18 Kmitavý pohyb. 1 = Hz (jednotkou frekvencie je Herz)
|
|
- Πορφύριος Αρβανίτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 8 Kitavý hb - echanický hb sústav charakterizvaný veičinai, ktré sú eridickýi funkciai času - každé zariadenie, ktré ôže vľne bez vnkajšieh ôsbenia) kitať, nazýva sa sciátr - eridick akujúca sa časť kitavéh hbu sa nazýva kit - charakteristické veičin kitavéh hbu: erióda (dba kitu) T: čas, za ktrý rebehne jeden kit a sciátr sa dstane d zvenéh začiatčnéh stavu; eria sa v sekundách frekvencia (kitčet) f: rvná sa čtu kitv, ktré rebehnú za sekundu; je revrátenu hdntu eriód: f, [ f ] s Hz (jedntku frekvencie je Herz) T - kitavý hb ôžee znázrniť v časv diagrae, v ktr sú znázrnené kažité h kitajúceh teesa ak funkcie času; časvý diagra jednduchéh (harnickéh) kitavéh hbu je sínusida 8. ružinvý sciátr - atrí edzi echanické sciátr; na začiatku áe ružinu dĺžk, tút ružinu charakterizuje tuhsť ružin k (d tuhsti ružin závisí jej redĺženie čas kitavéh hbu) - keď na ružinu zavesíe závažie s htnsťu, ružina sa ôsbení tiažvej si F G redĺži ; v dôsedku ružnsti ružin vznikne sia ružnsti F, ktrej veľksť sa v závissti d redĺženia zväčšuje. Sia F á ačný ser ak tiažvá sia F G, ktrá ôsbí na závažie. P ist čase sa ustái v rvnvážnej he O, v ktrej je veľksť tiažvej si a si ružnsti rvnaná, ae ajú ačný ser; atí: F F g k. G - keď ružinu redĺžie, tak začne kitať; výchka z rvnvážnej h sa vá kažitá výchka, vzhľad na rvnvážnu hu nadbúda kadné aj zárné hdnt. V istých kaihch dsahuje najväčšie kadné, ríadne zárne hdnt tút najväčšiu hdntu kažitej výchk nazývae aitúda výchk - re výsednú siu F,. ktrá sôsbuje kitanie, atí: F g k( + ) g k. k k znaienk ínus vjadruje, že sia F a kažitá výchka ajú v každ kaihu ačný ser - hbvá rvnica: d k d a k ω, kde ω je uhvá frekvencia dt dt re uhvú frekvenciu, eriódu a frekvenciu atí: k ω f ω T T, - riešení hbvej rvnice dstanee: ha htnéh bdu v čase: sin ( ω t+ϕ) kažitá rýchsť: k f k F P F G
2 d v ω cs ( + ϕ) dt kažité zrýchenie: d aω sin( + ϕ) ω dt zrýchenie kitavéh hbu je ria úerné kažitej výchke a v každ kaihu á ačný ser ak kažitá výchka výraz v zátvrke ( ω t +ϕ) sa vá fáza a φ je fázvý sun a určuje hdntu veičin harnickéh kitania v začiatčn kaihu (t s) - kitavý hb ôžee dvdiť aj z rvnernéh hbu htnéh bdu kružnici (kitavý hb zdvedá rieetu rvnernéh hbu kružnici v d zvisej h); cu rvnernéh hbu v kružnici ôžee zstrjiť aj fázrvý diagra a a T/ T t - 8. ateatické kvad - atrí edzi echanické sciátr; kvad je htný bd zavesený na tuh vákne zanedbateľnej htnsti; kitanie sôsbuje zžka tiažvej si F t - re siu, ktrá sôsbuje kitanie, atí: F t g sin - re uh enšie ak 5, ôžee užiť: s sin - re siu F t atí: g F t g - hbvá rvnica: g d g d a ω dt dt - re eriódu kitv na ateatick kvade atí: ω g T f g g F F t g 8.3 fzikáne kvad - d fzikán kvad rzuiee každé tees, ktré sa vv vastnej tiaže kýve k vdrvnej si nerechádzajúcej ťažisk - kitanie sôsbuje zžka tiažvej si: F t g - re uh enšie ak 5 atí: F t gϕ
