+ r=s+v ΚΑΝΑΛΙ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ. ΦΡΟΝ ΑΣΚΗΣΕΙΣ ΕΙΣ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ 30/11/ :27 µµ Πρόβληµα 1
|
|
- Αἰνέας Κοτζιάς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Πρόβληµα 1 Ο ποµπός στέλνει στο δέκτη µέσω του καναλιού του σχήµατος την ακολουθία συµβόλων {s t } t=1,2,,10 που ανήκουν στο αλφάβητο {-3,-1,1,3} Στον δέκτη λαµβάνεται η ακολουθία {r i } i=1,2,,10 του πιο κάτω πίνακα. {r t } t=1,2,,10 {s t } t=1,2,,10 {v t } t=1,2,, Α. Με βάση την αρχή της ελάχιστης απόστασης να υπολογίσετε τα πιο πιθανές τιµές της ακολουθίας {s t } t=1,2,,10. Β. Στη συνέχεια να υπολογίσετε τις τιµές της τυχαίας ακολουθία {ν t } t=1,2,,10 και τη διακύµανση σ 2 της ακολουθίας αυτής. Γ. Τέλος να υπολογίσετε την τιµή της πιθανότητας σφάλµατος να συµβεί λάθος κατά την απόφαση των στοιχείων της ακολουθίας {s t } ΛΥΣΗ A&B s ΚΑΝΑΛΙ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Με βάση το κριτήριο ελάχιστης απόστασης υπολογίζεται η τιµή του s και στη συνέχεια η τιµή του v για τις χρονικές στιγµές t=1,2,,10 v + r r=s+v {r t } t=1,2,,10 {s t } t=1,2,,10 {v t } t=1,2,, σ = = ( ) = σ= N 2 2 vi N i= 1
2 Γ ΦΡΟΝ ΑΣΚΗΣΕΙΣ ΕΙΣ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ 30/11/ :27 µµ Η πιθανότητα σφάλµατος P e P e M 1 A = 2 Q M σ 3 1 Pe = 2 Q = P e =
3 Πρόβληµα 2 Σε ένα οκταδικό κανάλι ο δέκτης περιµένει τα σύµβολα {-7,-5,-3,-1,1,3,5,7} Γράψτε την ακολουθία κατωφλίων {Τ i } i=1,2,,7 που πρέπει να χρησιµοποιήσει ο δέκτης για τη φώραση και σχεδιάστε την χαρακτηριστική µεταφοράς (σχέση εισόδου εξόδου) του αναλογοψηφιακού µετατροπέα (ADC) που πρέπει να χρησιµοποιηθεί για τη φώραση. ΛΥΣΗ Η χαρακτηριστική µεταφοράς του ΑDC θα είναι: V in
4 Πρόβληµα 3 Σε ένα τετραδικό σύστηµα µιας διάστασης ο αστερισµός συµβόλων είναι αυτός του σχήµατος. Να υπολογίσετε τον Πίνακα των Υποσυνθήκη Πιθανοτήτων Pij=Pr[Y=j X=i], i,j=1,2,3,4. ίνεται Α=2 και σ=1. Απάντηση Pij P{j i} j=1 j=2 j=3 j=4 i=1 1-Q(A/σ) Q(A/σ)-Q(3A/σ) Q(3A/σ)-Q(5A/σ) Q(5A/σ) i=2 Q(A/σ) 1-2Q(A/σ) Q(A/σ)-Q(3A/σ) Q(3A/σ) i=3 Q(3A/σ) Q(A/σ)-Q(3A/σ) 1-2Q(A/σ) Q(A/σ) i=4 Q(5A/σ) Q(3A/σ)-Q(5A/σ) Q(A/σ)-Q(3A/σ) 1-Q(A/σ) Pij P{j i} j=1 j=2 j=3 j=4 i=1 9.8e e e e-024 i=2 2.3e e e e-010 i=3 9.9e e e e-002 i=4 7.6e e e e-001
5 Πρόβληµα 4 Να αποδείξετε ότι σε ένα σύστηµα PSK το κριτήριο της ελάχιστης απόστασης απλοποιείται στο κριτήριο της ελάχιστης γωνίας, δηλαδή για λήψη ίση µε το µιγαδικό r και τα µιγαδικά σύµβολα s 1, s 2,,s M ισχύει: s=s i angle(r-s i )< angle(r-s j ) για κάθε j=1.2,..,m, j διάφορο του i. Πρόβληµα 5 Σε 8-αδικο µονοδιάστατο σύστηµα η διακύµανση της τυχαίας ακολουθίας {v n } είναι σ 2 =0.5 Watt. Πόση πρέπει να είναι η απόσταση 2A µεταξύ των γειτονικών συµβόλων ώστε η πιθανότητα σφάλµατος να περιοριστεί σε 10-7 ; Ποια θα είναι τότε τα σύµβολα που χρησιµοποιούνται; Απάντηση: Α=3.75 Πρόβληµα 6 ja r A A) Σε ένα σύστηµα δύο διαστάσεων µε δύο σύµβολα, τo Α και το ja να αποδείξετε ότι το κριτήριο ελάχιστης απόστασης απλοποιείται σε s=a Re(r)>Im(r) B) Να αποδείξετε ότι στο σύστηµα αυτό η πιθανότητα σφάλµατος είναι: A Pe = Q σ 2
6 Πρόβληµα 7 ίνεται η δυαδική ακολουθία Ποια σύµβολα θα διαβιβαστούν για κάθε έναν από τους πιο κάτω αστερισµούς αν δεν χρησιµοποιηθεί κώδικας Grey; j 1
7 Πρόβληµα 8 Σε κάποιο Τηλεπ. Σύστηµα µε σ σταθερό και δύο σύµβολα έχει επιβληθεί να ισχύει: s 2 1 +s 2 2 =2E=σταθερά Να βρείτε για ποιες τιµές των s και s 1 η αντίστοιχη τιµή της πιθανότητας γίνεται ελάχιστη. 2 Απάντηση Πρέπει s 1 = s 2, s 1 = E
