Tomáš Madaras Prvočísla

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Tomáš Madaras Prvočísla"

Transcript

1 Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele, tak sa nazýva zložené číslo. Celé číslo a / {0, 1, 1} je zložené práve vtedy, keď existujú b, c Z také, že a = bc a 1 < b, c < a.

2 Ak p je prvočíslo a p ab, potom p a alebo p b. Dôkaz: Ak p a, dôkaz je hotový, predpokladajme teda, že p a. Nakoľko p je prvočíslo, musí potom platiť (p, a) = 1, čo spolu s p ab dáva, že p b. Upozornenie Ak p nie je prvočíslo, lema nemusí platiť! (4 6 2, ale 4 6, 4 2). Ak p je prvočíslo, a 1,..., a s Z a p a 1 a s, potom p a i pre niektoré i = 1,..., s. Dôsledok Ak p, q 1,..., q s sú prvočísla a p q 1 q s, tak p = q i pre niektoré i = 1,..., s.

3 Veta (fundamentálna veta aritmetiky) Každé celé číslo a / {0, 1, 1} je buď prvočíslo, alebo ho možno vyjadriť v tvare a = ±p 1 p 2... p r, kde r N, r 2, p i (pre i {1,..., r}) sú kladné prvočísla, a to jednoznačne v nasledujúcom zmysle: ak a = ±p 1 p 2... p r = ±q 1 q 2... q s sú dva rozklady čísla a na súčin kladných prvočísel a p 1 p 2 p r, q 1 q 2 q s, tak znamienka pred súčinmi sú rovnaké, r = s a platí p 1 = q 1, p 2 = q 2,..., p r = q r. Dôkaz: Dokážeme najprv existenciu spomínaného vyjadrenia pre a > 0. Dôkaz prebieha tzv. úplnou matematickou indukciou podľa a a využíva Tvrdenie (princíp úplnej matematickej indukcie) Nech V (x) je výrok definovaný pre všetky x N, spĺňajúci podmienku: (( k < n) V (k)) V (n) Potom V (x) platí pre všetky x N. (dôkaz a ďalšie podrobnosti v rámci predmetu DSM3)

4 Nech P (x) je výrok "x je rovné súčinu prvočísel alebo x je prvočíslo". Uvažujme prirodzené číslo n > 1 a predpokladajme, že P (m) platí pre všetky prirodzené čísla m také, že 1 < m < n. Chceme dokázať, že potom platí aj P (n). Ak n je prvočíslo, tak P (n) platí. Ak n je zložené číslo, tak n = b c, 1 < b, c < n. Keďže b, c sú menšie ako n, tak každé z nich je buď prvočíslo, alebo podľa indukčného predpokladu je rovné súčinu nejakých prvočísel. Teda aj n = bc je rovné súčinu prvočísel. Podľa princípu úplnej indukcie potom P (n) platí pre každé n N, t.j. každé číslo je buď prvočíslo, alebo súčin prvočísel.

5 Ukážeme ďalej, že vyjadrenie a ako súčinu prvočísel je jednoznačné. Nech a = ±p 1 p 2... p r = ±q 1 q 2... q s, r s, p 1,..., p r, q 1,... q s sú prvočísla. Potom p 1 p 2 p r = q 1 q 2 q s z čoho vyplýva, že p 1 q 1 q 2 q s, teda p 1 = q i pre niektoré i = 1,..., s. Po vydelení oboch strán rovnosti číslom p 1 = q i máme p 2 p r = q 1 q 2 q i i q i+1 q s Z tejto rovnosti vyplýva, že p 2 q 1 q 2 q i i q i+1 q s, teda p 2 = q j pre nejaké j = 1,..., s, j i. Opätovným vydelením oboch strán rovnosti číslom p 2 = q j a opakovaním tohto postupu (na ľavej strane je konečne veľa činiteľov) dostaneme nakoniec rovnosť, v ktorej je na ľavej strane 1 a na pravej strane (potenciálne) súčin nejakých prvočísel. Keďže však súčin prvočísel nikdy nie je rovný 1, tak pravá strana musí byť tiež rovná 1. Teda r = s a prvočísla p 1,..., p r sú (až na poradie) tie isté, ako q 1,..., q s.

