Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
|
|
- Μέλαινα Βαρουξής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Priamkové plochy
2 Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
3 Priamkové plochy rozdeľujeme na: Rozvinuteľné Hranolové Valcové Ihlanové Kužeľové Plochy dotyčníc Nerozvinuteľné
4 Emilio Ambasz
5 Christian Portzamarc
6 Ben van Berkel
7 Menhard von Gerkan Volkwin Marg
8 Norman Foster
9 Nerozvinuteľné priamkové plochy
10 Priamková plocha je rozvinuteľná ak obsahuje iba torzálne priamky Priamková plocha je nerozvinuteľná ak obsahuje aspoň jednu netorzálnu priamku
11 Tvoriaca priamka plochy φ sa nazýva torzálna, ak v každom jej bode existuje tá istá dotyková rovina plochy φ. p T τ t τ t τ = ( p, t ) τ = ( p, t ) T τ = τ
12 Rotáciou priamky p okolo osi o (ak sú priamky p a o mimobežné) vzniká...? o p Jednodielny rotačný hyperboloid
13 Tvoriaca priamka g plochy φ sa nazýva netorzálna ak existuje bijekcia medzi bodmi tvoriacej priamky a dotykovými rovinami plochy φ v daných bodoch. o p τ* t* T* τ T t τ = ( p, t ) τ = ( p, t ) τ* = ( p, t* ) T p τ τ τ τ* t
14 Dotykové roviny vytvárajú zväzok s osou g. Priamka g je netorzálna
15 Nerozvinuteľná priamková plocha je určená troma riadiacimi krivkami a, b, c. Každá priamka, ktorá pretína dané riadiace krivky je tvoriacou priamkou plochy. Riadiace krivky a, b, c neležia na jednej rozvinuteľnej ploche a nemajú spoločné body. b c C g A a B
16 Vytvorenie tvoriacich priamok plochy: Každým bodom A a a krivkami b, c sú určené dve kužeľové plochy so spoločným vrcholom A. Ich spoločné povrchové priamky sú tvoriace priamky plochy Φ. Ak sa kužeľové plochy dotýkajú pozdĺž jednej tvoriacej priamky, tak je torzálna.
17 Podľa tvaru riadiacich kriviek rozdeľujeme nerozvinuteľné priamkové plochy do skupín: Cylindroidy: a - krivka b - krivka c rovina!!!!! Konusoidy: a - krivka b - krivka c - priamka!!!!! Konoidy: a - priamka b - krivka c - rovina Hyperbolický paraboloid a - priamka b - priamka c - rovina alebo priestorový štvoruholník ABCD!!!!!
18 a Cylindroidy: a - krivka b - krivka c rovina!!!!! B b A c C Vytvorenie cylindroidu
19
20
21 A 2 A 3 a 3 B 2 B 3 c B 1 b 2 b 1 a 2 b 3 b B A a A 1 a 1 Cylindroid a - kružnica b - kružnica c - rovina
22 Bart Prince
23 Bart Prince
24 Bart Prince
25 Bart Prince
26 Podľa tvaru riadiacich kriviek rozdeľujeme nerozvinuteľné priamkové plochy do skupín: Cylindroidy: a - krivka b - krivka c rovina!!!!! Konusoidy: a - krivka b - krivka c - priamka!!!!! Konoidy: a - priamka b - krivka c - rovina Hyperbolický paraboloid a - priamka b - priamka c - rovina alebo priestorový štvoruholník ABCD!!!!!
27 Vytvorenie konoidu c g b B A C a Konoidy: a - priamka b - krivka c - rovina
28 a c 3 a 2 a 3 b 2 b 3 a 1 b 1 b Kruhový konoid: a - priamka b - kružnica c - rovina
29 c c b 2 c 2 c b a 2 a 3 b 3 b 1 a Kruhový konoid: a - priamka b - kružnica c - rovina a 1 c 1
30 Použitie konoidov
31 Určujúce prvky konoidov a priamka b krivka c - rovina
32 Eliptický konoid a - priamka b - elipsa c - rovina
33 Podľa tvaru riadiacich kriviek rozdeľujeme nerozvinuteľné priamkové plochy do skupín: Cylindroidy: a - krivka b - krivka c rovina!!!!! Konusoidy: a - krivka b - krivka c - priamka!!!!! Konoidy: a - priamka b - krivka c - rovina Hyperbolický paraboloid a - priamka b - priamka c - rovina alebo priestorový štvoruholník ABCD!!!!!