3 znaienk ínus vjadruje, že zžka tiažvej si, ktrá sôsbuje kitanie, á vžd ačný ser ak kažitá výchka - ri fzikán kvade ide v dstate táčavý hb teesa k evnej si, takže žn užiť hbvú rvnicu rtujúceh teesa: M ε d ϕ d ϕ gb gb ε gbϕ ϕ dt dt d ϕ gb ω ϕ, kdeω dt b je vzdiaensť stredu táčania S d ťažiska T - re eriódu kitv kitv atí: + b T gb gb je ent ztrvačnsti teesa vzhľad na s rechádzajúcu ťažisk 8.3. redukvaná dĺžka fzikáneh kvada - redukvaná dĺžka fzikáneh kvada je vzájná vzdiaensť dvch sí nesetrick žených vzhľad na ťažisk, k ktrých sa kýve kvad s rvnaku eriódu - re redukvanú dĺžku atí: b+ - z rvnsti eriód výva: + + b g gb ( + b ) + b b - riešení tejt rvnice dstanee dva krene: a b - tejt úhe vhvuje riešenie, takže re redukvanú dĺžku atí: b + b b+ b b b - redukvanú dĺžku fzikáneh kvada žn interretvať aj ak dĺžku takéh ateatickéh kvada, ktré sa kýve s rvnaku eriódu ak fzikáne kvad: b+ T b g g 8.4 reen energie v echanick sciátre - re tenciánu energiu nanutej ružin atí: W F d k d k... d k E - ri kitaní atí zákn zachvania energie (eridick sa ení tenciána energia sciátra na kinetickú energiu a naak). Cekvá energia sciátra je knštantná a v každ kaihu sa rvná súčtu tenciánej a kinetickej energie E T/4 T/ T φ S b T F t E EK+ EP EP EK t 3
4 Ek + E v + k ω cs + k sin E k + E k cs ω t+ k sin k( cs + sin ) k keď tees dsiahne aitúdu výchk, je kinetická energia nuvá, teda ceú energiu tvrí tenciána energia, re ktrú atí: E k - v rai dchádza k tenéu kitaniu; aitúda sa stune zenšuje (sôsbuje t dr rstredia, trenie); vastné kitanie sciátra je vžd tené 8.5 eektragnetický sciátr - na rzdie d echanickéh sciátra, v ktr sa eridick ení tenciána energia na kinetickú, sa s eektragnetick sciátre ení eektrická energia na agnetickú (najjednduchší ríkad eektrickéh bvdu, ktrý á tiet vastnsti, je bvd s cievku a kndenzátr LC bvd (sciačný bvd) - na začiatku kndenzátr nabijee z zdrja jednsernéh naätia a rijíe h k cievke; za štvrtinu eriód sa vbije a rúd je aián, vzniká indukvané naätie. Za ďašiu štvrtinu eriód sa kndenzátr nabije indukvaný rúd, ae arita je už ačná. V druhej vici eriód sa tent dej akuje ačný ser. aitúd naätia a rúdu sa stune zenšujú, až kitanie zanikne. Príčinu je dr R sciačnéh bvdu, v ktr sa ení energia eektrickéh a agnetickéh ľa na vnútrnú energiu vdiča; nastáva tenie kitv časvé diagra naätia a rúdu v sciačn bvde sú navzáj sunuté štvrtinu eriód. V kaihu, keď je rúd v bvde nuvý, naätie a teda aj nábj na kndenzátre sú najväčšie. naak aiánej