6 Definícia Kanonický rozklad celého čísla a / {0, 1, 1} je jeho vyjadrenie v tvare a = ±p α 1 1 pα pα k k, kde p 1, p 2,..., p k sú navzájom rôzne kladné prvočísla a α 1, α 2,..., α k N. Nech a = p α 1 1 pα pα k k, b = pβ 1 1 pβ pβ k k, kde α i, β i N 0 pre i = 1,..., k. Potom (a, b) = p min{α 1,β 1 } 1 p min{α 2,β 2 } 2... p min{α k,β k } k [a, b] = p max{α 1,β 1 } 1 p max{α 2,β 2 } 2... p max{α k,β k } k

7 Otestovať, či je dané číslo n prvočíslom, možno napr. tak, že sa vezmú všetky čísla medzi 2 a n a pre každé z nich sa určí, či delí n bezo zvyšku (ak n je zložené číslo, tak má deliteľa menšieho ako n). Tento test možno ešte zrýchliť tak, že sa vezmú len čísla 2, 3 a všetky čísla do n, ktoré sú tvaru 6k 1 alebo 6k + 1, resp. všetky prvočísla do n. Zoznam prvočísel do určitej veľkosti k možno zostrojiť pomocou tzv. Eratosthenovho sita: vygeneruje sa zoznam všetkých prirodzených čísel od 2 do k a zrušia sa z neho všetky násobky 2 (bez následnej komprimácie zoznamu!). Potom sa nájde prvé nezrušené číslo (teda 3) a jeho násobky sa ďalej zrušia zo zoznamu; celý postup sa opakuje, až kým existuje nezrušené číslo, ktoré je menšie ako n.

8 Kongruencie Tomáš Madaras 2011 Definícia Nech m je ľubovoľné prirodzené číslo. Čísla a, b Z sa nazývajú kongruentné podľa modulu m (modulo m), ak m a b; označujeme a b (mod m). Pre pevne dané m je teda vlastnosť kongruentnosti dvoch čísel binárna relácia na množine Z. Čísla a, b Z sú kongruentné podľa modulu m práve vtedy, keď dávajú rovnaký zvyšok po delení m.

9 Základné vlastnosti relácie kongruentnosti čísel: reflexívnosť: ( a Z) a a (mod m) symetria: ( a, b Z) a b (mod m) b a (mod m) tranzitívnosť: ( a, b, c Z) (a b (mod m) b c (mod m)) a c (mod m) Relácia kongruentnosti podľa daného modulu je teda reláciou ekvivalencie. Tomáš Madaras 2011 Nech a b (mod m) a c d (mod m). Potom a + c b + d (mod m), ac bd (mod m). Dôkaz: Z predpokladov vyplýva, že m a b, m c d. Potom m (a b) + (c d) = (a + c) (b + d), čiže a + c b + d (mod m). Ďalej, z predpokladov vyplýva m c(a b), m b(c d), teda m c(a b) + b(c d) = ac bc + bc bd = ac bd, z čoho dostávame ac bd (mod m).

10 Nech a b (mod m) a d D(a, b, m). Potom a d b d (mod m d ). Dôkaz: Nech a d = a, b d = b, m d = m. Potom z a b (mod m) vyplýva, že m a d b d = d(a b ), teda d(a b ) = km pre nejaké k Z. Po vydelení oboch strán rovnosti číslom d máme a b = km d = km čo znamená, že m a b, teda a d b d (mod m d ). Nech a b (mod m),d D(a, b) a (d, m) = 1. Potom a d b d (mod m). Dôkaz: Nech a d = a, b d = b. Potom z a b (mod m) vyplýva, že m a d b d = d(a b ). Keďže však (d, m) = 1, musí platiť m a b, teda a d b d (mod m).

11 označenie: pre n = a a a k a k označuje a k... a 1 a 0 10 desiatkový zápis čísla n. Súčet a 0 + a a k sa nazýva ciferný súčet čísla n. Číslo je deliteľné 3 (resp. 9) práve vtedy, keď jeho ciferný súčet je deliteľný n. Dôkaz: Platí 10 1 (mod 3), z čoho 10 i 1 i 1 (mod 3). Teda 10 i a i a i (mod 3), z čoho sčítaním kongruencií dostávame a a k a k a 0 + a a k (mod 3); teda prirodzené číslo je kongruentné so svojím ciferným súčtom modulo 3. Rovnaký výsledok dostávame aj pre modul 9 (pretože 10 1 (mod 9)).

