KOLO S POMOŽNIM MOTORJEM
|
|
- Ἰφιγένεια Βάμβας
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Šolski center Celje Poklicna in tehniška strojna šola KOLO S POMOŽNIM MOTORJEM Avtorji: Boštjan HORJAK, S-4.b Mitja CEROVŠEK, S-4.b Jenej DROFENIK, S-4.b Mentor: dr. Ivan GUBENŠEK, univ. dipl. inž. str. Mestna občina Celje, Mladi za Celje Celje, 2007
2 Šolski center Celje Poklicna in tehniška strojna šola KOLO S POMOŽNIM MOTORJEM Avtorji: Boštjan HORJAK, S-4.b Mitja CEROVŠEK, S-4.b Jenej DROFENIK, S-4.b Mentor: dr. Ivan GUBENŠEK, univ. dipl. inž. str. Mestna občina Celje, Mladi za Celje Celje,
3 1. KAZALO 1. KAZALO KAZALO SLIK KAZALO PREGLEDNIC POVZETEK UVOD HIPOTEZE NAMEN IN CILJ RAZISKOVALNE NALOGE PRIMERJAVA PODOBNIH IZDELKOV Kolo s pogonom motorja vinogradniške škropilnice Skiro z elektro pogonom (avtomobilski zaganjač) Serijsko kolo na električni pogon POSTOPEK IZDELAVE OKVIRJA IZDELAVA DVOSTOPENJKSEGA REDUKTORJA PRENOSNIK MOČI IN MOMENTA IZRAČUN POGONSKEGA SKLOPA Znani podatki pogonskega sklopa Izračun potrebnega prestavnega razmerja Zasnova pogonskega sklopa ZAKLJUČEK LITERATURA ZAHVALA
4 2. KAZALO SLIK Slika 1: Kolo s pogonom motorja škropilnice...10 Slika 2: Kolo s pogonom motorja škropilnice Slika 3: Skiro na el. Pogon...12 Slika 4: Skiro na el. Pogon...12 Slika 5: Kolo na el. Pogon...14 Slika 6: Kolo na el. pogon akumulator...14 Slika 7: Kolo med izdelavo...15 Slika 8: Pobarvan okvir kolesa...16 Slika 9: Okvir s kolesi...17 Slika 10: Reduktor...18 Slika 11: Motorna žaga na katero je nameščen reduktor...19 Slika 12: Prenosniki moči in momenta...20 Slika 13: Reduktor...21 Slika 14: Verižniki na zadnjem kolesu...21 Slika 15: Končen izdelek KAZALO PREGLEDNIC Tabela 1: Peglednica primernih zobnikov reduktorja
5 4. POVZETEK V tej raziskovalni nalogi smo se lotili izdelave kolesa s pogonom z motorno žago Jonsered. Ugotovili smo, da ima motor motorne žage bistveno preveliko število vrtljajev, zato smo jih zmanjšali z primernim reduktorjem, ki smo ga v celoti skonstruirali in izdelali. Prav tako smo izdelali celoten okvir kolesa, ki je popolno vzmeten. s simboličnim pogonom na pedala. 5
6 5. UVOD Za to raziskovalno delo nam je bil cilj izdelati kolo s motornim pogonov za katerega ni potrebna nobena registracija oziroma se je dovoljeno voziti po cestah. Izbirali smo motorje pri čemer smo ugotovili, da je najprimernejša in najzanimivejša motorna žaga. Izdelali smo popolnoma vzmeteno konstrukcijo kolesa. Avtohtonost kolesa smo ohranili s stopalkami kolesa. 6
7 6. HIPOTEZE Na podlagi zastavljenih ciljev in po pogovoru z mentorjem smo postavili hipotezo naše raziskovalne naloge: Ali je možno izdelati kolo s pomožnim motorjem, za katerega ne rabimo vozniškega dovoljenja in registracije, kot je to pri kolesih z motorjem (mopedih)? Predvidena največja hitrost je 60 km/h. Predvidena masa pa je okrog 45 kilogramov. 7
8 7. NAMEN IN CILJ RAZISKOVALNE NALOGE Namen te raziskovalne naloge je, da skonstruiramo kolo s pomožnim motorjem katerega namen je vožnja po javnih površinah in v cestnem prometu brez vozniškega dovoljenja ter brez registracije tega vozila. Izdelali smo kolo s pomožnim motorjem. Kolo je popolnoma vzmeteno. Sprednje vilice smo izdelali sami, zadnji amortizer pa je kupljen. Reduktor, ki smo ga izdelali sami, je nameščen na motorno žago. Glavna funkcija reduktorja je zmanjšanje števila vrtljajev in povečanje momenta na izhodni gredi. 8
