01 Οικονομικά συστημάτων λιγνοκυτταρινούχας βιομάζας Η βιομάζα λιγνοκυτταρινούχας προέλευσης είναι η πιο άφθονη πηγή οργανικού υλικού πάνω στη Γη. Προέρχεται από δάση, αγροτικές
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
SLOVENSKO maloobchodný cenník (bez DPH)
Hofatex UD strecha / stena - exteriér Podkrytinová izolácia vhodná aj na zaklopenie drevených rámových konštrukcií; pero a drážka EN 13171, EN 622 22 580 2500 1,45 5,7 100 145,00 3,19 829 hustota cca.
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
Σετ τροχών σύσφιξης B
01/2011 Πρωτότυπο οδηγιών χειρισμού 999285509 gr Πρέπει να φυλάσσονται για μελλοντική χρήση Σετ τροχών σύσφιξης B Αρ. προϊόντος 586168000 από έτος κατασκευής 2008 Περιγραφή προϊόντος Περιγραφή προϊόντος
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,