12 Číslo je deliteľné 2 i práve vtedy, keď číslo vytvorené z jeho posledných i cifier je deliteľné 2 i. Dôkaz: Je 2 i 0 (mod 2 i ), z čoho 5 i 2 i 5 i 0 0 (mod 2 i ), čiže pre každé i N platí 10 i 0 (mod 2 i ). Z toho dostávame (vynásobením oboch strán tejto kongruencie číslom 10 l i ), že pre l i takisto platí 10 l 0 (mod 2 i ). Preto a 0 +10a i a i k a k a 0 +10a i 1 a i 1 (mod 2 i ), čo znamená, že číslo a číslo vytvorené z jeho posledných i cifier sú kongruentné modulo 2 i.

13 Číslo je deliteľné 11 práve vtedy, keď rozdiel súčtu cifier na pozíciách párnych rádov (t.j. jednotiek, stoviek...) a súčtu cifier na pozíciách nepárnych rádov (t.j. desiatok, tisícok...) je deliteľný 11. Dôkaz: Je 10 1 (mod 11), z čoho 10 i ( 1) i (mod 11) a 10 i a i ( 1) i a i (mod 11). Teda a a k a k a 0 a 1 + a 2 + ( 1) k a k (mod 11), čo znamená, že číslo je kongruentné modulo 11 so striedavým súčtom vytvorených z jeho cifier (t.j. s a 0 + a 2 + (a 1 + a )).

14 Veta (malá Fermatova) Nech p je ľubovoľné prvočíslo. 1 Pre ľubovoľné celé číslo a je a p a (mod p). 2 Pre ľubovoľné celé číslo a nesúdeliteľné s p je a p 1 1 (mod p). Dôkaz: Prvá časť - najprv dokážeme pomocné tvrdenie: Tvrdenie Ak p je prvočíslo a x, y Z, tak (x + y) p x p + y p (mod p). Výraz (x + y) p sa dá rozvinúť pomocou binomickej vety nasledovne: (x + y) p = x p + px p 1 y + p(p 1) 1 2 xp 2 y p(p 1)(p 2)... (p k + 1) x p k y k + + pxy p 1 + y p k (dôkaz a ďalšie podrobnosti v rámci predmetu DSM3 resp. UIN)

15 p(p 1)(p 2)... (p k + 1) Koeficienty pri výrazoch x p k y k sú pre k 0 < k < p prirodzené čísla (to vyplýva z roznásobenia zátvoriek v (x + y) p ) a žiadne z čísel 1, 2,..., k v menovateli nedelí p v čitateli; teda každý z týchto koeficientov je deliteľný p. To znamená, že (x + y) p x p + y p = px p 1 p(p 1) y xp 2 y 2 + +pxy p 1 0 (mod p), teda (x + y) p x p + y p (mod p). Vetu dokážeme najprv pre všetky a N 0. Samotný dôkaz prebieha matematickou indukciou podľa a a využíva Tvrdenie (princíp matematickej indukcie) Nech V (x) je výrok definovaný pre všetky x N, spĺňajúci podmienky: V (0) platí ( k N) V (k) V (k + 1) Potom V (x) platí pre všetky x N. (dôkaz a ďalšie podrobnosti v rámci predmetu DSM3 resp. UIN)

16 Nech P (a) je výrok "a p a (mod p)". Keďže 0 p 0 (mod p), tak P (0) platí. Nech P (a) platí pre nejaké a N 0. Chceme ukázať, že potom platí aj P (a + 1). Podľa pomocného tvrdenia platí (a + 1) p a p + 1 p (mod p) a podľa indukčného predpokladu platí P (a), teda a p a (mod p). Keďže triviálne platí 1 p 1 (mod p), tak sčítaním kongruencií dostávame a p + 1 p a + 1 (mod p), z čoho použitím tranzitívnosti kongruencie vyplýva (a + 1) p a + 1 (mod p). Teda P (a + 1) platí, čiže malá Fermatova veta platí pre všetky a N.

17 Nech teraz a Z ; potom a = b, b N. Ak p = 2, tak a 2 = b 2 a b 2 b (mod 2) (podľa predošlej časti dôkazu). Teda a 2 a (mod 2); súčasne platí, že a a (mod 2), teda použitím tranzitívnosti kongruencie dostávame a 2 a (mod 2). Predpokladajme ďalej, že p > 2; potom p je nepárne prvočíslo a a p = ( b) p = b p. Podľa predošlého dôkazu platí b p b (mod p), z čoho máme b p b (mod p). Teda ( b) p b (mod p), t.j. a p a (mod p). Druhá časť - ak p je nesúdeliteľné s a, tak z a p = a a p 1 a (mod p) dostaneme (vydelením oboch strán kongruencie číslom a) a p 1 1 (mod p). Dôsledok Ak p N a existuje a Z také, že a p / a (mod p), tak p nie je prvočíslo.