9 8. PRIMERJAVA PODOBNIH IZDELKOV Predstavili vam bomo nekaj znanih izdelkov. Natančno in sistematično smo preučili tehnično izvedbo posameznih izdelkov. Zanimale so nas predvsem prednosti in slabosti. Pri zasnovi našega kolesa smo upoštevali prednosti, njihovim slabostim pa smo se skušali izogniti Kolo s pogonom motorja vinogradniške škropilnice Kolo na spodnji sliki ima določene prednosti in slabosti: Prednosti: - dokaj lahka izvedba, - majhen in enostaven za transport. Slabosti: - brez pedal, zato ne moremo pomagati motorju v klancu, ko mu zmanjka moči, - majhna kolesa in brez vzmetenja, zato je vožnja bistveno manj udobna in varna, - brez sklopke, zato zagon ni enostaven in na mestu ne moremo počakati z delujočim motorjem, - položaj motorja je neugoden nevarnost prevrnitve nazaj. 9
10 Slika 1: Kolo s pogonom motorja škropilnice Slika 2: Kolo s pogonom motorja škropilnice 2 10
11 8.2. Skiro z elektro pogonom (avtomobilski zaganjač) Skiro je bil izdelan pri praktičnem pouku na Šolskem centru Celje. Izdelali so ga nekateri naši sošolci. Prav tako smo si ga pred izdelavo našega kolesa ogledali in preučili ter ugotovili naslednje prednosti in slabosti. Prednost tega skiroja: - ekološko neoporečen (če pozabimo na akumulator), - tiho delovanje (udobna vožnja); in slabosti: - zelo nestabilen zaradi majhnih koles in slabo delujočega vzmetenja, - zelo kratka prevožena pot z enim polnjenjem akumulatorja, - brez regulacije vrtljajev motorja, - pogona ni mogoče ločiti od gnanega kolesa (brez sklopke), - relativno velika mase (akumulator), - dolgo obdobje polnjenja akumulatorja, - ker avtomobilski zaganjač ni namenjen za dolgo obratovanje, se zelo segreje, - polno moč ima le malo časa na začetku. 11
12 Slika 3: Skiro na el. Pogon Slika 4: Skiro na el. Pogon 12
13 8.3. Serijsko kolo na električni pogon To kolo ima električni pogon in se ga da kupiti v trgovini. Prednosti tega kolesa: - brez onesnaževanja okolja, - ima pedala za pogon v primeru izpraznjene baterije in za pomoč motorju, - ima velika kolesa, kar poskrbi za stabilnost; in slabosti: - majhna dosežena hitrost (caa. 23 km/h), - težka baterija ( 13 kilogramov), - dolg čas polnjenja baterije ( 8 ur)m - nevzmeten, - maksimalni naklon, ki ga lahko premaga je zelo majhen (6 %). 13
14 Slika 5: Kolo na el. Pogon Slika 6: Kolo na el. pogon akumulator 14
15 9. POSTOPEK IZDELAVE OKVIRJA Najprej smo kupili različne dimenzije tankostenskih cevi, ki smo jih ustrezno preoblikovali in obdelali. Veliko delov je bilo potrebno stružiti in rezkati za ustrezno prileganje. Cevi smo sproti rezali in jih čelno poravnali na stružnici. Sledila je obdelava na rezkalnem stroju. Tako smo dosegli dobro prilagajanje cevi pri varjenju. Cevi smo ukrivljali v toplem stanju s segretjem mesta pregiba do testastega stanja. Pripravljene cevi ogrodja smo zvarili s postopkom TIG. Za kolesa smo uporabili platišča motornega kolesa Tomos. Vse ostale elemente konstrukcije kolesa smo izdelali sami, razen balance. Slika 7: Kolo med izdelavo 15
16 Varjena konstrukcija je bila peskana v celoti. Takšno smo zaščitili z barvanjem. Nekateri sestavni elementi konstrukcije so pocinkani. Med snovanjem, konstruiranjem, izdelavo in montažo smo se veliko naučili ter pridobili veliko novih izkušenj. Slika 8: Pobarvan okvir kolesa 16
17 Slika 9: Okvir s kolesi 17