34 Hyperbolický paraboloid určený priestorovým štvoruholníkom ABCD
35 Hyperbolický paraboloid určený priestorovým štvoruholníkom ABCD
36 Hyperbolický paraboloid určený priestorovým štvoruholníkom ABCD Hyperbolický a parabolický rez
37 Jednoduchá strecha Strecha zo štyroch hyperbolických paraboloidov Prienik hyperbolického paraboloidu a valca Podhľad na zastrešenie Parabilický a hyperbolický rez Hyperbolický paraboloid ako translačná plocha Oporný múr
38 Použitie hyperbolického paraboloidu na zastrešenie
39 Podľa tvaru riadiacich kriviek rozdeľujeme nerozvinuteľné priamkové plochy do skupín: Cylindroidy: a - krivka b - krivka c rovina!!!!! Konusoidy: a - krivka b - krivka c - priamka!!!!! Konoidy: a - priamka b - krivka c - rovina Hyperbolický paraboloid a - priamka b - priamka c - rovina alebo priestorový štvoruholník ABCD!!!!!
40 B Konusoidy: a - krivka b - krivka c - priamka!!!!! A a c C b Vytvorenie konusoidu
41 c b B Marseillský oblúk a kružnica b kružnica c - priamka A C a
42 Marseillský oblúk a kružnica b kružnica c - priamka
43 Montpellierský oblúk a kružnica b priamka c - priamka
44 c b b b b a Spojenie štyroch Montpellierskych oblúkov
45 C c B B b Štramberská trúba a kružnica b priamka c - priamka A a A
46 Spojenie štyroch Štramberských trúb ( s parabolami)
Kapitola K2 Plochy 1
Kapitola K2 Plochy 1 Plocha je množina bodov v priestore, ktorá vznikne spojitým pohybom čiary u, ktorá nie je dráhou tohto pohybu, pričom tvar čiary u sa počas pohybu môže meniť. Čiara u sa nazýva tvoriaca
ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol
II. ZÁKLADNÉ GEOMETRICKÉ TELESÁ Hranolová plocha Hranolový priestor Hranol Definícia II.1 Nech P n je ľubovoľný n-uholník v rovine α a l je priamka rôznobežná s rovinou α. Hranolová plocha - množina bodov
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
ANULOID GEOMETRICKÉ VARIÁCIE NA TÉMU ANULOID
ANULOID ÚVOD Matematická analýza a deskriptívna (prípadne konštrukčná) geometria sú dva rôzne predmety, ktoré úzko spolu súvisia. Anuloid a guľová plocha sú plochy technickej praxe.v texte sú z geometrického
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
GEOMETRIA 4 KONŠTRUKČNÁ GEOMETRIA
GEOMETRIA 4 KONŠTRUKČNÁ GEOMETRIA Obsahom predmetu je súhrn poznatkov viacerých geometrických disciplín od elementárnej planimetrie a stereometrie, syntetickej deskriptívnej geometrie, cez analytickú a
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Súradnicová sústava (karteziánska)
Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme
Povrch a objem hranola
Povrch a objem hranola D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a priamka, ktorá nie je rovnobežná s rovinou mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme priamky rovnobežné
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
9 Planimetria. 9.1 Uhol. Matematický kufrík
Matematický kufrík 89 9 Planimetria 9.1 Uhol Pojem uhol patrí k najzákladnejším pojmom geometrie. Uhol môžeme definovať niekoľkými rôznymi spôsobmi, z ktorých má každý svoje opodstatnenie. Jedna zo základných
stereometria - študuje geometrické útvary v priestore.
Geometria Geometria (z gréckych slov Geo = zem a metro = miera, t.j. zememeračstvo) je disciplína matematiky prvýkrát spopularizovaná medzi starovekými grékmi Tálesom (okolo 624-547 pred Kr.), ktorý sa
Stereometria Základné stereometrické pojmy Základné pojmy: Základné vzťahy: (incidencie) Veta 1: Def: Veta 2:
Stereometria 1. K úlohe č.1 v príklade vidíte sklenenú kocku, na ktorej je natiahnutý drôt. Vedľa vidíte 3 pohľady na túto kocku zhora, spredu a z pravého boku. Pre ďalšie kocky nakreslite takéto 3 pohľady.