18 Príklad Zistite, či 793 je prvočíslo. Počítajme zvyšok po delení číslom 793: 2 10 = (mod 793) (mod 793) (mod 793) (mod 793) (mod 793) (mod 793) (mod 793) Teda = = (mod 793). Ďalej platí = (mod 793), teda úhrnom ( ) (mod 793). Keďže neplatí (mod 793), tak 793 nie je prvočíslo.

19 Uvedený postup sa však nedá použiť vo všeobecnosti na overenie, či dané číslo je alebo nie je prvočíslo, pretože existujú zložené čísla p, pre ktoré je kongruencia a p a (mod p) splnená pre všetky a Z (dokonca platí, že takýchto čísel je nekonečne veľa). Príklad Určte zvyšok po delení čísla číslom 101. Keďže 101 je prvočíslo a (24, 101) = 1, podľa malej Fermatovej vety platí (mod 101). Z toho dostávame = ( ) (mod 101), teda (mod 101); platí 24 2 = 576 = , čiže (mod 101). Platí teda (mod 101).

Deliteľnosť a znaky deliteľnosti

Deliteľnosť a znaky deliteľnosti Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Planárne a rovinné grafy

Planárne a rovinné grafy Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený

Διαβάστε περισσότερα

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA S MATEMATICÁ OLYMPIÁDA skmo.sk 2008/2009 58. ročník Matematickej olympiády Riešenia úloh IMO. Nech n je kladné celé číslo a a,..., a k (k 2) sú navzájom rôzne celé čísla z množiny {,..., n} také, že n

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

1-MAT-220 Algebra februára 2012

1-MAT-220 Algebra februára 2012 1-MAT-220 Algebra 1 12. februára 2012 Obsah 1 Grupy 3 1.1 Binárne operácie.................................. 3 1.2 Cayleyho veta.................................... 3 2 Faktorizácia 5 2.1 Relácie ekvivalencie

Διαβάστε περισσότερα

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus 1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových

Διαβάστε περισσότερα

Prvočísla a zložené čísla. a, b N: a b k N: b = a. k. Kritéria deliteľnosti v desiatkovej číselnej sústave:

Prvočísla a zložené čísla. a, b N: a b k N: b = a. k. Kritéria deliteľnosti v desiatkovej číselnej sústave: Prvočísla a zložené čísla Číslo a je deliteľom čísla b (číslo b je deliteľné číslom a alebo číslo b je násobkom čísla a ) ráve vtedy, ak existuje také rirodzené číslo k, že b = a. k (ak o delení čísla

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti 4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

SK skmo.sk. 66. ročník Matematickej olympiády 2016/2017 Riešenia úloh domáceho kola kategórie B

SK skmo.sk. 66. ročník Matematickej olympiády 2016/2017 Riešenia úloh domáceho kola kategórie B SK MATEMATICKÁOLYMPIÁDA skmo.sk 66. ročník Matematickej olympiády 2016/2017 Riešenia úloh domáceho kola kategórie B 1. Každému vrcholu pravidelného 66-uholníka priradíme jedno z čísel 1 alebo 1. Ku každej

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα

MATEMATICKÁ ANALÝZA 1

MATEMATICKÁ ANALÝZA 1 UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH Prírodovedecká fakulta Ústav matematických vied Božena Mihalíková, Ján Ohriska MATEMATICKÁ ANALÝZA Vysokoškolský učebný text Košice, 202 202 doc. RNDr. Božena

Διαβάστε περισσότερα

Prirodzené čísla. Kardinálne čísla

Prirodzené čísla. Kardinálne čísla Prirodzené čísla Doteraz sme sa vždy uspokojili s tým, že sme pod množinou prirodzených čísel rozumeli množinu N = { 1, 2,3, 4,5, 6, 7,8,9,10,11,12, } Túto množinu sme chápali intuitívne a presne sme ju

Διαβάστε περισσότερα

Príklady na precvičovanie Fourierove rady

Príklady na precvičovanie Fourierove rady Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

SK skmo.sk. 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh domáceho kola kategórie A

SK skmo.sk. 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh domáceho kola kategórie A SK MATEMATICKÁOLYMPIÁDA skmo.sk 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh domáceho kola kategórie A 1. Číslo n je súčinom troch (nie nutne rôznych) prvočísel. Keď zväčšíme každé z nich

Διαβάστε περισσότερα

1 Úvod Úvod Sylaby a literatúra Označenia a pomocné tvrdenia... 4

1 Úvod Úvod Sylaby a literatúra Označenia a pomocné tvrdenia... 4 Obsah 1 Úvod 3 1.1 Úvod......................................... 3 1. Sylaby a literatúra................................. 3 1.3 Označenia a omocné tvrdenia.......................... 4 Prvočísla 6.1 Deliteľnosť......................................