8 Πρόβληµα Θεωρείστε γνωστό τον τύπο της πιθανότητας για δύο σύµβολα στη µια διάσταση και υπολογίστε την πιθανότητα σφάλµατος για ένα σύστηµα ΟΝ OFF, δηλαδή ένα σύστηµα µε σύµβολα s 1 =0 και s 2 =A. εχθείτε AWGN µ=0 και τυπική απόκλιση σ. 9.2 Είναι γνωστό ότι για ένα σύµβολο s ισχύει, s 2=E, όπου Ε η ενέργεια του συµβόλου. Να υπολογίσετε τη µέση ενέργεια ανά σύµβολο, E = E σύµβολα, και δυαδικό ορθογώνιο (s1=a & s2=ja). b στα δυαδικά συστήµατα ΟΝ OFF, µε αντίποδα 9.3 Να υπολογίσετε την πιθανότητα σφάλµατος P2 των δυαδικών συστηµάτων του Ερωτήµατος 9.2 συνατήσει της Ενέργιας ανά bit, Εb Απάντηση = E P b 2 antipode Q σ, P2 orthog E Q b = 2σ, P2 ON-OFF E Q b = 2σ
9 Πρόβληµα 10 Θεωρήστε ότι h(t), Η(f) είναι η κρουστική απόκριση και η απόκριση συχνότητας του βέλτιστου φίλτρου και ψ(t), Ψ(f) η βασική κυµατοµορφή επικοινωνίας και ο αντίστοιχος µετασχηµατισµός Fourier Θεωρείστε γνωστό ότι h(t)=ψ(τ-t) και αποδείξτε µε τη βοήθεια των ιδιοτήτων του Μετασχηµατισµού Fourier, ότι ισχύει: Η(f)=Ψ * (f)exp(-j2πft) 10.2 Χρησιµοποιείστε τον µαθηµατικό τύπο των Cauchy-Schwartz σε µιγαδική µορφή και αποδείξτε εξαρχής ότι το βέλτιστο φίλτρο έχει απόκριση συχνότητας Η(f)=Ψ * (f)exp(-j2πft) Στη συνέχεια χρησιµοποιείστε τις ιδιότητες του Μετασχηµατισµού Fourier και αποδείξτε ότι ισχύει h(t)=ψ(τ-t)
10 Πρόβληµα 11 Για ένα ενεργειακό σήµα x(t) µπορούµε να ορίσουµε τη συνάρτηση αυτοσυσχέτισης, R X (z) ως: X ( ) = ψ( ) ψ( ) R z t t z dt Να αποδείξετε, ότι όταν στην είσοδο του βέλτιστου φίλτρου τεθεί η βασική κυµατοµορφή ψ(t) το σήµα της εξόδου, s(t) = R Ψ (T-t). Λύση ψ(t) h(t)=ψ(t-t) s(t) Ισχύει όµως h(t)=ψ(t-t) h(t-τ)=ψ(t-t+τ) οπότε ( ) = ψ( τ) ( ) s t h t τ dτ ( ) = ψ( τ) ψ( τ + ) τ = ( ) s t T t d R T t Ψ
11 Πρόβληµα 12 Κάντε τις πιο κάτω µετατροπές µεταξύ της τιµής λόγου ισχύος και των db του λόγου, αν µπορείτε χωρίς να χρησιµοποιήσετε υπολογιστή. SNR (SNR) db SNR (SNR) db Πρόβληµα 13 Αν χρησιµοποιήσουµε ως βασική κυµατοµορφή επικοινωνίας την ψ(t)=ψ 0 sin(2πf c t) 0<=t<T Να αποδείξετε ότι για να έχει αυτή µοναδιαία ενέργεια πρέπει να ισχύει: 2 ψ 0 = Τ όταν 4Τf c >>1 ή όταν 4Τf c = ακέραιος. Πρόβληµα 14 Να αποδείξετε ότι, όταν 2Τf c >>1 ή όταν 4Τf c = ακέραιος, οι δύο κυµατοµορφές ψ 1 (t) και ψ 2 (t) 2 2 ψ1( t) = cos( 2 π fct), ψ 2( t) = sin( 2 π fct), 0 t< T Τ Τ είναι ορθοκανονικές. Πρόβληµα 15 Να αποδείξετε ότι, όταν 2Τf c >>1 ή όταν 4Τf c = ακέραιος, οι δύο κυµατοµορφές ψ 1 (t) και ψ 2 (t) ( ) 2 1 ( ) 2( ) 2 cos 2, sin 2 1 ψ t = π fct ψ t = π fc+ t, 0 t< T Τ Τ 2T είναι ορθοκανονικές.
12 Πρόβληµα 15A Με βάση το παραπλεύρως διάγραµµα: α) Να υπολογίσετε την αριθµητική τιµή του λόγου E b /N 0 για σύστηµα µε αντίποδα σήµατα και για πιθανότητα σφάλµατος P b =10-5. β) Να υπολογίσετε την αριθµητική τιµή του λόγου E bant /E bort για πιθανότητα σφάλµατος P b = E bant : Ενέργεια ανά bit για σύστηµα µε δύο αντίποδα σύµβολα. E bort : Ενέργεια ανά bit για σύστηµα µε δύο ορθογώνια σύµβολα. Λύση Θυµηθείτε ότι SNR/bit σηµαίνει E b /N 0. α) Για P b =10-5 και την καµπύλη που αντιστοιχεί στο σύστηµα µε τα αντίποδα σύµβολα (βλέπε κόκκινο ίχνος) διαβάζουµε: (E b /N 0 ) db =9.5 db. Εποµένως η αριθµητική τιµή του λόγου είναι: (E b /N 0 )= =8.9 β) Ακολουθώντας το πράσινο ίχνος διαβάζουµε: (E bant /Ν 0 ) db =8 db και (E bort /Ν 0 ) db =11 db. Παρατηρείστε ότι ισχύει E bant /E bort =(E bant /Ν 0 )/(E bort /Ν 0 ) (E bant /E bort ) db =[(E bant /Ν 0 )/(E bort /Ν 0 )] db Θυµηθείτε τον ορισµό του decibel και την ιδιότητα ότι decibel του λόγου ισούνται µε τα decibel του αριθµητή µείον τα decibel του παρανοµαστή. (E bant /E bort ) db =(E bant /Ν 0 ) db -(E bort /Ν 0 ) db =8 db-11 db=-3db Θυµηθείτε ότι -3 db ισοδυναµούν µε αριθµητική τιµή του λόγου ίση µε 0.5 οπότε (E bant /E bort )=0.5