18 10. IZDELAVA DVOSTOPENJKSEGA REDUKTORJA Najtežje je bilo izdelati reduktor. Ohišje je varjeno iz preoblikovane pločevine. Zobniki v njem so izdelani po postopku odvalnega frezanja. Naš cilj je bil, da je reduktor čim manjši. Zato smo se odločili za dvostopenjski reduktor s čelnimi zobniki in ravnimi zobmi. Za povezavo sklopke in reduktorja smo naredili ustrezno natično utorno prirobnico. Ob vsakem izhodu gredi sta poleg ležajev še radialno tesnilo. Slika 10: Reduktor 18
19 Slika 11: Motorna žaga na katero je nameščen reduktor 19
20 11. PRENOSNIK MOČI IN MOMENTA Za prenos moči na zadnje kolo smo uporabili členkasto verigo. Iz reduktorja je veriga neposredno speljana na verižnik zadnjega kolesa, s pedalov pa je veriga speljana preko napenjalca na zadnji verižnik. Pri tem ima pogonski verižnik (le za stopalki kolesa) vgrajeno sklopko s prostim tekom v eno smer, kar zagotavlja, da se med vožnjo stopalki ne vrtita prisilno. Izstopni vrtljaji na motorju znašajo min -1. Slika 12: Prenosniki moči in momenta 20
21 Slika 13: Reduktor Slika 14: Verižniki na zadnjem kolesu 21
22 12. IZRAČUN POGONSKEGA SKLOPA Znani podatki pogonskega sklopa Podatki o pogonskem motorju: motor z notranjim zgorevanjem (dvotaktni bencinski motor), 3 prostornina motorja 80cm največja moč P = 4 kw, 1 največji vrtljaji motorja n 8500 min =. Predvidena hitrost kolesa je 60 km/h. Premer kolesa je 520 mm Izračun potrebnega prestavnega razmerja Na osnovi predvidene hitrosti in premera kolesa dobimo vrtljaje pogonskega kolesa po naslednjem izračunu: Obodna hitrost kolesa, Kotna hitrost kolesa, 60 m v = = s Vrtljaji pogonskega kolesa, ω = v s r = 0.52 = 2 30 ω π π -1 n k = = = 612 min. Potrebno prestavno razmerje je torej n 8500 i = = = n 612 k -1 22
23 12.3. Zasnova pogonskega sklopa Prenos momenta na zadnje kolo bo izveden preko členkaste verige. Na voljo sta verižnika s številom zob z v1 = 12 in z 2 = 38. Prestava verižnikov je i z v2 v = = = zv Preostali del redukcije vrtljajev bo izveden z reduktorjem i r i = = = 4.39 i v Zahtevana prestava reduktorja je sicer izvedljiva z enim zobniškim parom, vendar posledica tega je relativno veliki reduktor (drugi zobnik je 4.39 krat večji kot prvi). Odločimo se za dvostopenjski reduktor z ravnimi čelnimi zobmi. Pri tem naj bi bile obe prestavi enaki, torej je prestava ene stopnje ir1 = ir = 4.39 = 2.09 Spodnja tabela prikazuje potrebno število zob večjega zobnika pri izbranem številu zob manjšega zobnika in zahtevani prestavi 2.09 v Tabela 1: Peglednica primernih zobnikov reduktorja Odstopanje Ocena prestave z 1 z 2 z 2 [%] 10 20, , , ,04 23
24 12 25, , , , , , , , , , , , , , , ,73 Na meji tehnične izvedljivosti je prvi primer. Odločili smo se za prvo varianto, saj tako dobimo najmanjši reduktor. Prestava reduktorja je tako i r = = 4.41, in odstopanje prestave je pri tem 0.48%. Prestava je nekoliko večja, zato je končna predvidena hitrost za enak procent manjša oz. znaša km/h. Za zobnike smo izbrali normalni modul voljo ustrezno orodje za izdelavo zobnikov. m n = 2 mm, ker imamo na Opravili smo še celotni izračun geometrije in trdnosti zobnikov. V prilogi so rezultati izračuna. Izračun kaže, da je predlagan modul primerno izbran na varni strani. 24