Διαβάστε περισσότερα

Symbolická logika. Stanislav Krajči. Prírodovedecká fakulta

Symbolická logika. Stanislav Krajči. Prírodovedecká fakulta Symbolická logika Stanislav Krajči Prírodovedecká fakulta UPJŠ Košice 2008 Názov diela: Symbolická logika Autor: Doc. RNDr. Stanislav Krajči, PhD. Vydala: c UPJŠ Košice, 2008 Recenzovali: Doc. RNDr. Miroslav

Διαβάστε περισσότερα

Goniometrické substitúcie

Goniometrické substitúcie Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať

Διαβάστε περισσότερα

Polynómy. Hornerova schéma. Algebrické rovnice

Polynómy. Hornerova schéma. Algebrické rovnice Polynómy. Hornerova schéma. Algebrické rovnice Teoretické základy Definícia 1 Nech (koeficienty) a 0, a 1,..., a n sú komplexné čísla a nech n je nezáporné celé číslo. Výraz P n (x) = a n x n + a n 1 x

Διαβάστε περισσότερα

2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin

2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin 2. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Verzia: 27. 9. 2009 Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov

ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov ALGEBRA Číselné množiny a operácie s nimi. Úprava algebrických výrazov Definícia Množinu považujeme za určenú, ak vieme o ľubovoľnom objekte rozhodnúť, či je alebo nie je prvkom množiny. Množinu určujeme

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2 Obsah Úvod Predhovor Sylaby a literatúra Označenia Euklidovské vektorové priestory 3 Skalárny súčin 3 Gram-Schmidtov ortogonalizačný proces 8 Kvadratické formy 6 Definícia a základné vlastnosti 6 Kanonický

Διαβάστε περισσότερα

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17 Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy

Διαβάστε περισσότερα

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3 Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 1.3 Základné označenia................................. 3 2 Množiny a zobrazenia

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

Teória pravdepodobnosti

Teória pravdepodobnosti 2. Podmienená pravdepodobnosť Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 23. februára 2015 1 Pojem podmienenej pravdepodobnosti 2 Nezávislosť náhodných udalostí

Διαβάστε περισσότερα

Ján Buša Štefan Schrötter

Ján Buša Štefan Schrötter Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

Teória funkcionálneho a logického programovania

Teória funkcionálneho a logického programovania Prírodovedecká fakulta UPJŠ Košice Teória fucionálneho a logického programovania (poznámky z prednášok z akademického roka 2002/2003) prednáša: Prof. RNDr. Peter Vojtáš, DrSc. 2 TEÓRIA FUNKCIONÁLNEHO A

Διαβάστε περισσότερα

Reálna funkcia reálnej premennej

Reálna funkcia reálnej premennej (ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

P Y T A G O R I Á D A

P Y T A G O R I Á D A 30 P Y T A G O R I Á D A Súťažné úlohy a riešenia celoštátneho kola Kategórie P6 - P8 30. ročník Školský rok 2008/2009 BRATISLAVA, 2009 Súťažné úlohy celoslovenského kola. Školský rok 2008/2009. Kategória

Διαβάστε περισσότερα

ÚVOD DO MATEMATICKEJ LOGIKY Podporné učebné texty pre vyučovanie matematiky v 1.ročníku gymnázia

ÚVOD DO MATEMATICKEJ LOGIKY Podporné učebné texty pre vyučovanie matematiky v 1.ročníku gymnázia ÚVOD DO MATEMATICKEJ LOGIKY Podporné učebné texty pre vyučovanie matematiky v 1.ročníku gymnázia 1. VÝROKY Pod pojmom "výrok" rozumieme v bežnom živote čosi ako VÝsledok ROKovania ( napr. súdu, alebo komisie

Διαβάστε περισσότερα

Funkcie - základné pojmy

Funkcie - základné pojmy Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny

Διαβάστε περισσότερα

FUNKCIE N REÁLNYCH PREMENNÝCH

FUNKCIE N REÁLNYCH PREMENNÝCH FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE

Διαβάστε περισσότερα

Základné vzťahy medzi hodnotami goniometrických funkcií

Základné vzťahy medzi hodnotami goniometrických funkcií Ma-Go-2-T List Základné vzťahy medzi hodnotami goniometrických funkcií RNDr. Marián Macko U: Predstav si, že ti zadám hodnotu jednej z goniometrických funkcií. Napríklad sin x = 0,6. Vedel by si určiť