13 Πρόβληµα 16 Ένα AWGN κανάλι παρουσιάζει απόσβεση L=30 db και φασµατική πυκνότητα θορύβου Ν 0 /2=10-7 Watt/Hz. Η ισχύς που µπορεί να εκπέµψει ο ποµπός είναι P T =10 Watt και σχεδιάζουµε να χρησιµοποιήσουµε το κανάλι αυτό για να διαβιβάσουµε δυαδικά δεδοµένα µε ρυθµό R 2 =10 4 bits/sec. α) Να υπολογίσετε τη µικρότερη τιµή της πιθανότητας σφάλµατος P 2 που µπορεί να επιτευχθεί αν η διαβίβαση των δεδοµένων γίνει µε Β-PSK. β) Αν επιθυµούµε P 2 =10-6, αλλά δεν είναι δυνατό να αυξήσουµε την P T, πόσο πρέπει να γίνει o ρυθµός διαβίβασης R 2 ; Λύση α) Ισχύει: P av =P R =P T /L 2ε = 2 b R ( ) Ισχύει: P 2 = Q ( N ) Q P ( R N ) και P R /(N 0 R 2 )==P T /(LN 0 R 2 )=10Watt/{ W/Hz 10 4 sec -1 }=5, Εποµένως P 2 = Q( 10) Q( 3.14) β) P 2 = ( ) = = ( 2 R 0 2 ) ( 2 T ( 0 2) ) Q P N R = Q P LN R, ή R 2 =(P T /L)/(N 0 /2)/ [qfuncinv(p 2 )] 2 = =10/1000/10^-7/(qfuncinv(10^-6))^2= bits/sec Πρόβληµα 17 Να επαναλάβετε τη λύση του προβλήµατος 16 χρησιµοποιώντας τις καµπύλες λειτουργίας των συστηµάτων µε αντίποδα σήµατα. Πρόβληµα 18 Να επαναλάβετε τη λύση των προβληµάτων 15 και 17 για τηλεπ. Σύστηµα µε ΟΝ ΟFF σύµβολα. Απ.α)P 2 = 0.013, b)r 2 = 2215 bits/sec Πρόβληµα 19 Ένα AWGN κανάλι παρουσιάζει απόσβεση L=30 db και φασµατική πυκνότητα θορύβου Ν 0 /2=10-7 Watt/Hz. Η ισχύς που µπορεί να εκπέµψει ο ποµπός είναι P T =10 Watt και σχεδιάζουµε να χρησιµοποιήσουµε το κανάλι αυτό για να διαβιβάσουµε δυαδικά δεδοµένα µε ρυθµό R 2 =10 4 bits/sec. α) Να υπολογίσετε τη µικρότερη τιµή της πιθανότητας σφάλµατος P 2 που µπορεί να επιτευχθεί αν η διαβίβαση των δεδοµένων γίνει µε 8-PΑΜ. β) Αν επιθυµούµε P 2 =10-6, αλλά δεν είναι δυνατό να αυξήσουµε την P T, πόσο πρέπει να γίνει o ρυθµός διαβίβασης R 2 ; Απ.α)P 2 = , b)r 2 max= 5700 bits/sec
14 Πρόβληµα 20 Σχεδιάζουµε διακριτό κανάλι Μ-PSK µέσα από το οποίο διαβιβάζονται σύµβολα µε σταθερό ρυθµό R M (E bm /E b2 ) db 0 (E bm /E b2 ) 1 (R bm /R b2 ) 1 P RM /P R2 1 ( ηλαδή διαθέτουµε κανάλι καθορισµένου εύρουςζώνης Β C ). Επιθυµούµε να διερευνήσουµε το κόστος σε ισχύ σε σχέση µε το µέγεθος του ρυθµού διαβίβασης δυαδικών δεδοµένων R b. Για το σκοπό αυτό σας ζητάµε να συµπληρώσετε τον πίνακα µε τους πιο κάτω λόγους. Για την επίλυση του προβλήµατος αυτού να χρησιµοποιήσετε τις καµπύλες επίδοσης του συστήµατος M-PSK. Με τα E b2 και E bμ, συµβολίζουµε την ενέργεια ανά bit για το 2-PSK και το M-PSK αντίστοιχα. Με R b2, και R bμ, συµβολίζουµε τον ρυθµό δυαδικών δεδοµένων που επιτυγχάνεται στο 2-PSK και M-PSK όταν ο ρυθµός διαβίβασης συµβόλων ισούται µε R. Τέλος µε P R2, και P RΜ, παριστάνουµε την ισχύ λήψης που απαιτείται για ένα σύστηµα 2- PSK και M-PSK αντίστοιχα, τα οποία λειτουργούν µε ρυθµό διαβίβασης συµβόλων ίσον µε R και διαβιβάζουν τα δυαδικά δεδοµένα µε πιθανότητα σφάλµατος ίση µε την τιµή της P b. ΛΥΣΗ A Συµπλήρωση (E bm /E b2 ) db Για Μ 2 παρατηρείστε ότι (Ε bm /Ε b2 ) db ισούται: ( ) ( E E ) = ( E N ) ( E N ) =( E N ) ( E N ) bm b2 db bm 0 b2 0 db bm 0 db b2 0 db Από το διάγραµµα επιδόσεων του Μ-PSK βρίσκουµε εύκολα για P e =log 2 (M)P b Μ ( E N ) bm db 0 db Οπότε συµπληρώνεται η πρώτη γραµµή στον Πίνακα αποτελεσµάτων. M (E bm /E b2 ) db (E bm /E b2 ) (R bm /R b2 ) P RM /P R Β Συµπλήρωση (E bm /E b2 ) Ισχύει (E bm /E b2 )=10^[(E bm /E b2 ) db /10] (Συµπληρώνεται η δεύτερη γραµµή του πίνακα) Γ Συµπλήρωση (R bm /R b2 ) (R bm /R b2 )=log 2 (M) Συµπλήρωση (P RM /P R2 ) P RM /P R2 =(E bm R bm )/( E b2 R b2 ) =(E bm /E b2 ) ( R bm /R b2 )= (E bm /E b2 ) log 2 (M)
15 Πρόβληµα 21 System 8-PAM 8-PSK (E b8s /E b2ant ) db (E b8s /E b2ant ) (P 8S /P b2ant ) Coherent 8-FSK αποτελεσµατικότητα των διαφόρων συστηµάτων σκεφθήκαµε Επιθυµούµε να σχεδιάσουµε διακριτό κανάλι για να διαβιβάσουµε δυαδικά δεδοµένα µε καθορισµένο ρυθµό δυαδικών δεδοµένων R b και πιθανότητα σφάλµατος P b =10-5. Για να διερευνήσουµε την να υπολογίσουµε τους λόγους που αναγράφονται στον πίνακα. Με το δείκτη 2ant συµβολίζουµε τα δυαδικά αντίποδα σήµατα. Ε b8s : Ενέργεια ανά bit για το 8-δικό Σύστηµα µε ρυθµό διαβίβασης δυαδικών δεδοµένων τον R b και πιθανότητα σφάλµατος την P b. P 8S : Ισχύς λήψης για το 8-δικό Σύστηµα µε ρυθµό διαβίβασης δυαδικών δεδοµένων R b και πιθανότητα σφάλµατος την P b. Τέλος ο δείκτης 2ant υποδεικνύει τα πιο πάνω µεγέθη για ένα δυαδικό σύστηµα µε αντίποδα σύµβολα Non-Coherent 8-FSK