hdnte rúdu zdvedá nuvý nábj kndenzátra. T dkazuje, že v eektragnetick sciátre sa eridick ení eektrická energia na agnetickú a naak. - kndenzátr á eektrickú energiu: Q E e QU C - nabitý kndenzátr je zdrj rúdu v cievke. V kí cievk vzniká agnetické e s agneticku energiu: E LI - echanický a eektragnetický ľ atia nasedujúce anaógie: Mechanický sciátr Eektragnetický sciátr kažitá výchka kažitý nábj q rýchsť v kažitý rúd i tenciána energia E eektrická energia E e kinetická energia E k agnetická energia E sia F kažité naätie u htnsť indukčnsť L tuhsť ružin F k - užití týcht anaógií edzi sciátri dstanee: erióda a frekvencia kitv: recirčná hdnta kaacit u u C q i 4
5 T LC f LC kažitý nábj sa ení dľa vzťahu: q Q cs uhvá frekvencia vastnéh kitania sciačnéh bvdu: ω LC kažité naätie edzi atňai kndenzátra: Q u cs U cs C kažitý rúd v sciačn bvde je sunutý začiatčnú fázu ϕ : i I cs I sin 8.6 energia echanickéh a eektragnetickéh sciátra - echanický sciátr: tenciána energia: E k kinetická energia: Ek v - eektragnetický sciátr: Q eektrická energia: QU C agnetická energia: E LI E e 8.7 nútené kitanie sciátra - nútené kitanie vzniká ôsbení si aeb naätia na sciátr aj na bjekt, ktré neajú vastnsť sciátra (netené harnické kitanie vznikne, keď sa strat nahrádzajú čas ceej eriód; t žn dsiahnuť, keď na sciátr ôsbí neretržite harnická sia F F sin aeb harnické naätie U U sin ; ôsbení tejt si, ríadne naätia, je v sciátre vnucvané netené harnické kitanie, ktré sa vá nútené kitanie sciátra). - frekvencia nútenéh kitania závisí d frekvencie ôsbiacej si, ríadne naätia, a nezávisí d vastnsti kitajúceh bjektu. Nútené kitanie je netené reznancia sciátra - aitúda nútených kitv dsahuje najväčšiu hdntu v kaihu, keď frekvencia nútených kitv dsiahne vastnú frekvenciu sciátra tát U frekvencia sa nazýva reznančná frekvencia; ri tejt frekvencii nastane reznancia sciátra - aitúda nútených kitv ri reznančnej frekvencii je väčšia, ak b zdveda aitúde si, rí. naätia, ktré kitanie sôsbi ω ω - reznanciu ôžee važvať za vzájné ôsbenie dvch sciátrv. eden je zdrj nútenéh kitania (sciátr) a druhý sa ôsbení zdrja nútene rzkitá (reznátr) 5
6 8.8 skadanie kitv 8.8. kit v jednej riake - izchrónne kit: izchrónne kit ajú rvnakú uhvú frekvenciu (eriódu) ôsbia dve si v jednej riake; ak b ôsbii sastatne, tak be b vvai kit cs( + ϕ) cs( + ϕ ) výsedný hb je daný sčítaní bch rvníc (dstanee äť harnickú funkciu: + cs+ ϕ + cs+ ϕ ( ) ( ) cs.csϕ sin.