25 13. ZAKLJUČEK Z raziskovalno nalogo smo dokazali, da smo se v dosedanjem šolanju nekaj naučili. V tej nalogi smo povezali vso dosedanje znanje, ki smo ga pridobili pri različnih predmetih. Na začetku se nam je zdela naloga lažja, kot smo ugotovili na koncu. Kljub približno 300 uram, ki smo jih porabili za izdelavo smo ob prvi preizkusni vožnji ugotovili, da je bil naš trud poplačan. Preučevali smo različne podobne projekte in ugotovili njihove prednosti in slabosti, ki smo jih upoštevali pri našem projektu. Ugotovili smo tudi, da tudi naš izdelek ni brez napak. Realnih stroškov ni mogoče oceniti, saj je bilo vloženega veliko truda in dela v prostem času. Naš projekt izpolnjuje vse zastavljene zahteve (hipoteze), nekatere celo presega. Maso kolesa smo uspeli zmanjšati na celo 40 kg. Zato smo ponosni na svoje opravljeno delo. 25
26 Slika 15: Končen izdelek 26
27 14. LITERATURA 1. Bojan Kraut, Krautov strojniški priročnik (Ljubljana 2002) 2. Igor Janežič, Strojni elementi 1 ( Ljubljana 2001) 3. Razni ustni viri 4. Razne internetne povezave 27
28 15. ZAHVALA Zahvaljujemo se mentorju dr.ivanu Gubenšek za usmerjanje pri raziskovalni nalogi. Nenazadnje se zahvaljujemo vsem, ki so kakorkoli pomagali pri realizaciji projekta. 28
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
MOTORJI Z NOTRANJIM ZGOREVANJEM
MOTORJI Z NOTRANJIM ZGOREVANJEM Dvotaktni Štititaktni Motorji z notranjim zgorevanjem Motorji z zunanjim zgorevanjem izohora: Otto motor izohora in izoterma: Stirling motor izobara: Diesel motor izohora
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
PRILOGA VI POTRDILO O SKLADNOSTI. (Vzorci vsebine) POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA
PRILOGA VI POTRDILA O SKLADNOSTI (Vzorci vsebine) A POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA Stran 1 POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA (1) (številka potrdila o skladnosti:)
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
IZDELAVA UČILA ZA PRIKAZ ENERGIJSKIH PRETVORB PRI POUKU FIZIKE
RAZISKOVALNA NALOGA IZDELAVA UČILA ZA PRIKAZ ENERGIJSKIH PRETVORB PRI POUKU FIZIKE Avtorji: Jan KOKALJ, 8. b Dejan RAMOVŠ, 8. b Denis ŽALIG, 8. b Mentor: Jože BERK, prof. fiz. in mat. Mestna občina Celje
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
TEHNIČNI LIST E E A B C D
lej poglavje OSNE RAZDALJE TRAKTORJA lej poglavje OSNE RAZDALJE TRAKTORJA H J F E E TEHNČN LST TEHNČN LST MERE TRAKTORJA A B C D Vse mere so podane v mm A razdalja med središčem prednje osi in standard
Tabele termodinamskih lastnosti vode in vodne pare
Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net
ZOBNIŠKA GONILA splošno
ZOBNIŠKA GONILA splošno so sestavljena iz enega ali več zobniških parov, ki so v ubiranju. Zobnik je valjasto ali stožčasto telo, ki ima po obodu zobe. Zobniška gonila so primerna za prenos tako majhnih
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004
Oddelek za konstrkcije Laboratorij za konstrkcije Ljbljana, 12.11.2012 POROČILO št.: P 1100/12 680 01 Presks jeklenih profilov za spščen strop po točki 5.2 standarda SIST EN 13964:2004 Naročnik: STEEL
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Vaje: Električni tokovi
Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete
ZOBATA LETEV. Vprijemni kot 20. p = delitev z = število zob a = osna razdalja m = modul D = delilni krog MATERIAL JEKLO C 40
KAZALO VSEBINE ZOBATE LETVE... 2 ČELNI ZOBNIKI... 3 TRAPEZNA VRETENA... 8 TRAPEZNE MATICE... 9 UTORNE GREDI... 10 UTORNE PUŠE... 10 ELASTIČNE SKLOPKE... 11 KOTNI ZGLOBI... 12 PRIKLJUČNE VILICE... 12 ENOJNI
