Povrch a objem ihlana
|
|
- Ζηνοβία Βάμβας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky so začiatočným bodom V, vznikne nekonečná ihlanová plocha nekonečný ihlan. Ak teraz zobereme rovinu, ktorá prechádza ihlanovou plochou, vznikne ihlan, ako časť nekonečnej ihlanovej plochy medzi rovinou a vrcholom. podstava (ABCD) mnohouholník (podobný s určujúcim útvarom) výška: v vzdialenosť vrcholu od podstavy hrana podstavy (podstavná hrana: AB, BC, CD, DA) každá strana podstavy bočná hrana (AV, BV, CV, DV) spojnica vrcholov podstavy s vrcholom ihlana bočná stena (ABV, BCV, ) sú ohraničené susednými bočnými hranami a podstavnou hranou; sú to trojuholníky; ich počet sa rovná počtu vrcholov (strán) podstavy plášť ihlana súhrn bočných stien kolmý ihlan spojnica vrchol-stred podstavy (ťažisko) je kolmá na podstavu (totožná s výškou)
2 kosý (šikmý) ihlan ak ihlan nie je kolmý pravidelný n-boký ihlan podstava je pravidelný n-uholník a spojnica stred podstavy-vrchol je kolmá na podstavu (totožná s výškou) štvorsten trojboký ihlan pravidelný štvorsten pravidelný trojboký kolmý ihlan, ktorý má všetky hrany zhodné jedno z piatich pravidelných (Platónskych) telies pyramída pravidelný štvorboký kolmý ihlan všeobecný ihlan: S = Sp + Spl
3 V = Sp.v pravidelný štvorsten: S = 3a 2 V = a3 v = a2 = a2 pyramída: S = a 2 + 2a V = a2.v príklad: Daný je kolmý pravidelný štvorboký ihlan: a = 10, s = 13. Vypočítajte povrch a objem. vypočítame obsah podstavy (štvorca) Sp = a 2 = 10 2 = 100 vypočítame výšku steny pytagorovou vetou v = s 2 = = = 144 vs = 12 vypočítame jednu bočnú stenu a potom povrch plášťa ako štvornásobok S =. =. = 60 Spl = 4.S = 4.60 = 240 celý povrch je S = Sp + Spl = = 340 osový rez cez stredy protiľahlých hrán podstavy obsahuje výšku telesa, výšku steny a polovicu hrany podstavy pytagorová veta v 2 = v = = = 119 v = 119 = 10,91 takže objem bude V = Sp.v = ,91 = 363,62 Daný je kolmý pravidelný trojboký ihlan: V = 643, v = 12. Vypočítajte hranu podstavy a povrch. z objemu určíme obsah podstavy V = Sp.v Sp = =. = 160,75 z obsahu rovnostranného trojuholníka vypočítame hranu podstavy Sp =.a2 a 2 = =., = 371,24 a = 19,27 použijeme pytagorovú vetu na výpočet výšky podstavy
4 v = a 2 = 19,27 2 9,63 2 = 371,24 92,81 = 278,43 va = 16,69 osový rez výškou podstavy obsahuje výšku telesa, výšku steny a tretinu výšky podstavy pytagorová veta v = v 2 + = ,56 2 = ,94 = 174,94 vs = 13,23 bočné steny (3) sú trojuholníky obsah jedného bude S =. =,., = 127,42 Spl = 3.S = 3.127,42 = 382,26 povrch telesa S = Sp + Spl = 160, ,26 = 543,01 Daný je kolmý pravidelný trojboký ihlan: a, a = 5 cm; v = 8 cm; vypočítajte V, Spl b, V = 173,2 cm 3 ; v = 12 cm; vypočítajte a, s Daný je kolmý pravidelný ihlan: a, štvorboký, a = 6,5 cm; s = 7,5 cm; vypočítajte V, Spl b, štvorboký, V = 212 m 3 ; a = 7,2 m; vypočítajte v, s c, šesťboký, a = 1,8 m; v = 2,4 m; vypočítajte Sp, V, Spl Výška pravidelného päťbokého ihlana je rovnako dlhá ako hrana podstavy, a to 20 cm. Vypočítajte a, objem, b, povrch ihlana. Vypočítajte objem kolmého ihlana, ktorého bočná hrana dĺžky 5 cm zviera so štvorcovou podstavou uhol s veľkosťou 60. Povrch a objem kužeľa D. Daný je krivkami ohraničený rovinný útvar (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine rovinného útvaru. Ak hraničnými bodmi útvaru vedieme polpriamky so začiatočným bodom V, vznikne nekonečná kužeľová plocha nekonečný kužeľ. Ak teraz zobereme rovinu, ktorá prechádza kužeľovou plochou, vznikne kužeľ, ako časť nekonečnej kužeľovej plochy medzi rovinou a vrcholom.