+ cs.csϕ sin. cs. ( csϕ+ csϕ ) sin. ( + ) csϕ. zavádzae substitúciu:.csϕ csϕ+ csϕ. + dsadenie (dstanee výsednú rvnicu harnickéh hbu): cs.csϕ sin. cs( + ϕ) výsedná fáza (dstanee ju z substitúcií): + tgϕ csϕ csϕ+ csϕ + ϕ arctg csϕ+ csϕ výsedná aitúda (ucníe be substitúcie a sčítae ich): sin ϕ sin ϕ+ + sin ϕ cs ϕ cs ϕ + csϕ csϕ + cs ϕ cs cs ( ϕ ϕ) ( ϕ ϕ ) - neizchrónne kit: kit, ktré ajú rvnaké aitúd a fázvé sun, íšia sa uhvu frekvenciu ôsbia dve si v jednej riake, ktré sôsbujú kit: cs( + ϕ) cs( ω t+ ϕ) výsedný hb je daný sčítaní bch rvníc (dstanee výsednú rvnicu kitavéh hbu): + csω t+ ϕ + csω t+ ϕ ( ) ( ) ωω ω+ ω cs t.cs + ϕ výsedná uhvá frekvencia: ω+ ω 4 ω T ω ω+ ω výsedná aitúda: 6
7 ' ωω t ri rvnateľných uhvých frekvenciách vznikajú ráz: výsedná aitúda závisí d času t, a ret re eriódu zen aitúd atí: ' 4 T ' ω ωω re eriódu rázu atí: ' T T r ráz ω ω - ké kit: ôsbia dve si ktré sú na seba ké áe kit, ktré ajú rvnakú uhvú frekvenciu, ae íšia sa aitúdu, fázvý sun cs( + ) + ) z týcht rvníc trebujee vúčiť časvé čen (najrv cs, t sin, výsedné rvnice ucníe a sčítae): cs.cs sin.sin /.cs cs.cs sin.sin /.( cs ) cs cs.cs cs sin.sin.cs ( ) cs cs.cs cs + sin.sin.cs ( ) rvnice () a () sčítae: cs cs sin.sin( ) ( 3) cs.cs sin.sin /.sin cs.cs sin.sin /.( sin ) sin cs.cs sin sin.sin.sin ( 4) sin cs.cs sin + sin.sin.sin ( 5) rvnice (4) a (5) sčítae: sin sin cs.sin( ) ( 6) rvnice (3) a (6) ucníe: cs cs cs + cs sin.sin ( ) ( 7) sin sin sin + sin cs.sin ( ) ( 8) rvnice (7) a (8) sčítae a dstanee výsednú rvnicu trajektórie hbu: 7
8 8 ( ) ( ) + sin cs dľa rzdieu fáz rzišujee rôzne ríad: + v tt ríade výsedná trajektória á tvar úsečk výsedná trajektória á tvar úsečk 3 + výsedná trajektória á tvar eis ak,. výsedné kit sú v sere hdinvých ručičiek ak 3, výsedný hb je rti seru hdinvých ručičiek φ tg ϕ
14 Obvod striedavého prúdu
4 Obvd striedavéh prúdu - nútené elektragnetické kitanie á veľký význa naä pri prense elektricke energie a v rzličných elektrnických zariadeniach. V týcht prípadch elektragnetické kitanie nazývae striedavý
9 Štruktúra a vlastnosti plynov
9 Štruktúra a vlastnsti lynv 9. ideálny lyn - ri dvdzvaní záknv latných re lyn sa naiest reálneh lynu zavádza zjedndušený del, ktrý nazývae ideálny lyn - lekulách ideálneh lynu vyslvujee tri redklady:
11 Štruktúra a vlastnosti kvapalín
11 Štruktúra a vlastnsti kvapalín - štruktúra kvapalných látk je pdbná štruktúre arfných látk - každá častica kvapaliny kitá kl istej rvnvážnej plhy a p veľi krátk čase (rádv 1 ns) zauje nvú rvnvážnu plhu.
Lineárne funkcie. Lineárna funkcia je každá funkcia určená predpisom f: y = a.x + b, kde a, b R a.a 0 D(f) = R. a > 0 a < 0
Lineárne funkcie Lineárna funkcia je každá funkcia určená predpism f: a. b, kde a, b R a.a 0 D(f) R a > 0 a < 0 Vlastnsti lineárnej funkcie : D(f) R, H(f) R D(f) R, H(f) R - rastúca - klesajúca - nie je
Pohyb vozíka. A. Pohyb vďaka tiaži závažia. V tomto prípade sila, ktorá spôsobuje rovnomerne zrýchlený pohyb vozíka je rovná tiaži závažia: F = G zav.