Διαβάστε περισσότερα

Riešenia. Základy matematiky. 1. a) A = { 4; 3; 2; 1; 0; 1; 2; 3}, b) B = {4; 9; 16}, c) C = {2; 3; 5},

Riešenia. Základy matematiky. 1. a) A = { 4; 3; 2; 1; 0; 1; 2; 3}, b) B = {4; 9; 16}, c) C = {2; 3; 5}, Riešenia Základy matematiky 1. a) A = { ; ; ; 1; 0; 1; ; }, b) B = {; 9; 16}, c) C = {; ; 5}, d) D = { 1}, e) E =.. B, C, D, F (A neobsahuje prvok 1, E obsahuje navyše prvok 1, G neobsahuje prvok 1)..

Διαβάστε περισσότερα

Automaty a formálne jazyky

Automaty a formálne jazyky Automaty a formálne jazyky Podľa prednášok prof. RNDr. Viliama Gefferta, DrSc., PrírF UPJŠ Dňa 8. februára 2005 zostavil Róbert Novotný, r.novotny@szm.sk. Typeset by LATEX. Illustrations by jpicedit. Úvodné

Διαβάστε περισσότερα

Výroky, hypotézy, axiómy, definície a matematické vety

Výroky, hypotézy, axiómy, definície a matematické vety Výroky, hypotézy, axiómy, definície a matematické vety Výrok je každá oznamovacia veta (tvrdenie), o ktorej má zmysel uvažovať, či je pravdivá alebo nepravdivá. Výroky označujeme pomocou symbolov: A, B,

Διαβάστε περισσότερα

ZÁPISKY Z MATEMATICKEJ ANALÝZY 1

ZÁPISKY Z MATEMATICKEJ ANALÝZY 1 UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH Prírodovedecká fakulta Ústav matematických vied 4 3 4 n 6 4 3 2 3 2 4 3 6 5 6 7 3 4 2 3 3/5 /2 2/5 /3 /4 /5 /0 d 0/ /0 /5 /4 /3 2/5 6 3 2 3 2 6 5 6 7 3 4 2

Διαβάστε περισσότερα

zlomok poznatel nej časti skutočnosti. Robí tak prostredníctvom svojich pojmov (tento proces môžeme nazvat formalizácia), jej hlavnou úlohou je potom

zlomok poznatel nej časti skutočnosti. Robí tak prostredníctvom svojich pojmov (tento proces môžeme nazvat formalizácia), jej hlavnou úlohou je potom 0 Úvod 1 0 Úvod 0 Úvod 2 Matematika (a platí to vo všeobecnosti pre každú vedu) sa viac či menej úspešne pokúša zachytit istý zlomok poznatel nej časti skutočnosti. Robí tak prostredníctvom svojich pojmov

Διαβάστε περισσότερα

3. kapitola. Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou. priesvitka 1

3. kapitola. Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou. priesvitka 1 3. kapitola Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou priesvitka 1 Axiomatická výstavba modálnej logiky Cieľom tejto prednášky je ukázať axiomatickú výstavbu rôznych verzií

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

SK skmo.sk. 2009/ ročník MO Riešenia úloh domáceho kola kategórie A

SK skmo.sk. 2009/ ročník MO Riešenia úloh domáceho kola kategórie A SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/2010 59. ročník MO Riešenia úloh domáceho kola kategórie A 1. V obore reálnych čísel riešte sústavu rovníc x2 y = z 1, y2 z = x 1, z2 x = y 1. (Radek Horenský) Riešenie.

Διαβάστε περισσότερα

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan

Διαβάστε περισσότερα

2007/ ročník MO Riešenia úloh domácej časti I. kola kategórie C

2007/ ročník MO Riešenia úloh domácej časti I. kola kategórie C 007/008 57. ročník MO Riešenia úloh domácej časti I. kola kategórie C. Určte najmenšie prirodzené číslo n, pre ktoré aj čísla n, n, 5 5n sú prirodzené. (Jaroslav Švrček) Riešenie. Vysvetlíme, prečo prvočíselný

Διαβάστε περισσότερα

7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu.