5 podstava krivkami ohraničený rovinný útvar výška: v vzdialenosť vrcholu od podstavy strana kužeľa spojnica hraničných bodov podstavy s vrcholom ihlana plášť kužeľa súhrn strán kolmý kužeľ spojnica vrchol-stred podstavy (ťažisko) je kolmá na podstavu (totožná s výškou) kosý (šikmý) kužeľ ak kužeľ nie je kolmý
6 rotačný kužeľ kolmý kužeľ s kruhovou podstavou: plášť je kruhový výsek osový rez je rovnoramenný trojuholník všeobecný kužeľ: S = Sp + Spl V = Sp.v rotačný kužeľ: S = πr 2 + πrs = πr(r + s) Dô. V = πr2 v s 2 = r 2 + v 2 obsah plášťa vypočítame ako obsah kruhového výseku dĺžka kružnicového oblúka (polomer kruhového výseku sa rovná strany rotačného kužeľa: s) je vlastne obvod podstavy l =.ω o = 2πr l = o.ω = 2πr z tohto vzťahu vyjadríme stredový uhol
7 príklad:.ω = 2πr /:2π.ω = r obsah kruhového výseku Spl = SKV =.ω dosadíme stredový uhol Spl =.#. = π.s.r ω = #. /. Daný je rotačný kužeľ: r = 3,7; v = 8,8. Vypočítajte V, S. vypočítame obsah podstavy (kruhu) Sp = πr 2 = π.3,7 2 = 43,01 z toho môžeme objem V = Sp.v =.43,01.8,8 = 126,16 na výpočet povrchu plášťa (kruhového výseku) potrebujeme vypočítať stranu s 2 = r 2 + v 2 = 3, ,8 2 = 13, ,44 = 91,13 s = 9,55 Spl = πrs = π.3,7.9,55 = 110,96 povrch je súčet obsahu podstavy a plášťa S = Sp + Spl = 43, ,96 = 153,97 Z kruhového plechu s polomerom dĺžky 3 treba vystrihnúť časť so stredovým uhlom 110, zvinúť a zospájkovať do tvaru kužeľa. Vypočítajte objem kužeľa. polomer pôvodného kruhu (kruhového výseku) bude strana rotačného kužeľa s = 3 dĺžka kružnicového oblúka (hranica výseku) sa rovná obvodu podstavy kužeľa op = l = $% $..ω =.110 = 5,76 z obvodu vieme vypočítať polomer podstavy op = 2πr r = & =, = = 0,917 $ $ ešte výšku telesa treba určiť v 2 = s 2 r 2 = 3 2 0,917 2 = 9 0,840 = 8,160 v = 2,86 V = πr2 v = π.0,9172.2,86 = 2,514 Určte objem kosého kruhového kužeľa, ak je polomer podstavy 32, dĺžka najkratšej strany 36, najdlhšej strany 42.
8 osový rez kužeľa je všeobecný trojuholník poznáme všetky strany kosínusovou vetou vypočítame uhol oproti výšky s = (2r) 2 + s 2.2r.s2.cos α cos α = % ( ) % α = 31 54' =. (.. = = 0,849 v pravouhlom trojuholníku použijeme goniometrickú funkciu na výpočet výšky telesa sin α = v = s2.sin α = 42.sin 31 54' = 22,20 a môžeme dosadiť do vzorca V = πr2 v = π ,20 = ,7 Kosý kruhový kužeľ má polomer podstavy 15. Najdlhšia strana má od podstavy odchýlku 55. Odchýlka osi od podstavy je 75. Vypočítajte objem kužeľa. označme uhly: α = 55 ; φ = 75 osový rez kužeľa je všeobecný trojuholník vypočítame tretí uhol β = 180 (α + φ ) = 180 ( ) = 20 vo všeobecnom trojuholníku sínusovou vetou vypočítame najprv najdlhšiu stranu s2 = % +,-. +,/ %.+,-. s2 = =.+, = 42,36 +,/ +, potom v pravouhlom trojuholníku využijeme goniometrickú funkciu sin α = v = s2.sin α = 42,36.sin 55 = 34,70 takže objem V = πr2 v = π ,70 = 8 176,3 Daný je rotačný kužeľ: a, r = 2,4 m; v = 5,5 m; vypočítajte V, s, Spl b, V = 3 dm 3 ; r = 1,5 dm; vypočítajte v, s, S c, r = 6,8 cm; s = 14,4 cm; vypočítajte Sp, v, V d, Spl = 120 cm 2 ; r = 4 cm; vypočítajte s, v, V Z kruhového plechu s priemerom dĺžky 1 m treba vystrihnúť časť so stredovým uhlom 150, zvinúť a zospájkovať do tvaru kužeľa. a, Vypočítajte veľkosť plášťa kužeľa. b, Aký vysoký je kužeľ? Povrch kužeľa je 235,5 cm 2, osový rez je rovnostranný trojuholník. Vypočítajte objem kužeľa.