Phyb vzíka Rvnmerný phyb vzíka sa uskutčňuje pri knštantnej rýchlsti v, ktrá sa nemení s časm. Pri takmt phybe vzík za určitý čas t prejde dráhu s s = v t (). V prípade, že rýchlsť vzíka rastie rvnmerne
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
4 Fyzikálne polia. - forma hmoty, ktorej základným prejavom je silové pôsobenie na všetky hmotné objekty
4 Fyzikáln plia 4.1 ravitačné pl - fra hty, ktrj záklaný prjav j silvé pôsbni na vštky htné bjkty 4.1.1 intnzita ravitačnéh pľa - intnzita ravitačnéh pľa charaktrizuj silvé pôsbni ravitačnéh pľa v an ist
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
7 Druhy energie a ich vzájomné premeny
7 Dru nrgi a i vájmné rmn - vličina nrgia araktriuj itý tav útav (tavvá vličina) - nrgia a mní ri intrakii útav klím a ri dj vnútri útav - nrgia j t nť knať ráu 7. maniká ráa - vličina ráa dj araktriuj
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
4 Fyzikálne polia. - forma hmoty, ktorej základným prejavom je silové pôsobenie na všetky hmotné objekty
4 yzikálne plia 4.1 avitačné ple - fa hty, ktej záklaný pejav je silvé pôsbenie na všetky htné bjekty 4.1.1 Newtnv avitačný zákn - Newtnv avitačný zákn: Dva htné by sa navzáj piťahujú vnak veľkýi silai,
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
ZONES.SK Zóny pre každého študenta
/5 MO 30: KRUŽNICA Kružnica: Kružnicu s stredm S a plmerm r > 0 nazývame mnžinu všetkých bdv X v rvine, pre ktré platí SX = r. bvd = O = πr Kruh: Mnžinu všetkých bdv X v rvine, pre ktré platí SX r nazývame
13 Elektrický prúd v látkach
13 Elektrický prúd v látkach - z hľadiska vedenia elektrickéh prúdu rzdeľujeme látky na vdiče (merný elektrický dpr je rádv 10-7 až 10-8 Ω.m), plvdiče (merný elektrický dpr je rádv v intervale 10 - až
Fyzika 4 roč. Gymnázium prvý polrok Vlnové vlastnosti svetla
Fyzika 4 rč. Gymnázium prvý plrk Vlnvé vlastnsti svetla Svetl je elektrmagnetické žiarenie, ktré je vaka svjej vlnvej dĺžke viditeľné ľudským km. Všebecnejšie je svetl elektrmagnetické vlnenie z intervalu
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
1 Kinematika hmotného bodu
Kinemik hmnéh bdu - kinemik berá určením plôh bd ich mien če (kinemik phb ele piuje, neberá príčinmi phbu) - pri ereickm šúdiu mechnickéh phbu (prce, pri krm mení plh jednéh ele hľdm n iné ele) ád pjem
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
6. Mocniny a odmocniny
6 Moci odoci Číslo zýve oceec (leo zákld oci), s zýv ociteľ (leo epoet) Číslo s zýv -tá oci čísl Moci s piodzeý epoeto pe ľuovoľé eále číslo pe kždé piodzeé číslo je v ožie eálch čísel defiová -tá oci
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Magneti opis i namena Opis: Napon: Snaga: Cena:
Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet
! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#
! "# " #!$ %""! &'( )'&* $!"#$% &$'#( )*+#'(,#* /$##+(#0 &1$( #& 23 #(&&# +, -. % ($4 ($4 ##!$2 $567 56 $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&# 6 < 6 6 6 66 6< <
Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013)
Hyomechanika II Viskózna kvaaina Povchové naäie Kaiáne javy Donkové maeiáy k enáškam z yziky I e E Dušan PUDIŠ (013 Lamináne vs. Tubuenné úenie Pi úení eánej kvaainy ôsobia mezi voma susenými vsvami i
ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι V 86
ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 86 ΑΣΚΗΣΗ. Ένα κύκλωµα RC αποτελείται από µια αντίσταση R 5Ω και έναν πυκνωτή χωρητικότητας C σε σειρά. Αν το ρεύµα προηγείται της τάσης κατά 6 ο και η κυκλική συχνότητα της πηγής είναι
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
PDF created with pdffactory Pro trial version
7.. 03 Na rozraní sla a vody je ovrc vody zarivený Na rozraní sla a ortuti je ovrc ortuti zarivený JAY NA OZHANÍ PENÉHO TELES A KAPALINY alebo O ailárnej elevácii a deresii Povrc vaaliny je dutý, vaalina
Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.
Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
21 Optické zobrazovanie
Optické zbrzvnie - pd pticku sústvu rzumieme všebecne sústvu ptických prstredí ich rzhrní, ktré meni smer chdu lúčv. Pstup, ktrým získvme ptické brz bdv, predmetv, nzývme ptické zbrzvnie - keď lúče tvri
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I
. Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne
Vn 1: NHC LI MT S KIN TH C LP 10
Vn : NHC LI MT S KIN TH C LP 0 Mc ích ca vn này là nhc li mt s kin thc ã hc lp 0, nhng có liên quan trc tip n vn s hc trng lp. Vì thi gian không nhiu (khng tit) nên chúng ta s không nhc li lý thuyt mà
Japanese Fuzzy String Matching in Cooking Recipes
1 Japanese Fuzzy String Matching in Cooking Recipes Michiko Yasukawa 1 In this paper, we propose Japanese fuzzy string matching in cooking recipes. Cooking recipes contain spelling variants for recipe
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ
ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ 5. ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΛΟΓΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Στα προηγούμενα κεφάλαια παρουσιάσαμε την έννοια της συνάρτησης συστήματος για αναλογικά
Magneti opis i namena Opis: Napon: Snaga: Cena:
Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet
THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG
Khó học LTðH KT-: ôn Tán (Thầy Lê á Trần Phương) THỂ TÍH KHỐ HÓP (Phần 4) ðáp Á À TẬP TỰ LUYỆ Giá viên: LÊ Á TRẦ PHƯƠG ác ài tập trng tài liệu này ñược iên sạn kèm the ài giảng Thể tich khối chóp (Phần
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
..,..,.. ! " # $ % #! & %
..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,
1. ÚVOD Merací kanál Rozdelenie senzorov Generácie senzorov
1. ÚVOD pžiadavky na snímanie rôznych veličín vhdné senzry - rôzne druhy senzrv vstupné časti - vlastnsti, mžnsti, pruchvé veličiny 1.1. Merací kanál SEN PREV Prcesr Výst. jedn. indikácia registrácia regulácia
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
ΙΑΦΑ Φ ΝΕΙ Ε ΕΣ Ε ΧΗΜΕ Μ Ι Ε ΑΣ ΓΥΜΝ Μ ΑΣΙΟΥ H
Hταξινόµηση των στοιχείων τάξη Γ γυµνασίου Αναγκαιότητα ταξινόµησης των στοιχείων Μέχρι το 1700 µ.χ. ο άνθρωπος είχε ανακαλύψει µόνο 15 στοιχείακαι το 1860 µ.χ. περίπου 60στοιχεία. Σηµαντικοί Χηµικοί της
1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B
. písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c
Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.
(, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Φυσική ΙΙΙ. Ενότητα 6: Εναλλασσόμενα Ρεύματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Φυσική ΙΙΙ Ενότητα 6: Εναλλασσόμενα Ρεύματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Εναλλασσόμενη τάση V=V sinωt Πλεονεκτήματα ω=πf όπου f η συχνότητα V το πλάτος Μεταφορά ισχύος. Μετασχηματίζεται
Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt)
Θέμα 1 ο Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014 Για το κύκλωμα ΕΡ του διπλανού σχήματος δίνονται τα εξής: v ( ωt 2 230 sin (
Meren virsi Eino Leino
œ_ œ _ q = 72 Meren virsi Eino Leino Toivo Kuua o. 11/2 (1909) c c F c Kun ne F iu L? c œ J J J J œ_ œ_ nœ_ Min ne rien nät, vie ri vä vir ta? Kun ne c c F c Kun ne F iu L? c œ J J J J œ_ œ_ nœ_ Min ne
ΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1
ΩΜΤΡΙ ΛΥΚΙΟΥ ΩΜΤΡΙ ΘΜ o ΙΩΝΙΣΜ. Να αποδείξετε ότι : Ι) διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΙΙ) ν μια διάμεσος τριγώνου είναι ίση με το μισό
Κεφάλαιο 13. Περιοδική Κίνηση
Κεφάλαιο 13 Περιοδική Κίνηση Περιοδική Κίνηση Η ταλαντωτική κίνηση είναι σημαντική Είναι μια πάρα πολύ κοινή κίνηση. Βάση για κατανόηση της κυματικής κίνησης Κάθε σύστημα που βρίσκεται σε ευσταθή ισορροπία
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)
ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων
Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων ΕΙΣΑΓΩΓΗ - Το μάθημα αυτό πραγματεύεται θεμελιώδεις έννοιες των γραμμών μεταφοράς στην επιστημονική περιοχή των ηλεκτρονικών συστημάτων
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Κεφάλαιο 1: Κινηματική των Ταλαντώσεων
Κεφάλαιο : Κινηματική των Ταλαντώσεων Κεφάλαιο : Κινηματική των Ταλαντώσεων. Φαινομενολογικός ορισμός ταλαντώσεων Μεταβολές σε φυσικά φαινόμενα που χαρακτηρίζονται από μια κανονική επανάληψη κατά ορισμένα
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ
ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΚΑΤΑΛΟΓΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΕΣΤ ΙΚΑΝΟΤΗΤΩΝ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΩΡΟΜΙΣΘΙΟΥ ΠΡΟΣΩΠΙΚΟΥ ΒΟΗΘΟΙ ΤΗΛΕΞΥΠΗΡΕΤΗΣΗΣ (ΑΡ. ΠΡΟΚΗΡΥΞΗΣ: 2/2017) (ΛΕΥΚΩΣΙΑ
Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS: Matematické kyvadlo
Názov projektu: CIV Centru Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 005/1-046 ITMS: 113010011 Úvod Mateatické kvadlo Miroslav Šedivý FMFI UK Poje ateatické kvadlo sa síce nenachádza v povinných
' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4 $!&$3% 2!% #!.1 & &!" //! &-!!
..!! "#$% #&" 535.34 ' ( )* *,,, ) - ". &!: 1.4.7 &/#&$&& &!&11 5.7.1 $#/&! 1!#&, #/&!#&3 &"&!3, #&- &!#&, "#4 $!&$3%!% #!.1 & &!" //! &-!!% 3 #&$&/!: /&!&# &-!!%, "#&&# 56$.., //! &-!!% ).. &$ 13 .
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Ασκήσεις. 5Β: 1s 2 2s 2 2p 2, β) 10 Νe: 1s 2 2s 2 2p 4 3s 2, γ) 19 Κ: 1s 2 2s 2 2p 6 3s 2 3p 6,
Ασκήσεις 1. Να γίνει η ηλεκτρονιακή δόμηση για τα ακόλουθα άτομα στη θεμελιώδη τους κατάσταση: 29Cu, 33As, 38Sr, 42Mo, 55Cs. Πόσα ηλεκτρόνια έχει η εξωτερική τους στιβάδα και πόσα ασύζευκτα ηλεκτρόνια
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x
Η ΑΝΕΠ Η Η Ν Ω Ν Ω ΑΘΗ Α ΑΝIV Ε ε ά ει Ν επ ε β ί 5 (3-9-5) Επώ : Ό α: ΑΝ Ν: ΘΕ ΑΝ Τα π α Chebyshev T ( ) α π ω μ ( ) y y y (,,, ) π [,] Η ω α α α π α μ / d d T ( ) Tm ( ) [ T ( )] Α απ f ( ) 3, [,], α
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
Skrutka je valcovité teleso, na obvode ktorého je závit skrutkovice.
. SKRUTKY Skrutky rzdeľujeme dľa účelu na krutky jvaie re tatiké zaťaženie, krutky jvaie re dynamiké zaťaženie a krutky hybvé. Z uvedenéh je zrejmé, že jvaie krutky lúžia re ľahk rzberateľné je. Phybvé
!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%
" #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @
SIEMENS Squirrel Cage Induction Standard Three-phase Motors
- SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
20 Elektromagnetické vlnenie a žiarenie
Eleragneé vlnene a žarene - zdrj eleragneéh vlnena je ajú eleragneý slár. eleragneé vlnene.. psupná eleragneá vlna - eď áe zapjený nízrevenčný zdrj, pre napäe a prúd plaí: u U snω sn( ω ϕ) predsavujee
2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <
K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max
Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ
Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.
Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)
cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =
ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos
K r i t i k i P u b l i s h i n g - d r a f t
T ij = A Y i Y j /D ij A T ij i j Y i i Y j j D ij T ij = A Y α Y b i j /D c ij b c b c a LW a LC L P F Q W Q C a LW Q W a LC Q C L a LC Q C + a LW Q W L P F L/a LC L/a LW 1.000/2 = 500
Τιμοκατάλογος αυτοκινήτων NISSAN
1 / 6 NEW MICRA (K14) 5dr 1.0lt 73hp Βενζίνη (Euro 6) 1.0lt 5dr Energy Z1E 103 0,98 101 12.690 450 1.0lt 5dr Acenta Z1A 103 0,98 101 13.690 450 1.0lt 5dr Acenta Εσωτερικό ΜΠΛΕ Z1AB 103 0,98 101 13.990