7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu. Teória množín To, že medzi množinami A, B existuje bijektívne zobrazenie, budeme symbolicky označovať A B alebo A B. Vtedy hovoríme, že množiny A, B sú ekvivalentné. Hovoríme tiež, že také množiny A, B

Διαβάστε περισσότερα

Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus

Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus KrAv11-T List 1 Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus RNDr. Jana Krajčiová, PhD. U: Najprv si zopakujme, ako znie definícia logaritmu. Ž: Ja si pamätám, že logaritmus súvisí

Διαβάστε περισσότερα

1. Komplexné čísla. Doteraz ste pracovali s číslami, ktoré pochádzali z nasledovných množín:

1. Komplexné čísla. Doteraz ste pracovali s číslami, ktoré pochádzali z nasledovných množín: 1. Komplexné čísla Po preštudovaní danej kapitoly by ste mali byť shopní: poznať použitie a význam komplexnýh čísel v elektrikýh obvodoh rozumieť pojmom reálna a imaginárna časť, imaginárna jednotka, veľkosť,

Διαβάστε περισσότερα

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA. Martin Samuelčík

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA. Martin Samuelčík UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA Martin Samuelčík BRATISLAVA 2004 UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Διαβάστε περισσότερα

(IP3) (f, g) = (g, f) (symetria), (IP4) (f, f) > 0 pre f 0 (kladná definitnosť). Z podmienok (IP1) (IP4) sa ľahko dokážu rovnosti:

(IP3) (f, g) = (g, f) (symetria), (IP4) (f, f) > 0 pre f 0 (kladná definitnosť). Z podmienok (IP1) (IP4) sa ľahko dokážu rovnosti: Hilbertove priestory Veľké množstvo aplikácií majú lineárne normované priestory, v ktorých norma je odvodená od skalárneho (vnútorného) súčinu, podobne ako v bežnom trojrozmernom euklidovskom priestore.

Διαβάστε περισσότερα

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák Prednáška 6 6.1. Fourierove rady Základná myšlienka: Nech x Haφ 1,φ 2,...,φ n,... je ortonormálny systém v H, dá sa tento prvok rozvinút do radu x=c 1 φ 1 + c 2 φ 2 +...,c n φ n +...? Ako nájdeme c i,

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

4 Reálna funkcia reálnej premennej a jej vlastnosti

4 Reálna funkcia reálnej premennej a jej vlastnosti Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický

Διαβάστε περισσότερα

Vzorové riešenia 3. kola zimnej série 2014/2015

Vzorové riešenia 3. kola zimnej série 2014/2015 riesky@riesky.sk Riešky matematický korešpondenčný seminár Vzorové riešenia. kola zimnej série 04/05 Príklad č. (opravovali Tete, Zuzka): Riešenie: Keďže číslo má byť deliteľné piatimi, musí končiť cifrou

Διαβάστε περισσότερα

Matematická logika. Emília Draženská Helena Myšková

Matematická logika. Emília Draženská Helena Myšková Matematická logika Emília Draženská Helena Myšková Košice 2014 Recenzenti: RNDr. Ján Buša, CSc. RNDr. Daniela Kravecová, PhD. Tretie rozšírene a opravené vydanie Za odbornú stránku učebného textu zodpovedajú

Διαβάστε περισσότερα

Analytická geometria

Analytická geometria Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

1. POLIA A VEKTOROVÉ PRIESTORY. V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom

1. POLIA A VEKTOROVÉ PRIESTORY. V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom 1. POLIA A VEKTOROVÉ PRIESTORY V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom ďalšom výklade kľúčovú úlohu, a dokážeme o nich niekoľko jednoduchých základných tvrdení.

Διαβάστε περισσότερα

viacrozmerných a nekonečnorozmerných priestoroch. A ako nasvedčuje jej názov, pôjde o rovnice nelineárne.

viacrozmerných a nekonečnorozmerných priestoroch. A ako nasvedčuje jej názov, pôjde o rovnice nelineárne. Nelineárna analýza 1. Úvod Na začiatok by bolo načim ako-tak vymedzit, čím sa nelineárna analýza zaoberá. Čitatel by už mal však mat dostatok skúseností, aby vedel, že je to dost t ažké u l ubovol nej

Διαβάστε περισσότερα

Maturita z matematiky T E S T Y

Maturita z matematiky T E S T Y RNr. Mário oroš Maturita z matematiky príprava na prijímacie skúšky na vysokú školu T E S T Y Všetky práva sú vyhradené. Nijaká časť tejto knihy sa nesmie reprodukovať mechanicky, elektronicky, fotokopírovaním

Διαβάστε περισσότερα

Eulerovské grafy. Príklad Daný graf nie je eulerovský, ale obsahuje eulerovskú cestu (a, ab, b, bc, c, cd, d, da, a, ac, c, ce, e, ed, d, db).