16 Πρόβληµα 22 του καναλιού είναι AWG µε µέση τιµή µηδέν. Στο έκτη ενός Συστήµατος ιαβίβασης ιακριτών εδοµένων µε τον αστερισµό του Σχήµατος ελήφθη η ακολουθία διανυσµάτων{r i } του πίνακα. Για κάθε στοιχείο r i της ακολουθίας αυτής να προσδιορίσετε το πιο πιθανό σύµβολο, s i, που έχει αποσταλεί, και το αντίστοιχο διάνυσµα-σφάλµα n i =[n i1,n i2 ]. Επιπλέον να υπολογίσετε τη διακύµανση της ακολουθίας των σφαλµάτων {n i1 } και {n i2 } καθώς και το PSD του θορύβου του καναλιού, Ν 0 /2. εχθείτε ότι τα σύµβολα του αστερισµού είναι ισοπίθανα, και ότι ο θόρυβος ΛΥΣΗ Θυµηθείτε ότι ο θόρυβος του καναλιού έχει µέση τιµή µηδέν εποµένως και οι ακολουθίες {n i1 } και {n i2 } έχουν µέση τιµή µηδέν. Εποµένως N = σ = ( n 1 n 2) 0.22 Watt/Hz 2 + = ni i i i= 1 r i =(r i1, r i2 ) s i (n i1, n i2 )
17
18 Πρόβληµα 23 Θεωρείστε ένα Τηλεπικοινωνιακό Σύστηµα, το οποίο µεταδίδει πληροφορία χρησιµοποιώντας QAM µέσα από ένα τηλεφωνικό AWGN κανάλι (voice band) σε ρυθµό 2400 σύµβολα/sec. Το κανάλι παρουσιάζει απόσβεση L db =30 db και η πυκνότητα θορύβου είναι N 0 /2=10-7 W/Hz. Επιθυµούµε να διαβιβάσουµε δυαδικά δεδοµένα µε πιθανότητα σφάλµατος P b =10-5. Υπολογίστε τη µικρότερη τιµή του πλήθους Μ συµβόλων του QAM και την απαιτούµενη αντίστοιχη ισχύ εκποµπής P T για κάθε µια από τις τιµές δυαδικού ρυθµού R b =4800 και 9600 bits/sec. Για την επίλυση του προβλήµατος χρησιµοποιείστε το διάγραµµα της σχέσης P M =f(ε b /N 0 ) για το QAM. (Σχήµα 7.62) ΛΥΣΗ Ο ρυθµός διαβίβασης συµβόλων, R M, και δυαδικών δεδοµένων, R b συνδέονται µε τη σχέση R b =R Mlog 2 (M) M=2 Rb/RM για R b =4800 M= 4, και για R b =9600 Μ=16 M=4 P 4 =P blog 2 (M)=2X10-5 (Σχήµα 7.62) (E b /N 0 ) db 9.7dB (E b /N 0 )= = 9.33 Ισχύει όµως P R =E b R b =(E b /N 0 )N 0 R b =9.33X2 X10-7 Watt/Hz X4800 bits/sec=9 mwatt Εποµένως P T = LP R =10 3 X 9mWatt P T =9 Watt Παρόµοια εργαζόµαστε για R b =9600 και Μ=16. P 16 =4 X 10-5 (E b /N 0 ) db =14 db (E b /N 0 )= =25 P R =48.4 mwatt P T =48.4 Watt
ΦΡΟΝ ΑΣΚΗΣΕΙΣ ΕΙΣ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ
Πρόβλημα 1 ΦΡΟΝ ΑΣΚΗΣΕΙΣ ΕΙΣ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΝΑΛΙ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ s + r Ο πομπός στέλνει στο δέκτη μέσω του καναλιού του σχήματος την ακολουθία συμβόλων {st} t=1,2,,10 που ανήκουν στο
Διαβάστε περισσότεραΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ
ΕΙΣ. ΣΥΣΤ. ΕΠΙΚΟΙΝΩΝΙΩΝ 011-1 16/1/011 9:45:1 µµ ΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ ΑΠΑΙΤΗΣΕΙΣ ΣΕ ΕΥΡΟΣ ΖΩΝΗΣ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΙΑΒΙΒΑΣΗΣ ΙΑΚΡΙΤΩΝ Ε ΟΜΕΝΩΝ Η ΣΧΕΣΗ ΜΕΤΑΞΥ ΕΥΡΟΥΣ
Διαβάστε περισσότεραΦΡΟΝ ΑΣΚΗΣΕΙΣ-2 ΕΙΣΑΓ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ
Πρόβλημα 24 a. Να υπολογίσετε το δείκτη d 2 min/eb για ένα 16-QAM. b. Να υπολογίσετε το [(d 2 min/eb)16qam/(d 2 min/eb)qpsk]db. c. Αν θεωρήσουμε ότι το μέγεθος των αστερισμών του Ερωτήματος b) έχουν επιλεγεί
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα : Φώραση Εμμανουήλ Σαγκριώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας 1. Γνωριμία με τεχνικές εκτίμησης της τιμής συμβόλου όταν αυτό
Διαβάστε περισσότεραΠΜΣ ΠΛΗΡΟΦΟΡΙΚΗΣ /12/ :06:34 πµ
ΠΜΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. 03-4 //03 :06:34 πµ ΑΠΑΙΤΗΣΕΙΣ ΣΕ ΕΥΡΟΣ ΖΩΝΗΣ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΙΑΒΙΒΑΣΗΣ ΙΑΚΡΙΤΩΝ Ε ΟΜΕΝΩΝ Η ΣΧΕΣΗ ΜΕΤΑΞΥ ΕΥΡΟΥΣ ΖΩΝΗΣ,B C ΚΑΙ ΡΥΘΜΟΥ ΣΥΜΒΟΛΩΝ R ΓΙΑ ΤΑ ΙΑΦΟΡΑ ΣΥΣΤΗΜΑΤΑ ΕΊΝΑΙ:. PAM ΒΑΣ.