9 Určte objem kosého kruhového kužeľa, ak je polomer podstavy 18 cm, dĺžka najkratšej strany 25 cm, najdlhšej strany 29 cm.
Povrch a objem hranola
Povrch a objem hranola D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a priamka, ktorá nie je rovnobežná s rovinou mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme priamky rovnobežné
Povrch a objem zrezaného ihlana
Povrch a objem zrezaného ihlana Ak je daný jeden ihlan a zobereme rovinu rovnobežnú s postavou, prechádzajúcu ihlanom, potom táto rovina rozdelí teleso na dve telesá. Jedno teleso je ihlan (pôvodný zmenšený
ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol
II. ZÁKLADNÉ GEOMETRICKÉ TELESÁ Hranolová plocha Hranolový priestor Hranol Definícia II.1 Nech P n je ľubovoľný n-uholník v rovine α a l je priamka rôznobežná s rovinou α. Hranolová plocha - množina bodov
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Obvod a obsah nepravidelného a pravidelného mnohouholníka
Obvod a obsah nepravidelného a pravidelného mnohouholníka Ak máme nepravidelný mnohouholník, tak skúsime ho rozdeliť na útvary, ktorým vieme vypočítať obsah z daných údajov najvšeobecnejší spôsob: rozdeliť
Obvod a obsah rovinných útvarov
Obvod a obsah rovinných útvarov Z topologického hľadiska bod môže byť vnútorný, hraničný a vonkajší vzhľadom na nejaký rovinný útvar. D. Bod je vnútorný, ak môžeme nájsť taký polomer r, že kruh so stredom
Objem a povrch telies
Objem a povrch telies Kváder má: 8 vrcholov označujeme ich veľkými tlačenými písmenami 12 hrán hrany môžu mať tri veľkosti - a, b, c 6 stien steny sú tvorené obdĺžnikmi s rozmermi a, b, c Veľkosti troch
16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
4. POVRCH A OBJEM TELIES
Mgr. Mariana Sahajdová 4. POVRCH A OBJEM TELIES Obsah tematického celku: Povrch a objem kocky, kvádra a hranola Povrch a objem ihlana 4.1 Povrch a objem kocky, kvádra a hranola Základné pojmy povrch kocky
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
1. Trojuholník - definícia
1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných
Tematický výchovno-vzdelávací plán k pracovnému zošitu
Február Mesiac Týždeň Tematický výchovno-vzdelávací plán k pracovnému zošitu NOVÝ POMOCNÍK Z MATEMATIKY 8, časť Stupeň vzdelania: ISCED 2 - nižšie sekundárne vzdelávanie Vzdelávacia oblasť: Matematika
9 Planimetria. identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov,
9 Planimetria Ciele Preštudovanie tejto kapitoly vám lepšie umožní: identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov, používať jednotky
2. Aký obsah má vyfarbený útvar? Dĺţka strany štvorca je 3 m.
Dĺžka kružnice, obsah kruhu 1. Na obrázku je kruţnica vpísaná do štvorca so stranou 4cm a štyri kruţnicové oblúky so stredmi vo vrcholoch štvorca. ký obsah má vyfarbený útvar? 4 + π cm 16 - π cm 8π 16
Stereometria Základné stereometrické pojmy Základné pojmy: Základné vzťahy: (incidencie) Veta 1: Def: Veta 2:
Stereometria 1. K úlohe č.1 v príklade vidíte sklenenú kocku, na ktorej je natiahnutý drôt. Vedľa vidíte 3 pohľady na túto kocku zhora, spredu a z pravého boku. Pre ďalšie kocky nakreslite takéto 3 pohľady.