Eulerovské grafy. Príklad Daný graf nie je eulerovský, ale obsahuje eulerovskú cestu (a, ab, b, bc, c, cd, d, da, a, ac, c, ce, e, ed, d, db). Eulerovské grafy Denícia Nech G = (V, E) je graf. Uzavretý ah v G sa nazýva eulerovská kruºnica, ak obsahuje v²etky hrany G. Otvorený ah obsahujúci v²etky hrany grafu sa nazýva eulerovská cesta. Graf sa

Διαβάστε περισσότερα

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom

Διαβάστε περισσότερα

RIEŠENIE WHEATSONOVHO MOSTÍKA

RIEŠENIE WHEATSONOVHO MOSTÍKA SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor

Διαβάστε περισσότερα

XVIII. ročník BRKOS 2011/2012. Pomocný text. Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú

XVIII. ročník BRKOS 2011/2012. Pomocný text. Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú Pomocný text Číselné obory Číselné obory Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú ľudia začali vnímať. Abstrakcia spočívala v tom, že množstvo, ktoré sa snažili

Διαβάστε περισσότερα

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana. Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................

Διαβάστε περισσότερα

TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre

TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT k predmetu Matematika pre 2. ročník SOŠ v Strážskom, študijný odbor 3760 6 00 prevádzka a ekonomika dopravy Operačný program: Vzdelávanie Programové obdobie:

Διαβάστε περισσότερα

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie, Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

Vybrané partie z logiky

Vybrané partie z logiky FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO Katedra informatiky Vybrané partie z logiky Eduard Toman Bratislava 2005 Obsah 1 Úvod 3 1.1 Jazyk logiky..................................

Διαβάστε περισσότερα

Najviac na koľko častí sa dá tromi priamkami rozdeliť medzikružie?

Najviac na koľko častí sa dá tromi priamkami rozdeliť medzikružie? Náboj 01 Vzorové riešenia Úloha 1 J. Ak hranu kocky zväčšíme o 100%, tak o koľko percent sa zväčší jej objem? Výsledok. 700% Návod. Zväčšiť hranu a o 100% je to isté ako ju zdvojnásobiť na a. Objem pôvodnej

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

Číslo a číslica. Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva.

Číslo a číslica. Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva. Číslo a číslica Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva. Číslica (cifra) je grafický znak, pomocou ktorého zapisujeme

Διαβάστε περισσότερα

JKTc01-T List 1. Číselné množiny. Mgr. Jana Králiková

JKTc01-T List 1. Číselné množiny. Mgr. Jana Králiková JKTc01-T List 1 Číselné množiny Mgr. Jana Králiková U: Čo si predstavuješ pod pojmom množina? Ž: Skupinu nejakých vecí. U: Presnejšie by sa dalo povedať, že množina je skupina (súbor, súhrn) navzájom rôznych

Διαβάστε περισσότερα

Goniometrické rovnice riešené substitúciou

Goniometrické rovnice riešené substitúciou Ma-Go-10-T List 1 Goniometrické rovnice riešené substitúciou RNDr. Marián Macko U: Okrem základných goniometrických rovníc, ktorým sme sa už venovali, existujú aj zložitejšie goniometrické rovnice. Metódy

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

KATALÓG KRUHOVÉ POTRUBIE

KATALÓG KRUHOVÉ POTRUBIE H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom

Διαβάστε περισσότερα

BANACHOVE A HILBERTOVE PRIESTORY

BANACHOVE A HILBERTOVE PRIESTORY BANACHOVE A HILBERTOVE PRIESTORY 1. ZÁKLADNÉ POJMY Normovaným lineárnym priestorom (NLP) nazývame lineárny (= vektorový) priestor X nad telesom IK, na ktorom je daná nezáporná reálna funkcia : X IR + (norma)

Διαβάστε περισσότερα

Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017

Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017 Kompilátory Cvičenie 6: LLVM Peter Kostolányi 21. novembra 2017 LLVM V podstate sada nástrojov pre tvorbu kompilátorov LLVM V podstate sada nástrojov pre tvorbu kompilátorov Pôvodne Low Level Virtual Machine

Διαβάστε περισσότερα

Goniometrické nerovnice

Goniometrické nerovnice Ma-Go--T List Goniometrické nerovnice RNDr. Marián Macko U: Problematiku, ktorej sa budeme venovať, začneme úlohou. Máme určiť definičný obor funkcie f zadanej predpisom = sin. Máš predstavu, s čím táto

Διαβάστε περισσότερα