Διαβάστε περισσότεραΘα λύσετε ένα από τα έξι πακέτα ασκήσεων που ακολουθούν, τα οποία είναι αριθµηµένα από 0 έως5. Ο κάθε φοιτητής βρίσκει το πακέτο που του αντιστοιχεί
Θα λύσετε ένα από τα έξι πακέτα ασκήσεων που ακολουθούν, τα οποία είναι αριθµηµένα από 0 έως5. Ο κάθε φοιτητής βρίσκει το πακέτο που του αντιστοιχεί από τον αριθµό µητρώου του. Συγκεκριµένα υπολογίζει
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 3: Αποδιαμόρφωση Σαγκριώτης Εμμανουήλ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας 1. Γνωριμία με τις τεχνικές δημιουργίας διακριτού καναλιού..
Διαβάστε περισσότεραΡΗ Α&DC /1/ :18 πµ
ΕΠΑΝΑΛΗΠΤΕΣ ΙΑΒΙΒΑΣΗΣ ΑΝΑΛΟΓΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΗΜΑΤΩΝ Η απόσβεση, L, των καναλιών εν γένει αυξάνει εκθετικά µε το µήκος τους. Το αποτέλεσµα είναι ότι, όταν χρειαστούµε να διαβιβάσουµε σήµατα σε µακρινές
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης
Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 3: Σύγκριση ψηφιακών Συστημάτων Σαγκριώτης Εμμανουήλ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας 1. Ανάδειξη τεχνικών για τη σύγκριση των
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση
Ψηφιακές Τηλεπικοινωνίες Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση Σύνδεση με τα Προηγούμενα Σχεδιάστηκε ο βέλτιστος δέκτης για κανάλι AWGN Επειδή πάντοτε υπάρχει ο θόρυβος, ακόμη κι ο βέλτιστος δέκτης
Διαβάστε περισσότεραΔυαδικά Αντίποδα Σήματα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Πιθανότητα Σφάλματος σε AWGN Κανάλι. r s n E n. P r s P r s.
Προχωρημένα Θέματα Τηλεπικοινωνιών Πιθανότητα Σφάλματος σε AWGN Κανάλι Δυαδικά Αντίποδα Σήματα Δυαδικά Αντίποδα Σήματα Βασικής Ζώνης) : s (t)=-s (t) Παράδειγμα: Δυαδικό PA s (t)=g T (t) (παλμός με ενέργεια
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 15 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Διαβάστε περισσότεραΡΗ /3/2010 ΑΛΛΗΛΟΠΑΡΕΜΒΟΛΗ ΣΥΜΒΟΛΩΝ (INTERSYMBOL INTERFERENCE-ISI)
ΑΛΛΗΛΟΠΑΡΕΜΒΟΛΗ ΣΥΜΒΟΛΩΝ (INTERSYMBOL INTERFERENCE-ISI) Μέχρι τώρα είχαμε δεχθεί ότι κάθε κυματομορφή επικοινωνίας διέρχεται από το κανάλι χωρίς παραμόρφωση με μοναδική αλλαγή της κυματομορφής την ελάττωση
Διαβάστε περισσότεραΚινητά Δίκτυα Επικοινωνιών
Κινητά Δίκτυα Επικοινωνιών Ενότητα 8: Πιθανότητα Σφάλματος σε AWGN Κανάλι Καθ. Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Η εξοικείωση του φοιτητή με τεχνικές
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s5 e-mail:
Διαβάστε περισσότεραΛύσεις Θεµάτων Εξεταστικής Ιανουαρίου 2009 Mάθηµα: «Ψηφιακές Επικοινωνίες» G F = 0.8 T F = 73 0 K
Λύσεις Θεµάτων Εξεταστικής Ιανουαρίου 9 Mάθηµα: «Ψηφιακές Επικοινωνίες» Θέµα 1 ο (3%) A =6 o K P R = 1pWatt SNR IN G LNA =13dB LNA =3 K LNA G F =.8 F = 73 K Φίλτρο G = db F = 8 db Ενισχυτής IF SNR OU 1.
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες. Δισδιάστατες Κυματομορφές Σήματος
Ψηφιακές Τηλεπικοινωνίες Δισδιάστατες Κυματομορφές Σήματος Εισαγωγή Στα προηγούμενα μελετήσαμε τη διαμόρφωση PAM δυαδικό και Μ-αδικό, βασικής ζώνης και ζωνοπερατό Σε κάθε περίπτωση προέκυπταν μονοδιάστατες
Διαβάστε περισσότεραBaseband Transmission
Ψηφιακές Επικοινωνίες Baseband ransmission Antipodal Signalling - Binary Orthogonal Signalling Probability of Error M-ary Orthogonal Signalling Waveforms Detection M-PAM detection Probability of error
Διαβάστε περισσότεραΣύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN.
Προχωρημένα Θέματα Τηλεπικοινωνιών Βέλτιστος Δέκτης για Ψηφιακά Διαμορφωμένα Σήματα παρουσία AWGN Σύνδεση με τα Προηγούμενα Στις «Ψηφιακές Τηλεπικοινωνίες», αναφερθήκαμε στο βέλτιστο δέκτη ψηφιακά διαμορφωμένων
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst233
Διαβάστε περισσότεραΠΑΡΑ ΕΙΓΜΑΤΑ ΣΤΙΣ ΑΝΑΛΟΓΙΚΕΣ ΚΑΙ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 29/10/2014 1:55 µµ
ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΕΣ & ΑΝΑΛΟΓΙΚΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Τα παραδείγµατα που περιέχονται στο ile αυτό έχουν επιλεγεί για τους µεταπτυχιακούς φοιτητές του ΡΗ που παρακολουθούν το µάθηµα
Διαβάστε περισσότεραΕξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης
Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση
Διαβάστε περισσότεραΕΙΣ. ΣΥΣΤ. ΕΠΙΚΟΙΝΩΝΙΩΝ /2/ :09:46 µµ
ΕΙΣ. ΣΥΣΤ. ΕΠΙΚΟΙΝΩΝΙΩΝ 013-14 18//014 1:09:46 µµ PULSE CODE MODULATION (PCM) 18//014 Το PCM είναι ένα σύστηµα, µε το οποίο µπορούµε να διαβιβάσουµε ένα αναλογικό (συνεχές) σήµα x(t) µέσω διακριτού καναλιού.