ZBIERKA ÚLOH Z GEOMETRIE - ZOBRAZENIA
ZBIERKA ÚLOH Z GEOMETRIE - ZOBRAZENIA 1. Afinné zobrazenia Definícia. Zobrazenie F z afinného priestoru A n do A m, ktoré zobrazuje každú trojicu nekolineárnych bodov do jedného bodu alebo do trojice bodov,
DESKRIPTÍVNA GEOMETRIA
EKRIÍN GEERI meódy zobrzovni priesorových úvrov do roviny (premieni) mericé polohové vzťhy priesorových úvrov riešené v rovine bsh predmeu G Zobrzovcie meódy: olohové mericé úlohy: ongeov projeci Rezy
ZOBRAZOVACIE METÓDY 2. I Mongeovo zobrazenie
ZOBRAZOVACIE METÓDY 2 (prvý ročník, letný semester; prednáška 2 hod., cvičenie 2 hod. / týž.; 6 kreditov, 40 / 60) Program druhého semestra (Zobrazovacie metódy 2): I Mongeovo zobrazenie; II Perspektívna
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Analytická geometria
Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Zobrazovacie metódy 3
Zobrazovacie metódy 3 (druhý ročník, zimný semester, prednáška 4 hod., cvičenie 2 hod. / týž.; 7 kreditov, 40/60) Program tretieho semestra (Zobrazovacie metódy 3): I. Pravouhlá axonometria, II. Šikmé
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Austrotherm GrPS 70 F Austrotherm GrPS 70 F Reflex Austrotherm Resolution Fasáda Austrotherm XPS TOP P Austrotherm XPS Premium 30 SF Austrotherm
Povrch a objem ihlana
Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky
ZÁKLADY ELEMENTÁRNEJ GEOMETRIE
UNIVERZITA KONŠTANTÍNA FILOZOFA FAKULTA PRÍRODNÝCH VIED ZÁKLADY ELEMENTÁRNEJ GEOMETRIE ŠEDIVÝ ONDREJ VALLO DUŠAN Vydané v Nitre 2009 Fakultou prírodných vied Univerzity Konštantína Filozofa v Nitre s finančnou
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
Neeuklidovská geometria
Pedagogická fakulta, Katolícka univerzita, Ružomberok Neeuklidovská geometria Seminárna práca História matematiky Katarína Dovcová Biológia matematika 1.Mgr 2008/2009 Cieľom mojej práce je priblížiť čitateľom
Zhodné zobrazenia (izometria)
Zobrazenie A, B R R (zobrazenie v rovine) usporiadaná dvojica bodov dva body v danom poradí (záleží na poradí) zápis: [a; b] alebo (a; b) karteziánsky (kartézsky) súčin množín množina všetkých usporiadaných
Goniometrické funkcie
Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej
Maturita z matematiky T E S T Y
RNr. Mário oroš Maturita z matematiky príprava na prijímacie skúšky na vysokú školu T E S T Y Všetky práva sú vyhradené. Nijaká časť tejto knihy sa nesmie reprodukovať mechanicky, elektronicky, fotokopírovaním
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.
Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
Vektorové a skalárne polia
Vetorové a salárne pola Ω E e prestorová oblasť - otvorená alebo uavretá súvslá podmnožna bodov prestoru E určených arteánsm súradncam usporadaným trocam reálnch čísel X [ ] R. Nech e salárna unca torá
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
M E C H A N I C K É P R E V O D Y
M E C H A N I C K É P R E V O D Y 1 Mechanické prevody slúžia k vytvoreniu kinematickej a silovej väzby medzi hnacím zariadením pohonom a poháňaným zariadením pracovným zariadením, zároveň umožňujú transformovať
Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky
Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický
STEREOMETRIA. Umenie vidieť a predstavovať si priestor
UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED STEREOMETRIA Umenie vidieť a predstavovať si priestor Ondrej Šedivý Gabriela Pavlovičová Lucia Rumanová Dušan Vallo Vydané v septembri 007
ΦΥΣΙΚΟΣ ΦΩΤΙΣΜΟΣ ΚΤΙΡΙΩΝ ΘΕΩΡΙΑ & ΠΑΡΑΔΕΙΓΜΑΤΑ
ΦΥΣΙΚΟΣ ΦΩΤΙΣΜΟΣ ΚΤΙΡΙΩΝ ΘΕΩΡΙΑ & ΠΑΡΑΔΕΙΓΜΑΤΑ φυσικός / τεχνητός φωτισμός Άμεσοηλιακόφως(sunlight) φυσικός φωτισμός Διάχυτοηλιακόφως(daylight) Ζητήματα ενέργειας Η χρήση του φυσικού φωτισμού επηρεάζει
CABRI GEOMETRY TM II PLUS
CABRI GEOMETRY TM II PLUS Inovačné nástroje matematiky KURZ PRE POKROČILÝCH VITAJTE! Vitajte v kurze pre pokročilých užívateľskej príručky Cabri Geometry. V tejto časti uvádzame v troch kapitolách niektoré
FUNKCIE N REÁLNYCH PREMENNÝCH
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE
Planárne a rovinné grafy
Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia
KATALÓG KRUHOVÉ POTRUBIE
H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom
NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky
Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY DIPLOMOVÁ PRÁCA
UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY DIPLOMOVÁ PRÁCA Bratislava 2006 Petra Klenková UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Katedra
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
ZONES.SK Zóny pre každého študenta
/5 MO 30: KRUŽNICA Kružnica: Kružnicu s stredm S a plmerm r > 0 nazývame mnžinu všetkých bdv X v rvine, pre ktré platí SX = r. bvd = O = πr Kruh: Mnžinu všetkých bdv X v rvine, pre ktré platí SX r nazývame
UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky. Dua lne c ı sla. Bakala rska pra ca. S tudijny odbor: Matematika
UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky Dua lne c ı sla Bakala rska pra ca S tudijny odbor: Matematika Vedu ci bakala rskej pra ce: RNDr. Pavel Chalmoviansky, PhD.
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z DESKRIPTÍVNEJ GEOMETRIE
ŠTÁTNY PEDAGOGICKÝ ÚSTAV CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z DESKRIPTÍVNEJ GEOMETRIE BRATISLAVA 2012 Schválilo Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky dňa
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Smernicový tvar rovnice priamky
VoAg1-T List 1 Smernicový tvar rovnice priamk RNDr.Viera Vodičková U: Medzi prevratné objav analtickej geometrie patrí to, že s priamkou nenarábame ako s geometrickým objektom, ale popisujeme ju rovnicou.
Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť
Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky
Παρουσίαση «Δομοστατικής» κατεύθυνσης
Πανεπιστήμιο Θεσσαλίας Τμήμα Πολιτικών Μηχανικών Παρουσίαση τομέων στους φοιτητές του 7 ου εξαμήνου Παρουσίαση «Δομοστατικής» κατεύθυνσης Εισηγήτρια: Ολυμπία Παναγούλη Επικ. Καθηγήτρια ΜΕΛΗ ΔΕΠ «ΔΟΜΟΣΤΑΤΙΚΗΣ
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
Základy metodológie vedy I. 9. prednáška
Základy metodológie vedy I. 9. prednáška Triedenie dát: Triedny znak - x i Absolútna početnosť n i (súčet všetkých absolútnych početností sa rovná rozsahu súboru n) ni fi = Relatívna početnosť fi n (relatívna
1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B
. písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c
Príklady k Matematike 1
Príklady k Matematike 1 1. Definícia derivácie 1. Nájdite deriváciu y = + 1) 2 tak, že prejdete od k t = + 1. 2. Zistite z definície, čomu sa rovnajú derivácie funkcií y = 3, y = 1/ 2 a y =. Návod k tretej
Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
Bubliny, kvapky a krivosti
Bubliny, kvapky a krivosti Marián Fecko KTF&DF, FMFI UK, Bratislava Text prednesený na Akadémii Trojstenu dňa 9.12.2011 1 Rozhranie medzi kvapalinou a vzduchom sa správa tak, akoby to bola pružná blanka.
Príklady a úlohy z krivkových integrálov
Príkldy úlohy z krivkových integrálov Riešené príkldy Príkld Vypočítjme krivkový integrál prvého druhu ds, pričom y = {(, y) R : ; y = e + e }. Riešenie. rivk s dá prmetrizovť npr. nsledujúcim spôsobom
SK skmo.sk. 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh domáceho kola kategórie A
SK MATEMATICKÁOLYMPIÁDA skmo.sk 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh domáceho kola kategórie A 1. Číslo n je súčinom troch (nie nutne rôznych) prvočísel. Keď zväčšíme každé z nich
MATEMATIKA II ZBIERKA ÚLOH
TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA KATEDRA MATEMATIKY A DESKRIPTÍVNEJ GEOMETRIE RNDr. Pavol PURCZ, PhD. RNDr. Martina RÉVAYOVÁ MATEMATIKA II ZBIERKA ÚLOH KOŠICE 6 Copyright c 6, RNDr. Pavol
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Téma c. 1. Výroková logika a logika výrokových foriem (predikátovej logiky). Množinovo-logický rozbor slovného textu
Téma c. 1 Výroková logika a logika výrokových foriem (predikátovej logiky). Množinovo-logický rozbor slovného textu A) Výrok a jeho vlastnosti. Výroky tvorené z jednoduchých výrokov pomocou logických operátorov.