Objem a povrch rotačného valca
Ma-Te-03-T List 1 Objem a povrch rotačného valca RNDr. Marián Macko Ž: Prečo má valec prívlastok rotačný? U: Vysvetľuje podstatu vzniku tohto telesa. Rotačný valec vznikne rotáciou, čiže otočením obdĺžnika
9 Planimetria. 9.1 Uhol. Matematický kufrík
Matematický kufrík 89 9 Planimetria 9.1 Uhol Pojem uhol patrí k najzákladnejším pojmom geometrie. Uhol môžeme definovať niekoľkými rôznymi spôsobmi, z ktorých má každý svoje opodstatnenie. Jedna zo základných
Objem a povrch zrezaného ihlana a zrezaného rotačného kužeľa
Ma-Te-06-T List 1 Objem a povrch zrezaného ihlana a zrezaného rotačného kužeľa RNDr. Marián Macko U: Počul si už niekedy o zrezanom rotačnom kuželi? Ž: O rotačnom kuželi som už počul, ale pojem zrezaný
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Objem a povrch valca, kužeľa, ihlana a gule
Objem a povrch valca, kužeľa, ihlana a ule 1. Plášť valca má rovnaký obsah ako jedna jeho podstav. Valec je vysoký 4 dm. Aký polomer má podstav tohto valca? 2. Vypočítaj objem a povrch valca, ktorého polomer
GEOMETRIA 4 KONŠTRUKČNÁ GEOMETRIA
GEOMETRIA 4 KONŠTRUKČNÁ GEOMETRIA Obsahom predmetu je súhrn poznatkov viacerých geometrických disciplín od elementárnej planimetrie a stereometrie, syntetickej deskriptívnej geometrie, cez analytickú a
V každom prípade zapíšte vzájomnú polohu dvoch kružníc.
Kruh, kružnica 1. Polomer kružnice má veľkosť r = 5 cm, jej tetiva t = 8 cm. Vypočítaj vzdialenosť tejto tetivy od stredu kružnice.. Obsah kruhu je 78,5 cm. ký je jeho priemer? 3. Polomer kružnice k má
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
Ma-Te-05-T List 1. Objem a povrch gule. RNDr. Marián Macko
Ma-Te-05-T List 1 Objem a povrch gule RNDr. Marián Macko U: Guľu a guľovú plochu môžeme definovať ako analógie istých rovinných geometrických útvarov. Ž: Máte na mysli kružnicu a kruh? U: Áno. Guľa je
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
Súradnicová sústava (karteziánska)
Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme
1. Stereometria. 1.1 Premena jednotiek :10 :10 :10 :1000. Jednotky dĺžky: Jednotky obsahu :
1. Stereometria 1.1 Premena jednotiek Jednotky dĺžky: :10 :10 :10 :1000 Jednotky obsahu : 1 Jednotky objemu: : 1000 : 1000 : 1000 : 1000 000 000 : 10 : 10 : 10 : 100 Cvičenia: 1) Premeňte na uvedené jednotky:
Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.
Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník
1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5
Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku
Ma-Go-01-T List 1 Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku RNDr. Marián Macko U: Pojem goniometrické funkcie v preklade z gréčtiny znamená funkcie merajúce uhly. Dajú sa použiť v pravouhlom
Planárne a rovinné grafy
Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia
CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z DESKRIPTÍVNEJ GEOMETRIE
ŠTÁTNY PEDAGOGICKÝ ÚSTAV CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z DESKRIPTÍVNEJ GEOMETRIE BRATISLAVA 2012 Schválilo Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky dňa
stereometria - študuje geometrické útvary v priestore.