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 14 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s15 e-mail:
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 11: Ψηφιακή Διαμόρφωση Μέρος Α Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή διαμόρφωσης παλμών κατά
Διαβάστε περισσότεραΟ Βέλτιστος Φωρατής. Σεραφείµ Καραµπογιάς
Ο Βέλτιστος Φωρατής Ο φωρατής σήµατος, µε τη βοήθεια ενός κανόνα απόφασης, βασιζόµενος στην παρατήρηση του διανύσµατος, λαµβάνει µία απόφαση ως προς το µεταδιδόµενο σύµβολο, έτσι ώστε να µεγιστοποιείται
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 8 ο Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Βασική Θεωρία Σε ένα σύστημα μετάδοσης
Διαβάστε περισσότερα2 η Εργαστηριακή Άσκηση
Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ 2 η Εργαστηριακή Άσκηση Σύγκριση Ομόδυνων Ζωνοπερατών Συστημάτων 8-PSK και 8-FSK Στην άσκηση αυτή καλείστε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 13 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst15
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 6 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Ψηφιακή Διαμόρφωση Πλάτους Amplitude Shift Keying (ASK) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ψηφιακή Διαμόρφωση Πλάτους (ASK) Μαθηματική περιγραφή
Διαβάστε περισσότεραΑΠΟ ΙΑΜΟΡΦΩΣΗ (DEMODULATION) ΚΥΜΑΤΟΣΕΙΡΑΣ
13-14 3/5/14 1:56:33 µµ ΑΠΟ ΙΑΜΟΡΦΩΣΗ (DEMODULAION) ΚΥΜΑΤΟΣΕΙΡΑΣ Μέσα από τα Φυσικά κανάλια είναι αδύνατον να διαβιβαστούν απευθείας αριθµοί! Η διαβίβαση των αριθµών µέσα από τα φυσικά κανάλια γίνεται
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ 5. Εισαγωγή Ο σκοπός κάθε συστήματος τηλεπικοινωνιών είναι η μεταφορά πληροφορίας από ένα σημείο (πηγή) σ ένα άλλο (δέκτης). Συνεπώς, κάθε μελέτη ενός τέτοιου συστήματος
Διαβάστε περισσότεραΠεριεχόµενα διαλέξεων 2ης εβδοµάδας
Εισαγωγή οµή και πόροι τηλεπικοινωνιακού συστήµατος Σήµατα Περιεχόµενα διαλέξεων 1ης εβδοµάδας Εισαγωγή Η έννοια της επικοινωνιας Ιστορική αναδροµή οµή και πόροι τηλεπικοινωνιακού συστήµατος οµή τηλεπικοινωνιακού
Διαβάστε περισσότεραΒέλτιστη φώραση παλµών παρουσία AWGN - Το Προσαρµοσµένο φίλτρο. Ψηφιακές Επικοινωνίες Ν. Μήτρου
Βέλτιστη ώραση παλµών παρουσία AWG - Το Προσαρµοσµένο ίλτρο Ψηιακές Κυµατοµορές ΨΚ Ακολουθίες παλµών, µε εγγεγραµµένη ψηιακή πληροορία π.χ. bt Παλµοί ντετερµινιστικοί-δυαδική ακολουθία στοχαστική στοχαστικές
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:
Διαβάστε περισσότεραΑσκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»
Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Άσκηση 1 Πρόκειται να µεταδώσουµε δυαδικά δεδοµένα σε RF κανάλι µε. Αν ο θόρυβος του καναλιού είναι Gaussian - λευκός µε φασµατική πυκνότητα W, να βρεθεί
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI FSK, MSK Πυκνότητα φάσματος ισχύος βασικής ζώνης + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ
Αντικείμενο: Δειγματοληψία ΘΕΜΑΤΑ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Έστω οτι το σήμα x()=sinc(4) δειγματοληπτείται με συχνότητα δειγματοληψίας διπλάσια της συχνότητας Nyquis και κβαντίζεται με ομοιόμορφη
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 8 ο : Προσαρμοσμένα Φίλτρα Βασική
Διαβάστε περισσότεραΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V
Θέµατα εξετάσεων Θ. Κυκλωµάτων & Σηµάτων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί στις εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 6: Συστήματα Αναλογικής Διαμόρφωσης Σαγκριώτης Εμμανουήλ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας 1. Η αναγνώριση της ανάγκης διαμόρφωσης
Διαβάστε περισσότεραΑναλογικές και Ψηφιακές Επικοινωνίες
Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα 3: Πιθανότητα σφάλματος στη φώραση σήματος Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Ο Βέλτιστος Φωρατής Σεραφείμ Καραμπογιάς
Διαβάστε περισσότεραΛΕΙΤΟΥΡΓΙΑ ΚΑΙ ΑΠΟ ΟΣΗ ΨΗΦΙΑΚΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΛΕΙΤΟΥΡΓΙΑ ΚΑΙ ΑΠΟ ΟΣΗ ΨΗΦΙΑΚΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εξετάζονται οι βασικοί συµβιβασµοί (δυνατότητες ανταλλαγής) µεταξύ των εξής σχεδιαστικών παραµέτρων ψηφιακών τηλεπικοινωνιακών συστηµάτων: Εύρους
Διαβάστε περισσότεραΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ
ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ακαδηµαϊκό Έτος 007-008 ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1η Εργαστηριακή Άσκηση Αναγνώριση
Διαβάστε περισσότερα4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση
Διαβάστε περισσότερα( x) Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ - ΠΙΘΑΝΟΤΗΤΑΣ. Βασικά αξιώµατα και ιδιότητες της πιθανότητας. Σεραφείµ Καραµπογιάς
Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ - ΠΙΘΑΝΟΤΗΤΑΣ Βασικά αξιώµατα και ιδιότητες της πιθανότητας Σεραφείµ Καραµπογιάς Η αθροιστική συνάρτηση κατανοµής cumulaive diribuio ucio CDF µίας τυχαίας µεταβλητής X ορίζεται
Διαβάστε περισσότεραΘόρυβος και λάθη στη μετάδοση PCM
Θόρυβος και λάθη στη μετάδοση PCM Πότε συμβαίνουν λάθη Για μονοπολική (on-off) σηματοδότηση το σήμα στην έξοδο είναι, όπου α k =0 όταν y( kts) ak n( kts) μεταδίδεται το bit 0 και α k =Α όταν μεταδίδεται
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 8 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Διαβάστε περισσότεραΧρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 6 ο : Διαμόρφωση Θέσης Παλμών Βασική Θεωρία Μ-αδική Διαμόρφωση Παλμών Κατά την μετατροπή
Διαβάστε περισσότεραΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.
3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού
Διαβάστε περισσότεραµεταφέρει γνωστά σύµβολα για τον προσδιορισµό της συµπεριφοράς του καναλιού;
ΠΑΡΑ ΕΙΓΜΑ ΛΕΙΤΟΥΡΓΙΑ Σ ΣΥΣΤΗΜΑΤΟΣ OFDM Μελετήστε προσεκτικά τη θεωρία του DMT και απαντήστε στα πιο κάτω ερωτήµατα. Ένα κανάλι µε εύρος-ζώνης W=5120 Hz παρουσιάζει κρουστική απόκριση Τ m 10 msec. Για
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 5 ο : Προσαρμοσμένα Φίλτρα Βασική
Διαβάστε περισσότεραιαφορική εντροπία Σεραφείµ Καραµπογιάς
ιαφορική εντροπία Σεραφείµ Καραµπογιάς Για πηγές διακριτού χρόνου µε συνεχές αλφάβητο, των οποίων οι έξοδοι είναι πραγµατικοί αριθµοί, ορίζεται µια άλλη ποσότητα που µοιάζει µε την εντροπία και καλείται
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI M-κά συστήματα διαμόρφωσης: Μ-PSK, M-FSK, M-QAM, DPSK + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 5: Pulse Code Modulation (PCM) Σαγκριώτης Εμμανουήλ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας 1. Γνωριμία με την περισσότερο εφαρμοζόμενη
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες. Πολυδιάστατες Κυματομορφές Σήματος
Ψηφιακές Τηλεπικοινωνίες Πολυδιάστατες Κυματομορφές Σήματος Ανακεφαλαίωση Καθένα από τα Μ σύμβολα αντιστοιχίζεται σε μια αναλογική κυματομορφή Οι κυματομορφές ορίζονται σε ένα N-D χώρο σήματος (Ν Μ) Μονοδιάστατα
Διαβάστε περισσότεραΕξίσωση Τηλεπικοινωνιακών Διαύλων
Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα 2 η Φίλτρα Μηδενισμού της ISI Νικόλαος Χ.
Διαβάστε περισσότεραΕΠΙΔΡΑΣΗ ΤΟΥ ΘΟΡΥΒΟΥ ΣΤΑ ANΑΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΑΒΙΒΑΣΗΣ ΣΗΜΑΤΟΣ. Προσθετικός Λευκός Gaussian Θόρυβος (Additive White Gaussian Noise-AWGN
ΡΗ 009-10 16/1/009 3:4 μμ ΕΠΙΔΡΑΣΗ ΤΟΥ ΘΟΡΥΒΟΥ ΣΤΑ ANΑΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΑΒΙΒΑΣΗΣ ΣΗΜΑΤΟΣ Προσθετικός Λευκός Gaussian Θόρυβος (Additive White Gaussian Noise-AWGN AWGN) ΕΠΙΔΡΑΣΗ ΤΟΥ ΘΟΡΥΒΟΥ ΣΕ ΜΕΤΑΔΟΣΗ
Διαβάστε περισσότεραΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 15 Μαρτίου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η
Διαβάστε περισσότεραΕπεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Ψηφιακή Μετάδοση Αναλογικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Μετάδοση Αναλογικών Σημάτων Τα σύγχρονα συστήματα
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος
Ψηφιακές Τηλεπικοινωνίες Διαμόρφωση Παλμών κατά Πλάτος Διαμόρφωση Παλμών κατά Πλάτος Είπαμε ότι κατά την ψηφιακή μετάδοση μέσα από αναλογικό κανάλι κάθε σύμβολο αντιστοιχίζεται σε μια κυματομορφή σήματος
Διαβάστε περισσότεραx(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/0.0 Θέµα ο - Περιοδικά
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος
Διαβάστε περισσότεραΆσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:
1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση
Διαβάστε περισσότεραΣυναρτήσεις Συσχέτισης
Συναρτήσεις Συσχέτισης Για ένα σήµα ενέργειας ορίζεται η συνάρτηση αυτοσυσχέτισης R + ( τ = ( τ ( τ = ( ( τ d = ( + τ + ( d Για ένα σήµα ισχύος ορίζεται η µέση χρονική συνάρτηση αυτοσυσχέτισης R ( τ =
Διαβάστε περισσότεραΚεφάλαιο 7. Ψηφιακή Διαμόρφωση
Κεφάλαιο 7 Ψηφιακή Διαμόρφωση Ψηφιακή Διαμόρφωση 2 Διαμόρφωση βασικής ζώνης H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές διαμόρφωσης παλμών βασικής ζώνης, οι οποίες δεν απαιτούν τη χρήση ημιτονοειδούς
Διαβάστε περισσότεραΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΕΞΕΤΑΣΕΩΝ Μάθημα: Επικοινωνίες ΙΙ. Εξεταστική Περίοδος: B Θερινή, 14 Σεπτεμβρίου 2009. ΕΙΣΗΓΗΤΗΣ: Αναστάσιος Παπατσώρης Θέμα 1 ο (25 μονάδες) Ένα ADSL modem λειτουργεί με ταχύτητα downloading
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 6: Ψηφιακή Διαμόρφωση Φάσης Phase Shift Keying (PSK) με Ορθογωνική Σηματοδοσία Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ορθογωνική Σηματοδοσία Διαμόρφωση
Διαβάστε περισσότεραΒαθµολογία Προβληµάτων ΘΕΜΑ 1 ΘΕΜΑ 2.1 ΘΕΜΑ 2.2 ΘΕΜΑ 2.3 ΘΕΜΑ 3.1 ΘΕΜΑ 3.2 ΘΕΜΑ 4 ΘΕΜΑ 5.1 ΘΕΜΑ 5.2. G(s)
ΑΠΑΓΟΡΕΥΕΤΑΙ Η ΑΝΑΤΥΠΩΣΗ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΙΝ ΤΗΝ 3 Σεπτεµβρίου 4 ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Σεπτεµβρίου 4 Να επιστραφεί η εκφώνηση των θεµάτων (υπογεγραµµένη από τον εξεταστή) ΕΠΩΝΥΜΟ
Διαβάστε περισσότεραΟ Βέλτιστος Φωρατής. Σεραφείµ Καραµπογιάς
Ο Βέλτιστος Φωρατής Σεραφείµ Καραµπογιάς Ο φωρατής σήµατος, µε τη βοήθεια ενός κανόνα απόφασης, βασιζόµενος στην παρατήρηση του διανύσµατος, λαµβάνει µία απόφαση ως προς το µεταδιδόµενο σύµβολο, έτσι ώστε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ - Ενδεικτικές Λύσεις ιάρκεια : 3 ώρες Ρήτρα τελικού :
Διαβάστε περισσότεραΕπομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται
Διαβάστε περισσότεραΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ)
ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) 0. Εισαγωγή Τα αποτελέσµατα πεπερασµένης ακρίβειας οφείλονται στα λάθη που προέρχονται από την παράσταση των αριθµών µε µια πεπερασµένη ακρίβεια. Τα αποτελέσµατα
Διαβάστε περισσότεραΜορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης
Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης Μορφοποίηση - Κωδικοποίηση πηγής Μορφοποίηση παλµών βασικής ζώνης Μορφοποίηση & µετάδοση βασικής ζώνης Mορφοποίηση-κωδικοποίηση πηγής Mορφοποίηση παλµών
Διαβάστε περισσότεραΑναλογικές και Ψηφιακές Επικοινωνίες
Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα : Βέλτιστος δέκτης για ψηφιακά διαμορφωμένα σήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Μετασχ. Laplace και Συστήµατα
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση Θέσης Παλμών
Διαβάστε περισσότεραΠιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης
Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Γραμμικά Συστήματα Σύστημα: x(t) T y(t) Κατηγορίες: Συνεχή/Διακριτά Γραμμικά/Μη Γραμμικά Αν Τότε Γραμμικά Συστήματα Σύστημα: x(t) T y(t) Κατηγορίες: Χρονικά
Διαβάστε περισσότεραΑκαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 1: ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Ψηφιακή Μετάδοση Σήματος σε Ζωνοπεριορισμένο Κανάλι AWGN (Μέχρι και τη διαφάνεια 32) Εισαγωγή Στα προηγούμενα μαθήματα θεωρήσαμε ότι ουσιαστικά το κανάλι AWGN είχε άπειρο εύρος
Διαβάστε περισσότεραΕυρυζωνικά δίκτυα (2) Αγγελική Αλεξίου
Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Σήματα και πληροφορία Βασικές έννοιες 2 Αναλογικά και Ψηφιακά Σήματα Στις τηλεπικοινωνίες συνήθως χρησιμοποιούμε περιοδικά αναλογικά σήματα και
Διαβάστε περισσότεραΤμήμα Μηχανικών Η/Υ και Πληροφορικής
Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Ασύρματες και Κινητές Επικοινωνίες Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης Τι θα δούμε στο μάθημα Μια σύντομη
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Θεωρητικές Ασκήσεις (# ): ειγµατοληψία, κβαντοποίηση και συµπίεση σηµάτων. Στην τηλεφωνία θεωρείται ότι το ουσιαστικό περιεχόµενο της
Διαβάστε περισσότεραΜΕΛΕΤΗ ΓΝΩΣΤΙΚΩΝΝ ΡΑΔΙΟΣΥΣΤΗΜΑΤΩΝ ΕΠΙΚΟΙΝΩΝΙΑΣ
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡOΦΟΡΙΚΗΣ ΤΕ ΜΕΛΕΤΗ ΓΝΩΣΤΙΚΩΝΝ ΡΑΔΙΟΣΥΣΤΗΜΑΤΩΝ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΖΗΣΚΑ ΠΑΝΑΓΙΩΤΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Δρ ΕΥΣΤΑΘΙΟΥ ΔΗΜΗΤΡΙΟΣ ΕΠΙΣΚΟΠΗΣΗ ΠΑΡΟΥΣΙΑΣΗΣ Σκοπός Πτυχιακής Εργασίας
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση BPSK & QPSK
Διαβάστε περισσότεραΧρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 5 : Θόρυβος Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Είδη θορύβου Περιγραφή θορύβου Θεώρημα Shannon Hartley Απόδοση ισχύος και εύρους
Διαβάστε περισσότεραΕργαστηριακή Άσκηση 7 Φώραση ψηφιακών σημάτων προσαρμοσμένο φίλτρο
Εργαστηριακή Άσκηση 7 Φώραση ψηφιακών σημάτων προσαρμοσμένο φίλτρο Σκοπός της έβδομης εργαστηριακής άσκησης είναι η εξοικείωση με τις μεθόδους της ψηφιακής σηματοδοσίας και η γνωριμία με το προσαροσμένο
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Συναρτήσεις συσχέτισης/αυτοσυσχέτισης Φίλτρα Μετασχηματισμός Hilbert + Περιεχόμενα n Συνάρτηση αυτοσυσχέτισης n Συνάρτηση
Διαβάστε περισσότεραΑσκήσεις C B (2) SNR 10log( SNR) 10log(31) 14.91dB ΑΣΚΗΣΗ 1
Ασκήσεις ΑΣΚΗΣΗ 1 Ένα ψηφιακό κανάλι πρέπει να έχει χωρητικότητα 25Mbps. Το ίδιο κανάλι έχει φάσμα μεταξύ 19 ΜΗz και 24 ΜΗz. Α)Ποιος είναι ο απαιτούμενος λόγος σήματος προς θόρυβο σε db για να λειτουργήσει
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα: Ασκήσεις για τις ενότητες 8 13 Παλμοκωδική Διαμόρφωση Ψηφιακή Μετάδοση Ιωάννης Βαρδάκας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα Περιεχόμενα 1. Σκοποί
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 4 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 5: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Πλεονεκτήματα-Μειονεκτήματα ψηφιακών επικοινωνιών, Κριτήρια Αξιολόγησης
Διαβάστε περισσότεραΠαλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θ.Ε. ΠΛΗ22 (2012-13) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #4. Έκδοση v2 με διόρθωση τυπογραφικού λάθους στο ερώτημα 6.3 Στόχος: Βασικό στόχο της 4 ης εργασίας αποτελεί η εξοικείωση με τα μέτρα ποσότητας πληροφορίας τυχαίων
Διαβάστε περισσότεραΒέλτιστα γραµµικά χρονικά αναλλοίωτα συστήµατα Συστήµατα που ελαχιστοποιούν το µέσο-τετραγωνικό σφάλµα
Σεραφείµ Καραµπογιάς Βέλτιστα γραµµικά χρονικά αναλλοίωτα συστήµατα Ο Wiener εέτασε το προβληµα της εκτίµησης µίας επιθυµητής κυµατοµορφής σήµατος s παρουσία προσθετικού θορύβου n, βάση του λαµβανόµενου
Διαβάστε περισσότερα