TEHNIČNI LIST MERE TRAKTORJA. Vse mere so podane v mm. AGT 830/835 AGT 835 T/S standard 1020 1010 prednja hidravlika 1170 1230
TEHNIČNI LIST MERE TRAKTORJA Vse mere so podane v mm A Razdalja med središčem prednje osi in končni točki prednjega dela AGT 830/835 standard 1020 1010 prednja hidravlika 1170 1230 B Medosna razdalja 1185
1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ
TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri
DISKRETNA FOURIERJEVA TRANSFORMACIJA
29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
Reševanje sistema linearnih
Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev
IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
ARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega
Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
PREDREZILO NA TRAČNI ŽAGI ZA RAZREZ HLODOVINE
ŠOLSKI CENTER CELJE Srednja šola za strojništvo, mehatroniko in medije RAZISKOVALNA NALOGA PREDREZILO NA TRAČNI ŽAGI ZA RAZREZ HLODOVINE Avtorji: Matjaž Črešnar, M - 4. c Urban Remic, M - 4. c Tomaž Oprešnik,
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
NADZOR ELEKTRIČNIH PORABNIKOV
ŠOLSKI CENTER CELJE Srednja šola za elektrotehniko, kemijo, in računalništvo NADZOR ELEKTRIČNIH PORABNIKOV RAZISKOVALNA NALOGA MENTOR: Gregor Kramer univ. dipl. inž. el. Avtor: Nejc KOVAČIČ, E-4.a Celje,2016
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:
NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več
1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )
VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]
SEMINARSKA NALOGA Funkciji sin(x) in cos(x)
FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.
Kotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
K U P M Metka Jemec. Konferenca o učenju in poučevanju matematike, M a r i b o r, 2 3. i n 2 4. avgusta
U K 20 P K U P M 2 0 1 2 ROZETA 12 M Metka Jemec Konferenca o učenju in poučevanju matematike, M a r i b o r, 2 3. i n 2 4. avgusta 2 0 1 2 Kaj je rozeta? Rozeta je oblika vzorca, narejena v obliki simetrične
SPTE V OBRATU PRIPRAVE LESA
Laboratorij za termoenergetiko SPTE V OBRATU PRIPRAVE LESA Avditorna demonstracijska vaja Ekonomska in energijska analiza kotla in SPTE v sušilnici lesa Cilj vaje analiza proizvodnje toplote za potrebe
UPOR NA PADANJE SONDE V ZRAKU
UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži
L-400 TEHNIČNI KATALOG. Talni konvektorji
30 50 30-00 TEHIČI KATAOG 300 Talni konvektorji TAI KOVEKTORJI Talni konvektorji z naravno konvekcijo TK Talni konvektorji s prisilno konvekcijo TKV, H=105 mm, 10 mm Talni konvektorji s prisilno konvekcijo
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
UNIVERZALNI HIDRAVLIČNI TRAKTORSKI NAKLADALNI DROG
Šolski center Celje Poklicna in tehniška strojna šola UNIVERZALNI HIDRAVLIČNI TRAKTORSKI NAKLADALNI DROG Avtorja: Herman KOROŠEC Mitja LIPUŠ Mentorja: Gorazd JORDAN Igor LAH uni. dipl. ing. Mestna občina
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
RAZISKOVALNA NALOGA DETEKTOR HRUPA. Rene RATEJ, 9. r. Somentor: Gregor PANČUR, prof. Osnovna šola Hudinja. Področje: FIZIKA
RAZISKOVALNA NALOGA DETEKTOR HRUPA Avtorja: Urban RATEJ, 8. r Rene RATEJ, 9. r Mentor: Jože BERK, prof. Somentor: Gregor PANČUR, prof. Osnovna šola Hudinja Področje: FIZIKA Celje, 2013 1 KAZALO KAZALO.
Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
POPIS DEL IN PREDIZMERE
POPIS DEL IN PREDIZMERE ZEMELJSKI USAD v P 31 - P 32 ( l=18 m ) I. PREDDELA 1.1 Zakoličba, postavitev in zavarovanje prečnih profilov m 18,0 Preddela skupaj EUR II. ZEMELJSKA DELA 2.1 Izkop zemlje II.
Slika 5: Sile na svetilko, ki je obešena na žici.
4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Navodila za izpolnjevanje potrdil o skladnosti SA ( R1.2)
Republika Slovenija Ministrstvo za promet Direkcija Republike Slovenije za ceste Sektor za vozila Tržaška 19, 1000 Ljubljana telefon: 01 478 8430 faks: 01 478 8417 e-pošta: drsc@gov.si http://www.gov.si/drsc
+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
ČHE AVČE. Konzorcij RUDIS MITSUBISHI ELECTRIC SUMITOMO
ČHE AVČE Konzorcij RUDIS MITSUBISHI ELECTRIC SUMITOMO MONTAŽA IN DOBAVA AGREGATA ČRPALKA / TURBINA MOTOR / GENERATOR S POMOŽNO OPREMO Anton Hribar d.i.s OSNOVNI TEHNIČNI PODATKI ČRPALNE HIDROELEKTRARNE
Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta
Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji
Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
Dimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
O projektu MESA PROJEKTNI KURIKUL MESA. Osnutek kurikula nastal ob izvajanju projektu MESA, OSNOVNI PODATKI
PROJEKTNI KURIKUL MESA Osnutek kurikula nastal ob izvajanju projektu MESA, 2011-2013 OSNOVNI PODATKI Naziv šole: Šolski center Nova Gorica Naslov: Cankarjeva 10, 5000 Nova Gorica E-mail: mic@scng.si Spletna
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
GIBAJOČE LESENE IGRAČE
Osnovna šola Hudinja Celje GIBAJOČE LESENE IGRAČE avtorji: Primož Antolič, 9.b Rok Arčan, 9.b Žan Doberšek, 9.b mentorica: mag. Vida Brežnik, prof. thv. in kem. Mestna občina Celje, Mladi za Celje Celje,
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik
Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI
TOČKOVNI INDIKATOR NIVOJA TEKOČIN
ŠOLSKI CENTER CELJE Srednja šola za kemijo, elektrotehniko in računalništvo TOČKOVNI INDIKATOR NIVOJA TEKOČIN (Raziskovalna naloga) Avtor: Jernej SIMONIČ, E-4. c Mentor: Andrej GRILC, univ. dipl. inž.
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
5.2. Orientacija. Aleš Glavnik in Bojan Rotovnik
Orietacija Aleš Glavik i Boja Rotovik 52 Izvleček: Pred stav lje e so iz bra e te me iz orie ti ra ja v a ra vi, ki jih mo ra poz a ti vsak vod ik PZS, da lah ko var o vo di ude le `e ce a tu ri Pred stav