Geometria Geometria (z gréckych slov Geo = zem a metro = miera, t.j. zememeračstvo) je disciplína matematiky prvýkrát spopularizovaná medzi starovekými grékmi Tálesom (okolo 624-547 pred Kr.), ktorý sa
Individuálny študijný plán M A T E M A T I K A - KVARTA 2012/2013
Individuálny študijný plán M A T E M A T I K A - KVARTA 2012/2013 ( Číslovanie kapitol je kvôli lepšej prehľadnosti podľa učebníc. ) Odporúčam: www.oskole.sk cez učivá, predmety a ročník navštíviť príslušné
3. ročník. 1. polrok šk. roka 2016/2017
Príklady z MAT 3. ročník 1. polrok šk. roka 016/017 GONIOMETRIA 1. Načrtnite grafy daných funkcií na intervale 0, : f: y= tg x, g: y = -3.cos x, h: y = sin (x + ) -1. Určte hodnoty ostatných goniometrických
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
ZONES.SK Zóny pre každého študenta
ZONES.SK Zón pe každého študenta http://www.zones.sk /6 MO 8: TELESÁ MO 8: TELESÁ Hanol: majme piestoe oinu ρ, nej konený mnohouholník A A...A n nech A je od, ktoý neleží ρ eistuje páe jedno posunutie
ZÁKLADY ELEMENTÁRNEJ GEOMETRIE
UNIVERZITA KONŠTANTÍNA FILOZOFA FAKULTA PRÍRODNÝCH VIED ZÁKLADY ELEMENTÁRNEJ GEOMETRIE ŠEDIVÝ ONDREJ VALLO DUŠAN Vydané v Nitre 2009 Fakultou prírodných vied Univerzity Konštantína Filozofa v Nitre s finančnou
TC Obsahový štandard Výkonový štandard
Celé čísla. Počtové operácie s celými číslami UČEBNÉ OSNOVY ÔSMY ROČNÍK TC Obsahový štandard Výkonový štandard Pojem celé číslo Kladné a záporné čísla, kladné a záporné desatinné čísla Opačné čísla Absolútna
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Zlomky sčítanie, odčítanie. A forma. B forma. 1. Kontrolná práca z matematiky 7. ročník. 1. Vypočítajte : = d) ( ) Vypočítajte : a) 5 + =
1. Kontrolná práca z matematiky 7. ročník Zlomky sčítanie, odčítanie 1. Vypočítajte : 6 2 5 7 2 2 2 a) + + = c) + = 7 3 21 9 3 3 9 3 5 1 1 + + 1 = d) ( ) 5 + 3,7 + 1 4 15 6 = 2. Vypočítajte : a) 1 5 5
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
ZOBRAZOVACIE METÓDY 2. I Mongeovo zobrazenie
ZOBRAZOVACIE METÓDY 2 (prvý ročník, letný semester; prednáška 2 hod., cvičenie 2 hod. / týž.; 6 kreditov, 40 / 60) Program druhého semestra (Zobrazovacie metódy 2): I Mongeovo zobrazenie; II Perspektívna
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
wertyuiopasdfghjklzxcvbnmqwertyui Učebný odbor: 3178F00 VK opasdfghjklzxcvbnmqwertyuiopasdfg Mgr. Mária Hanková STREDNÁ ODBORNÁ ŠKOLA V LIPANOCH
qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq MATEMATIKA 2.ročník wertyuiopasdfghjklzxcvbnmqwertyui Učebný odbor:
2 Kombinacie serioveho a paralelneho zapojenia
2 Kombinacie serioveho a paralelneho zapojenia Priklad 1. Ak dva odpory zapojim seriovo, dostanem odpor 9 Ω, ak paralelne dostnem odpor 2 Ω. Ake su tieto odpory? Priklad 2. Z drotu postavime postavime
MATEMATIKA - úlohy z MONITOROV a MSK
MATEMATIKA - úlohy z MONITOROV a MSK P.č. Tematické celky Strana 1 1.1 - Výroky 1 1.. - Množiny 4 3.1. - Výrazy 6 4 3.1. - Teória čísel 7 5 4.1. - Rovnice 9 6 4.. - Nerovnice 11 7 4.3. - Sústavy rovníc
STRIEDAVÝ PRÚD - PRÍKLADY
STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =
Goniometrické funkcie
Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej
Tézy matematika. 1. Množiny, základné pojmy a vzťahy. 2. Výroky a ich pravdivostné hodnoty
Tézy matematika 1. Množiny, základné pojmy a vzťahy 1. Vysvetlite obsah pojmov množina, prázdna množina, disjunktné množiny, popíšte vzťahy medzi množinami (podmnožina, rovnosť množín) a operácie s množinami
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Tematický výchovno - vzdelávací plán. Cvičenia z matematiky. pre 9. ročník
výchovno vzdelávací plán Cvičenia z matematiky pre 9. ročník Počet hodín : 1 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok:
Zhodné zobrazenia (izometria)
Zobrazenie A, B R R (zobrazenie v rovine) usporiadaná dvojica bodov dva body v danom poradí (záleží na poradí) zápis: [a; b] alebo (a; b) karteziánsky (kartézsky) súčin množín množina všetkých usporiadaných
Základná škola Sačurov, Školská 389, Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník
Základná škola Sačurov, Školská 389, 094 13 Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník Vypracované podľa učebných osnov ŠkVP A schválených radou školy dňa 28.8.2008 s platnosťou
Zobrazovacie metódy 3
Zobrazovacie metódy 3 (druhý ročník, zimný semester, prednáška 4 hod., cvičenie 2 hod. / týž.; 7 kreditov, 40/60) Program tretieho semestra (Zobrazovacie metódy 3): I. Pravouhlá axonometria, II. Šikmé
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Objem a povrch ihlanov
M-Te-0-T List 1 Objem povrch ihlnov RNr. Mrián Mcko U: ko by si chrkterizovl n-boký ihln? Ž: Ihln je teleso, ktoré je určené jednou význčnou stenou vrcholom, ktorý v rovine tejto steny neleží. U: ýznčnú
Analytická geometria
Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Kapitola K2 Plochy 1
Kapitola K2 Plochy 1 Plocha je množina bodov v priestore, ktorá vznikne spojitým pohybom čiary u, ktorá nie je dráhou tohto pohybu, pričom tvar čiary u sa počas pohybu môže meniť. Čiara u sa nazýva tvoriaca
ARCHIMEDOVSKÉ MNOHOSTENY VESELO I VÁŽNE
ARCHIMEDOVSKÉ MNOHOSTENY VESELO I VÁŽNE Miroslava Konrádová, KAM SjF ŽU, Žilinská univerzita, Žilina Úvod Počiatky samotnej teórie mnohostenov siahajú k počiatkom geometrických úvah vôbec. Pravidelné konvexné
Potrebné znalosti z podmieňujúcich predmetov
Potrebné znalosti z podmieňujúcich predmetov Matematika 1: 1. Trigonometria (riešenie trojuholníkov - Pythagorova veta, Euklidove vety, sinusová a kosinusová veta, podobnosť trojuholníkov, výška, ťažnica,
TEÓRIA. Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín,
TEÓRIA Množiny a operácie s nimi Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín, Vennove diagramy, disjunktné množiny, konečná a nekonečná množina,
1 Logika a dôkazy. 2 Množiny. 3 Teória čísel. 4 Premenné a výrazy. 5 Rovnice, nerovnice a ich sústavy. Pojmy:
1 Logika a dôkazy výrok, axióma, definícia, úsudok, hypotéza, tvrdenie, pravdivostná hodnota, logické spojky, negácia výroku, konjunkcia, disjunkcia, implikácia, ekvivalencia, vyplýva, je ekvivalentné,
ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY. školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU
ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU V teste, ktorý máš vyriešiť, je 20 úloh. Na prácu je určených 120 minút. Úlohy nemusíš
Kód testu NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU!
Kód testu 1203 NEOTVÁRJTE, POČKJTE N POKYN! PREČÍTJTE SI NJPRV POKYNY K TESTU! MTURIT 2015 EXTERNÁ ČSŤ Časť I Vyriešte úlohy 01 až 20 a do odpoveďového hárka zapíšte vždy iba výsledok nemusíte ho zdôvodňovať
tretej odmocniny ( x ), mocniny čísla 10, n-tá mocnina ľubovoľného čísla (a n ) pre konkrétne hodnoty n, n je prirodzené číslo.
Mocniny a odmocniny, zápis veľkých čísel Školský vzdelávací program matematika 9. ročník 1. Obsah vzdelávania učebného predmetu v 9. ročníku (rozšírený počet hodín ) Tematický celok Témy Druhá a tretia
2. UHLY. Zapisovanie uhlov 1. spôsob pomocou troch bodov. Pri zápise uhla pomocou troch bodov je VRCHOL VŽDY V STREDE ZÁPISU.
2. UHLY 2.1 ZÁPIS A OZNAČOVANIE UHLOV Dve polpriamky VA, VB, ktoré majú spoločný začiatok v bode V delia rovinu na dve časti. Tieto časti nazývame uhly. UHOL je časť roviny ohraničená dvoma polpriamkami,
DESKRIPTÍVNA GEOMETRIA
EKRIÍN GEERI meódy zobrzovni priesorových úvrov do roviny (premieni) mericé polohové vzťhy priesorových úvrov riešené v rovine bsh predmeu G Zobrzovcie meódy: olohové mericé úlohy: ongeov projeci Rezy
Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV
Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A
MATEMATIKA II ZBIERKA ÚLOH
TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA KATEDRA MATEMATIKY A DESKRIPTÍVNEJ GEOMETRIE RNDr. Pavol PURCZ, PhD. RNDr. Martina RÉVAYOVÁ MATEMATIKA II ZBIERKA ÚLOH KOŠICE 6 Copyright c 6, RNDr. Pavol
Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.
Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
CHÉMIA Ing. Iveta Bruončová
Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Maturitné otázky z matematiky
Gmnázium Pavla Horova Michalovce Maturitné otázk z matematik školský rok 00 / 00 . VÝROKY A MNOŽINY Maturitné otázk a príklad z matematik, Gmnázium Pavla Horova, Michalovce Výrok a jeho negácia. Kvantifikované
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Výpočet. grafický návrh
Výočet aaetov a afcký návh ostuu vtýčena odobných bodov echodníc a kužncových obúkov Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene kajnej echodnce č. Vstuné údaje: = 00 ; = 8 ; o = 8 S ohľado
Fakulta riadenia a informatiky Žilinskej univerzity
Poznámka k úlohám o funkciách: Ak nie je uvedené inak, je definičným oborom funkcie množina všetkých reálnych čísel, pre ktoré výraz definujúci funkciu má zmysel. 0 Ktorá z nasledujúcich funkcií nie je
MATURITA 2012 MATEMATIKA
KÓD TESTU 606 MATURITA 202 EXTERNÁ ČASŤ MATEMATIKA NEOTVÁRAJTE POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU. Test obsahuje 0 úloh. Na vypracovanie testu budete mať 20 minút. V teste sa stretnete
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Austrotherm GrPS 70 F Austrotherm GrPS 70 F Reflex Austrotherm Resolution Fasáda Austrotherm XPS TOP P Austrotherm XPS Premium 30 SF Austrotherm
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie"
M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie" Úlohy: 1. Zostavte matematický popis modelu M8 2. Vytvorte simulačný model v prostredí: a) Simulink zostavte blokovú schému, pomocou rozkladu
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT k predmetu Matematika pre 2. ročník SOŠ v Strážskom, študijný odbor 3760 6 00 prevádzka a ekonomika dopravy Operačný program: Vzdelávanie Programové obdobie:
Vzorové riešenia 2. série zimnej časti KMS 2010/2011
Vzorové riešenia 2. série zimnej časti KMS 2010/2011 Úloha č. 1: Ondrík nakreslil do roviny dva červené trojuholníky. Tieto trojuholníky vytvorili spolu jeden červený n-uholník. Zistite všetky možné hodnoty
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )
Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým
ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.
ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,
STEREOMETRIA. Umenie vidieť a predstavovať si priestor
UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED STEREOMETRIA Umenie vidieť a predstavovať si priestor Ondrej Šedivý Gabriela Pavlovičová Lucia Rumanová Dušan Vallo Vydané v septembri 007
Obsahový štandard. 6 základné počtové výkony (operácie); základné vedomosti z geometrie
Tematický výchovno-vzdelávací plán: MATEMATIKA Školský rok: 017/018 Škola: Súkromné športové gymnázium Trenčianske Teplice Ročník: 3. Trieda 3. OA Týždenne: 4 hodiny (ŠVP) Ročne: 13 hodín (ŠVP) Vypracované
Smernicový tvar rovnice priamky
VoAg1-T List 1 Smernicový tvar rovnice priamk RNDr.Viera Vodičková U: Medzi prevratné objav analtickej geometrie patrí to, že s priamkou nenarábame ako s geometrickým objektom, ale popisujeme ju rovnicou.
Objem a povrch rotačného kužeľa
Ma-Te-04-T List 1 Objem a povrch rotačného kužeľa RNDr. Marián Macko Ž: Prečo má kužeľ prívlastok rotačný? U: Vysvetľuje podstatu vzniku tohto telesa. Rotačný kužeľ vznikne rotáciou, čiže otočením, pravouhlého