Obvod a obsah rovinných útvarov
Obvod a obsah rovinných útvarov Z topologického hľadiska bod môže byť vnútorný, hraničný a vonkajší vzhľadom na nejaký rovinný útvar. D. Bod je vnútorný, ak môžeme nájsť taký polomer r, že kruh so stredom
Matematika test M-1, 2. časť
M O N I T O R 001 pilotné testovanie maturantov MONITOR 001 Matematika test M-1,. časť forma A Kód školy: Číslo žiaka A B C F H I K L M O P S Kód A B C F H I triedy: 01 0 03 04 05 06 07 08 09 10 11 1 13
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO
ŽILINSKÁ UNIVERZITA V ŽILINE Fakulta špeciálneho inžinierstva Doc. Ing. Jozef KOVAČIK, CSc. Ing. Martin BENIAČ, PhD. PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO Druhé doplnené a upravené vydanie Určené
3. ročník. 1. polrok šk. roka 2016/2017
Príklady z MAT 3. ročník 1. polrok šk. roka 016/017 GONIOMETRIA 1. Načrtnite grafy daných funkcií na intervale 0, : f: y= tg x, g: y = -3.cos x, h: y = sin (x + ) -1. Určte hodnoty ostatných goniometrických
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
AFINNÉ TRANSFORMÁCIE
AFINNÉ TRANSFORMÁCIE Definícia0..Zobrazenie f: R n R m sanazývaafinné,ak zachováva kolinearitu(t.j. priamka sa zobrazí buď na priamku alebo na jeden bod), zachovávadeliacipomer(t.j.akprekolineárnebody
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO Bratislava
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO Bratislava D I P L O M O V Á P R Á C A 2004 Vladimír Palaj Fakulta matematiky, fyziky a informatiky Univerzita Komenského Bratislava Algoritmizácia
4 Reálna funkcia reálnej premennej a jej vlastnosti
Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
PROGRAM GEOGEBRA AKO VHODNÝ MOTIVAČNÝ
ODBORNÁ KONFERENCIA PRIMAS: OBJAVNÉ VYUČOVANIE MATEMATIKY A PRÍRODOVEDNÝCH PREDMETOV PROGRAM GEOGEBRA AKO VHODNÝ MOTIVAČNÝ PROSTRIEDOK VO VYUČOVANÍ GEOMETRIE GABRIELA DUŠOVÁ ABSTRAKT Predmetom tohto príspevku
25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE
25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Margita Vajsáblová ZOBRAZENIA NA KUŽEĽOVÚ PLOCHU POUŽITÉ NA ÚZEMÍ ČR A SR Abstrakt Cieľom príspevku je popis geometrických vlastností kužeľových zobrazení
7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu.
Teória množín To, že medzi množinami A, B existuje bijektívne zobrazenie, budeme symbolicky označovať A B alebo A B. Vtedy hovoríme, že množiny A, B sú ekvivalentné. Hovoríme tiež, že také množiny A, B
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Heslo vypracovala: Mgr. Zuzana Krišandová Astronomický ústav Slovenskej akadémie vied
Sférická astronómia encyklopedické heslo Sférická astronómia časť astronómie, ktorá sa zaoberá matematickými metódami určovania zdanlivých polôh a zdanlivých pohybov vesmírnych telies premietnutých na
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523
9 Planimetria. identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov,
9 Planimetria Ciele Preštudovanie tejto kapitoly vám lepšie umožní: identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov, používať jednotky
KAGEDA AUTORIZOVANÝ DISTRIBÚTOR PRE SLOVENSKÚ REPUBLIKU
DVOJEXCENTRICKÁ KLAPKA je uzatváracia alebo regulačná armatúra pre rozvody vody, horúcej vody, plynov a pary. Všetky klapky vyhovujú smernici PED 97/ 23/EY a sú tiež vyrábané pre výbušné prostredie podľa
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
UČEBNÉ TEXTY. Odborné predmety. Časti strojov. Druhý. Hriadele, čapy. Ing. Romana Trnková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Vzdelávacia oblasť: Predmet: