INSTRUMENTNE ANALITIČKE METODE I. seminar
|
|
- Ἐλισάβετ Αναγνώστου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 INSRUMENNE ANALIIČKE MEODE I semnar šk.g.. 006/07. zvor zračenja sastavla: V. Allegrett Žvčć SHEME OPIČKIH INSRUMENAA apsorpcjska spektroskopja zvor: zvor: žarulja, žarulja, ugrjana ugrjana krutna krutna sgnala sgnala emsjska spektroskopja zvor: zvor: plamen, plamen, luk, luk, skra, skra, plazma plazma sgnala sgnala fluorescencja, fosforescencja raspršenje zvor: žarulja, zvor: žarulja, laser laser sgnala sgnala 1
2 dva osnovna tpa zvora: kontnuran (šroko područje ) lnjsk (pojednačne ) kontnuran zvor najčešće se temelje na zračenju crnog tjela sve krutne emtraju EMZ ntenztet valna ovse samo o temperatur toplnska pobuda atoma/molekula toplnsko zračenje emsja elektromagnetskh valova pobuđenh molekula atoma Stefan-Boltzmannov zakon ukupno zračenje crnog tjela: Φ = σ x 4 σ = 5.69x -8 Wm - K -4 Planckov zakon spektralna gustoća zračenja crnog tjela: πhc f (, ) = 5 e l 1 hc k 1 πh ν f ( ν, ) = hν c k e 1 Wenov zakon valna za koju je energja crnog tjela maksmalna: kons tanta maks = k = 1,8 x - J K -1 h = 6,66 x -4 J s 897, 8 max =, µm
3 fotoelektrčn efekt zbacvanje elektrona z metala pod utjecajem elektromagnetskog zračenja energja fotona: E = h ν Enstenova relacja: mv mv hν l W h( ν ν g ) W = zlazn rad elektrona m = masa elektrona v = brzna oslobođenog elektrona ν = frekvencja upadnog zračenja ν g = grančna frekvencja 9. Prmjente Wenov zakon za procjenu temperature crvene superzvjezde Betelgeuse. Naoko Betelguese zgleda crvena, al njezna krvulja crnog tjela zapravo ma maksmum u blskom nfracrvenom području, pr valnoj duljn od 855 nanometara. Wenov zakon: temperatura: Betelgeuse (astronom zgovaraju kao beetle juce
4 0. Nadalje, zvjezda Rgel ma temperaturu od 00 K. Prmjenom Wenovog zakona odredte valnu duljnu maksmuma zračenja zvjezde. Kojoj to boj odgovara? prema Wenovom zakonu: vršna valna zvjezde znos 87 nm plavkasta boja (grančno područje s plavm područjem vdljvog spektra) 1. Prema Wenovom zakonu je maksmum valne duljne zračenja crnog tjela, zražen u mkrometrma, prkazan sljedećom jednadžbom: maks =.90x, gdje je temperatura u K. Izračunajte maksmume crnog tjela ugrjanog na (a) 4000 K, (b) 000 K (c) 00 K. formula: maks.90 = a) = 4000 K maks = 0.75 µm b) = 000 K maks = 1.45 µm c) = 00 K maks =.90 µm 4
5 . Prema Stefanovom zakonu ukupna energja E koju emtra crno tjelo u jednc vremena po jednc površne prkazana je jednadžbom: Φ = σ 4, gdje α ma vrjednost 5.69 x -8 Wm - K -4. Izračunajte ukupnu energju, zraženu u W/m, za svako od crnh tjela z prethodnog zadatka. formula: 4 Φ = σ a) = 4000 K Φ = 1.46x 7 Wm - b) = 000 K Φ = 9.x 5 Wm - c) = 00 K Φ = 5.69x 4 Wm -. Za kolko će se stupnjeva promjent početna temperatura apsolutno crnog tjela koja je u početku znosla 000 K, ako se vrjednost valne duljne koja odgovara maksmumu jakost zračenja poveća za 0,5 µm? rješenje: maks1 x 1 =,898 x maks x =,898 x = 1 + 0,5 µm; = 1487 K = 51 K 4. Odredte maksmalnu brznu fotoelektrona koj s površne srebra zljeće ozračen ultraljubčastm zračenjem valne duljne 0,155 µm. rješenje: brzna zbačenog elektrona v odred se z relacje: hc = W zlazn rad za srebro: W = 4,7 ev (poznato z tablca) m = 9.7 x -1 kg hc/ = 1,8 x -18 J ( 1 aj = -18 J ) = 8 ev v = 1,08 x 6 m s -1 + mv 5
6 vodkova/deuterjeva žarulja (UV) volframova žarulja (VIS) zvor IR zračenja ntenztet zvor IR zračenja Ever Glo valn broj (cm -1 ) 5. a) Izračunajte valnu duljnu maksmalne emsje volframove žarulje pr uobčajenoj radnoj temperatur od 870 K, te pr temperatur od 000 K. b) Izračunajte ukupan energjsk zlaz žarulje zražen u W/m. a) 1 = 870 K = 000 K rješenje: maks.90 = za 1 maks = nm za maks = 967 nm b) 1 = 870 K = 000 K 4 Φ = α rješenje: za 1 Φ =.86 x 6 Wm - za Φ = 4.61 x 6 Wm - 6
7 6. Izlaznu snagu lasera koj u nsek prozvede puls od 00 mj brzne od 0 pulseva/sek zrazte kao: a) snagu pulsa; b) prosječnu snagu lasera. brzna = 0 pulseva/sek šrna pulsa = nsek energja pulsa = 00 mj a) snaga pulsa energja / puls 00 = snaga = srna pulsa b) prosječna snaga = energja/puls x brzna = 0.00 J/puls x 0 puls/s = 0 Js -1 = 0 W 9 J = 0 MW s 7. Nek pulsn laser može radt brznom od blo 0 l 50 pulseva/sek. Uz prosječnu snagu W pulsnu šrnu nsek zračunajte snagu pulsa koja odgovara navedenm radnm brznama. rezultat: snaga(1) = 50 MW snaga() = 0 MW 7
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Fizika 2. Auditorne vježbe 11. Kvatna priroda svjetlosti, Planckova hipoteza, fotoefekt, Comptonov efekt. Ivica Sorić
Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstava Fizika 2 Auditorne vježbe 11 Kvatna priroda svjetlosti, Planckova hipoteza, fotoefekt, Comptonov efekt Ivica Sorić (Ivica.Soric@fesb.hr)
UVOD U KVANTNU TEORIJU
UVOD U KVANTNU TEORIJU UVOD U KVANTNU TEORIJU 1.) FOTOELEKTRIČKI EFEKT 2.) LINIJSKI SPEKTRI ATOMA 3.) BOHROV MODEL ATOMA 4.) CRNO TIJELO 5.) ČESTICE I VALOVI Elektromagnetsko zračenje UVOD U KVANTNU TEORIJU
gdje je E k, max kinetička energija izbijenog elektrona, a W izlazni rad. Formula se može i ovako napisati: c
Zadata (Maro, gnazja) Cezjev ploč obajao eletroagnet zračenje valne dljne 450 n. Kola je razla potenjala potrebna za zatavljanje eje eletrona z ploče? Izlazn rad za ezj zno ev. (Planova ontanta h 6.66
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave
THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove
Dinamika krutog tijela. 14. dio
Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
ZADACI. ktn c. λ λ. m s
ZADACI o 1 3 1 3 1 3 1 8 o 0,066 A 10 3 3,14 10 6,0 000 10 1,38 8 10 3 5893 A 8 s m kg J mol kg mol K J K m s M ktn c - A λ π λ λ . Odredte šrnu lnje (nm) ltja (λ 0 670,776 nm) kad se atom koj apsorbraju
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1
OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 04/11/12 ΛΥΣΕΙΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-03 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 04// ΛΥΣΕΙΣ ΘΕΜΑ A Στις ερωτησεις -4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.
Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. C. Složeno gibanje. Pojmovi: A. Translacijsko gibanje krutog tijela. 12.
Pojmo:. Vekor sle F (ranslacja). omen sle (roacja) Dnamka kruog jela. do. omen romos masa. Rad kruog jela A 5. Kneka energja k 6. omen kolna gbanja L 7. u momena kolne gbanja momena sle L f ( ) Gbanje
Interferencija valova svjetlosti
Interferencja valova svjetlost Uvod Da b poblže mogl sagledat razumjet fenomen nterferencje općento prmjenjeno, navest ćemo uvjete nterferencje posljedce th uvjeta. Pojave nterferencje dfrakcje u današnje
ΑΓΩΝΑΣ ΓΕΩΓΡΑΦΙΚΟΥ ΔΙΑΜΕΡΙΣΜΑΤΟΣ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΛΕΙΣΤΟΥ ΧΩΡΟΥ 18μ Α/Γ/Ε/Ν/Π/Κ ΒΟΗΘΗΤΙΚΟ ΓΥΜΝΑΣΤΗΡΙΟ "Δ. ΤΟΦΑΛΟΣ" 21 ΔΕΚΕΜΒΡΙΟΥ 2008 ΠΑΠΑΔΟΠΟΥΛΟΣ ΜΑΡΙΟΣ
ΑΓΩΝΑΣ ΓΕΩΓΡΑΦΙΚΟΥ ΔΙΑΜΕΡΙΣΜΑΤΟΣ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΛΕΙΣΤΟΥ ΧΩΡΟΥ 18μ Α/Γ/Ε/Ν/Π/Κ ΒΟΗΘΗΤΙΚΟ ΓΥΜΝΑΣΤΗΡΙΟ "Δ. ΤΟΦΑΛΟΣ" 21 ΔΕΚΕΜΒΡΙΟΥ 2008 ΠΑΠΑΔΟΠΟΥΛΟΣ ΜΑΡΙΟΣ ΒΙΣΙΛΙΑΣ ΦΩΤΙΟΣ ΚΑΡΜΟΙΡΗΣ ΧΡΗΣΤΟΣ 1ος 2ος 3ος ΚΑΤΗΓΟΡΙΑ
F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK
OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
2 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ
2 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ Διαθέτουμε τροχό ο οποίος αποτελείται από έναν ομογενή λεπτό δακτύλιο μάζας m = 1 kg και ακτίνας R και τέσσερις λεπτές ομογενείς ράβδους μάζας Μ ρ = ¾m και μήκους l = 2R η
Άζθεζε 18. Οπηηθό κηθξνζθόπην
Άζθεζε 18 Οπηηθό κηθξνζθόπην 18.1. θνπόο θνπφο ηεο άζθεζεο είλαη ε εμνηθείσζε ησλ ζπνπδαζηψλ κε ηελ νπηηθή κηθξνζθνπία θαη ε κειέηε κηθξνδνκψλ (κεγέζνπο κηθξνκέηξσλ) κε δηαθνξεηηθέο κεγεζχλζεηο, νη νπνίεο
Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo
Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh
ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ. Ενέργεια που δέχεται η Γη σε ένα έτος: 5.4 10 24 kj
ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ Ενέργεια που δέχεται η Γη σε ένα έτος: 5.4 10 4 kj Ανακλάται πίσω στο διάστημα το 30% Συνολικά απορροφούμενη ενέργεια: 3.8 10 4 kj ανά έτος (Περίπου διπλάσια της ενέργειας από όλα τα διαθέσιμα
Izbor prenosnih odnosa teretnog vozila - primer
FTN No Sad Katedra za motore ozla Teorja kretanja drumskh ozla Izbor prenosnh odnosa Izbor prenosnh odnosa teretnog ozla - prmer ata je karakterstka dzel motora MG OM 906 LA (Izor: http://www.dmg-dusburg.de/html/d_c_om906la.html)
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009.
Fakule elekoehnike, sojasva i bodogadnje Računasvo Fiika Audione vježbe - 7 lekomagneski valovi 15. avnja 9. Ivica Soić (Ivica.Soic@fesb.h) Mawellove jednadžbe inegalni i difeencijalni oblik 1.. 3. 4.
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Άσκηση 1. Το σχήµα δείχνει το διάγραµµα των ενεργειακών σταθµών του ατόµου υδρογόνου. Τα µήκη κύµατος λ 1
Άσκηση 1 Το σχήµα δείχνει το διάγραµµα των ενεργειακών σταθµών του ατόµου υδρογόνου. Τα µήκη κύµατος λ 1, λ 2 και λ 3 είναι µήκη κύµατος της ακτινοβολίας που εκπέµπεται κατά τις µεταβάσεις του ηλεκτρονίου
INŽENJERSKA FIZIKA I
ELEKTROTEHNIČKI FAKULTET SARAJEVO INŽENJERSKA FIZIKA I 7.1 Zvuk Zvuk je osjećaj koj otče od mehančkh osclacja koje rma uho a regstrra mozak. U zc od zvukom odrazumjevamo sve ojave vezane za mehančke osclacje
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
ÑÏÕËÁ ÌÁÊÑÇ. Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.
Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Θέµα ο Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
ΔΡΓΑΣΗΡΙΟ ΟΠΣΙΚΗ ΠΔΙΡΑΜΑ1:ΜΔΣΡΗΗ ΣΟΤ Μ.Κ. ΑΚΣΙΝΟΒΟΛΙΑ LASER ΜΔ ΚΑΣΟΠΣΡΟ LOYD
ΔΡΓΑΣΗΡΙΟ ΟΠΣΙΚΗ ΟΝΟΜΑΣΔΠΩΝΤΜΟ: ΑΚΗΗ: ΤΜΒΟΛΗ ΣΟΤ ΦΩΣΟ ΠΔΙΡΑΜΑ1:ΜΔΣΡΗΗ ΣΟΤ Μ.Κ. ΑΚΣΙΝΟΒΟΛΙΑ LASER ΜΔ ΚΑΣΟΠΣΡΟ LOYD ΠΔΙΡΑΜΑΣΙΚΗ ΓΙΑΓΙΚΑΙΑ Η πεηξακαηηθή δηάηαμε θαίλεηαη ζην ζρήκα 1. Απνηειείηαη από κηα πεγή
ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.
Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 ΘΕΜΑ 1 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που
Prijenos topline Vođenje (kondukcija) Strujanje (konvekcija) Zračenje (radijacija):
Prijenos topline Toplina je dio unutrašnje energije nekog tijela koja prelazi iz područja više temperature u područje niže temperature. Taj prijelaz se odvija na 3 načina: Vođenje (kondukcija): čvrsta
με ίσες μάζες ισορροπούν κρεμασμένα από κατακόρυφα ιδανικά ελατήρια με σταθερές k 1 και k 2 /2. Απομακρύνουμε τα σώματα Σ 1
ΑΣΚΗΣΕΙΣ ( Σε όλα τα προβλήματα - εκτός από το 9 - στα οποία υπεισέρχεται βαρύτητα να θεωρήσετε την τιμή της βαρυτικής επιτάχυνσης ίση με και 10 m/s 2, Να θεωρήσετε επίσης για την τιμή του π ότι π 2 =
ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ Φ 250 25,6 275 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,800 Φ 250 1,800 Υ: 1.75 B:0.59 Π: 0.
ΚΑΜΙΝΑΔΑΣ Kw ΒΑΡΟΣ 1 B:0.59 150 25,6 275 1,700 2 3 4 5 ΣΤΡΟΓΓΥΛΟ Τ 90 B:0.73 B:0.76 Υ: 1.72 B:0.62 Π: 0.98 B:0.66 Π:1.06 150 150 24 20 20 20 288 295 305 1,700 1,700 1,700 1,800 ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži
tomi i jezgre.. tomi i kvanti.. tomska jezgra Kvant je najmanji mogući iznos neke veličine. Foton, čestica svjetlosti, je kvant energije: gdje je f frekvencija fotona, a h Planckova konstanta. E = hf,
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΠΡΟΥΠΟΛΟΓΙΣΜΟΣ ΗΜΟΣΙΩΝ ΕΠΕΝ ΥΣΕΩΝ Οικονοµικό Έτος 2014 Κωδικός Αριθµός Ο ν ο µ α σ ί α ΣΥΝΟΠΤΙΚΟΣ ΠΙΝΑΚΑΣ 1. ΠΙΣΤΩΣΕΙΣ ΚΑΤΑ ΦΟΡΕΑ 2014 2013 ιαµόρφωση 2012 Απολογισµός
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
THΛ: THΛ: 270727 222594 919113 949422 #&"'"%$ #"%$!"#$ '"(#"')%$ Α. Για τις παρακάτω προτάσεις 1-4 να γράψετε το γράµµα α, β, γ ή δ, που αντιστοιχεί στην σωστή απάντηση 1. Η υπέρυθρη ακτινοβολία α. είναι
Ασκήσεις Ακ. Έτους 2013 14 (επιλύθηκαν συζητήθηκαν κατά τη διδασκαλία) Όπου χρειάζεται ο Αριθμός Avogadro λαμβάνεται 0.6023 1024
Ασκήσεις Ακ. Έτους 2013 14 (επιλύθηκαν συζητήθηκαν κατά τη διδασκαλία) Όπου χρειάζεται ο Αριθμός Avogadro λαμβάνεται 0.6023 10 24 και τα ατομικά βάρη θεωρείται ότι ταυτίζονται με τον μαζικό αριθμό σε g
OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA
OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA OSNOVI HEMIJSKE TERMODINAMIKE Hemjska termodnamka proučava promene energje (toplotn efekat) pr odgravanju hemjskh reakcja. MATERIJA ENERGIJA? Energja je dskontnualna
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 13 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ 1. ύο µονοχρωµατικές ακτινοβολίες Α και Β µε µήκη κύµατος στο κενό
Dinamika rotacije (nastavak)
Dnaka rotacje (nastaak) Naučl so: Moent sle: M r F II Njutno zakon za rotacju krutog tela oko nepokretne ose: Analogno sa: F a I je skalarna elčna analogna as predstalja nertnost tela prea rotacj. Zas
PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
U L U L U N U N. metoda
Zadatak (Boško, gmnazja) Kad se jakost struje, kroz zavojncu koja ma zavoja, jednolko poveća od 3 A do 9 A tok magnetskog polja kroz nju se promjen od mwb do mwb tjekom 3 sekunde. Kolka je nduktvnost zavojnce
Zadatak 162 (Toon, tehnička škola) Proton prolazi dijelom prostora u kojem na njega djeluje homogeno magnetno polje.
Zadatak 161 (elx, tehnčka škola) Kroz zavojncu bez jezgre koja a 1 zavoja jenja se jakost struje od do 1 A. Kolka je projena agnetnog toka ako je nduktvtet zavojnce.1 H? Rješenje 161 N = 1, I 1 = A, I
gdje je φ kut izmeñu smjera magnetnog polja i smjera struje, a B magnetna indukcija. sin B l
Zadatak 4 (ony, trukovna škola) Kroz horzontalno položen štap duljne. m prolaz elektrčna truja. Štap e nalaz u horzontalnom magnetnom polju od.8 koje a mjerom truje zatvara kut od 3. Sla kojom polje djeluje
ΜΟΝΑΔΑ ΜΕΣΡΗΗ ΠΟΟ ΣΗΣΑ ΤΝΟΛΟ ΑΝΕΤ ΦΠΑ ΣΚΜΗ ΜΟΝΑΔΟ ΑΝΕΤ ΦΠΑ ΕΚΔΟ 1. DVD R ΑΠΛΑ ΕΓΓΡΑΦΗ CPV : 30234400-2 2. CD R ΑΠΛΑ ΕΓΓΡΑΦΗ CPV :30234300-1
ΔΝΣΤΠΟ ΟΗΚΟΝΟΜΗΚΖ ΠΡΟΦΟΡΑ ΓΗΑ ΣΟΝ ΠΡΟΥΔΗΡΟ ΜΔΗΟΓΟΣΗΚΟ ΓΗΑΓΩΝΗΜΟ ΣΖ 22/05/2015 ΓΗΑ ΣΟ «ΣΜΖΜΑ 4 : Προμήθεια γραφικής ύλης και λοιπών σλικών γραφείοσ» ΣΖ ΠΡΟΜΖΘΔΗΑ ΔΝΣΤΠΩΝ ΚΑΗ ΤΛΗΚΩΝ ΜΖΥΑΝΟΓΡΑΦΖΖ ΚΑΗ ΠΟΛΛΑΠΛΩΝ
1. H μεσοαστρική ύλη αποτελείται από 99% αέριο και 1 % σκόνη (κατά μάζα). Τι εννοούμε μεσαστρικό αέριο;
1. H μεσοαστρική ύλη αποτελείται από 99% αέριο και 1 % σκόνη (κατά μάζα). Τι εννοούμε μεσαστρικό αέριο; A. Ύλη σε υγρή κατάσταση και σε θερμοκρασία 273 Κ B. Υλη στη μορφή μεμονωμένων ατόμων και μορίων
ΔΗΛΩΣΗ Περιουσιακής κατάστασης έτους 2009 Κατά το άρθρο 56 παρ. 1 του Ν.3979/2011 (ΦΕΚ 138/Α/16-06-2011)
ΔΗΛΩΣΗ Περιουσιακής κατάστασης έτους 2009 Κατά το άρθρο 56 παρ. 1 του Ν.3979/2011 (ΦΕΚ 138/Α/16-06-2011) Στοιχεία του υπόχρεου Επώνυμο: ΣΤΡΑΤΑΚΗΣ Κύριο όνομα: ΕΜΜΑΝΟΥΗΛ Όνομα πατέρα: ΣΟΦΟΚΛΗ Ιδιότητα με
Srednjenaponski izolatori
Srednjenaponski izolatori Linijski potporni izolatori tip R-ET Komercijalni naziv LPI 24 N ET 1) LPI 24 L ET/5 1)2) LPI 24 L ET/6 1)2) LPI 38 L ET 1) Oznaka prema IEC 720 R 12,5 ET 125 N R 12,5 ET 125
ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΗΣ Ο ΗΓΙΑΣ 96/61/ΕΚ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΟΛΟΚΛΗΡΩΜΕΝΗ ΠΡΟΛΗΨΗ ΚΑΙ ΕΛΕΓΧΟ ΤΗΣ ΡΥΠΑΝΣΗΣ (IPPC)
ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΗΣ Ο ΗΓΙΑΣ 96/61/ΕΚ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΟΛΟΚΛΗΡΩΜΕΝΗ ΠΡΟΛΗΨΗ ΚΑΙ ΕΛΕΓΧΟ ΤΗΣ ΡΥΠΑΝΣΗΣ (IPPC) 1. ΓΕΝΙΚΗ ΠΕΡΙΓΡΑΦΗ 1.1 Ποιες είναι οι κυριότερες µεταβολές που χρειάστηκε να γίνουν
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ & ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Στις ερωτήσεις Α-Α4 να γράψετε στο τετράδιό
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Αρχιτεκτόνων Μηχανικών Κρήτης
ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Χρηστίδης Δ. Ανωγιάτη Χ. Κοκκολάκη Α. Λουράντου Α. Χασάπης Φ. Σταυροπούλου Ε. Αλωνιστιώτη Δ. Καρκασίνας Α. Μαραγκουδάκης Θ. Κεφαλάς Γ. Μπαχά Α. Μπέζα Γ. Μποραζέλης Ν. Χίνης Π. Λύτρα
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΜΙΝΑΡΙΟΥ ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΥΠΟΣ ΠΙΣΤΟΠ.
1 ΛΥΣΣΑΝΔΡΗ ΣΟΦΙΑ ΧΑΜΠΗΣ Α1 108400011 ΑΠΟΤΥΧΩΝ/ΟΥΣΑ ΑΠΟΤΥΧΩΝ/ΟΥΣΑ _ 2 ΓΙΑΝΝΙΟΣ ΝΙΚΟΛΑΟΣ ΜΙΧΑΗΛ Α1 108400021 ΑΠΟΤΥΧΩΝ/ΟΥΣΑ ΕΠΙΤΥΧΩΝ/ΟΥΣΑ _ 3 ΤΣΙΜΠΛΑΚΟΥ ΕΛΕΝΗ ΠΑΝΑΓΙΩΤΗΣ Α1 108400031 ΕΠΙΤΥΧΩΝ/ΟΥΣΑ ΕΠΙΤΥΧΩΝ/ΟΥΣΑ
Kvantna optika Toplotno zračenje Apsorpciona sposobnost tela je sposobnost apsorbovanja energije zračenja iz intervala l, l+ l na površini tela ds za vreme dt. Apsorpciona moć tela je sposobnost apsorbovanja
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α3 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή φράση η οποία συμπληρώνει σωστά την
Αθήνα, 8/1/2014 Αρ. Πρωτ. Φ2-74 ΓΕΝ. ΓΡΑΜΜΑΤΕΙΑ ΕΜΠΟΡΙΟΥ. ΤΜΗΜΑ Δ' Ταχ. Δ/νση: Πλ. Κάνιγγος ΠΡΟΣ : 1. Γεν. Δ/νσεις Ανάπτυξης Ταχ. Κώδ.
Αθήνα, 8/1/2014 Αρ. Πρωτ. Φ2-74 ΓΕΝ. ΓΡΑΜΜΑΤΕΙΑ ΕΜΠΟΡΙΟΥ Δ/ΝΣΗ ΜΕΤΡΟΛΟΓΙΑΣ ΑΝΑΡΤΗΤΕΑ ΤΜΗΜΑ Δ' Ταχ. Δ/νση: Πλ. Κάνιγγος ΠΡΟΣ : 1. Γεν. Δ/νσεις Ανάπτυξης Ταχ. Κώδ.: 101 81 Αθήνα των Περιφερειών της Πληροφ.:
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
ΕΒ ΟΜΑ ΙΑΙΟ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ Α ΕΞΑΜΗΝΟΥ 2012-2013
ΕΒ ΟΜΑ ΙΑΙΟ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ Α ΕΞΑΜΗΝΟΥ 2012-2013 Θ. Ζυγκιρίδης- Μ. Λούτα- Θ. Ζυγκιρίδης- Μ. Λούτα- Θ. Ζυγκιρίδης- Π. Αγγελίδης- Μ. Λούτα- Π. Αγγελίδης-,Β Θ. Ζυγκιρίδης- Π. Αγγελίδης- Μ. Λούτα- Π. Αγγελίδης-,Β
ΤΟΥ 3 ΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ
Α Π Ο Σ Π Α Σ Μ Α Από το 14/2013 πρακτικό συνεδρίασης του Δημοτικού Συμβουλίου Δήμου Λήμνου της 20 ης Αυγούστου 2013 Αριθμός Απόφασης 291/2013 Θέμα 11 ο : Έγκριση 1 ου ΑΠΕ του έργου «ΕΠΕΚΤΑΣΗ ΚΑΙ ΔΙΑΡΥΘΜΙΣΗ
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
Π Ι Ν Α Κ Α Σ ΔΟΚΙΜΩΝ ΠΥΡΟΣΒΕΣΤΩΝ ΓΕΝΙΚΩΝ ΚΑΘΗΚΟΝΤΩΝ ΠΟΥ ΠΛΗΡΟΥΝ ΤΑ ΠΡΟΣΟΝΤΑ ΚΑΙ ΤΙΣ ΠΡΟΥΠΟΘΕΣΕΙΣ ΓΙΑ ΠΡΟΣΛΗΨΗ Κατηγορία Α7 -Πληροφορικής Α.Τ.Ε.
1 ΘΕΣΣΑΛΟΝΙΚΗ 697 ΑΗ323276 Α ΑΝΑΓΝΩΣΤΟΥ ΑΝΑΣΤ ΔΗΜΗΤ ΒΑΣΙΛ 30/9/1984 6 ( 61 / 100) Αρ. Ν Ν Ν 1.611 2 ΘΕΣΣΑΛΟΝΙΚΗ 24 ΑΚ435432 Α ΜΕΤΑΞΑΣ ΓΡΗΓΟ ΝΙΚΟΛ ΕΛΕΥΘ 7/6/1985 6 ( 64 / 100) Γ Ν Ν Ν Ν 1.564 3 ΖΑΚΥΝΘΟΣ
ΔΗΛΩΣΗ Περιουσιακής κατάστασης έτους 2009 Κατά το άρθρο 56 παρ. 1 του Ν.3979/2011 (ΦΕΚ 138/Α/16-06-2011)
ΔΗΛΩΣΗ Περιουσιακής κατάστασης έτους 2009 Κατά το άρθρο 56 παρ. 1 του Ν.3979/2011 (ΦΕΚ 138/Α/16-06-2011) Στοιχεία του υπόχρεου Επώνυμο: ΚΑΡΑΘΑΝΑΣΟΠΟΥΛΟΣ Κύριο όνομα: ΝΙΚΟΛΑΟΣ Όνομα πατέρα: ΠΕΤΡΟΥ Ιδιότητα
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α
3 o ΔΑΓΩΝΣΜΑ ΜΑΡΤOΣ 03: ΕΝΔΕΚΤΚΕΣ ΑΠΑΝΤΗΣΕΣ ΦΥΣΚΗ ΘΕΤΚΗΣ ΚΑ ΤΕΧΝΟΛΟΓΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΑΓΩΝΣΜΑ (ΣΤΕΡΕΟ ΣΩΜΑ) ΕΝΔΕΚΤΚΕΣ ΑΠΑΝΤΗΣΕΣ ΘΕΜΑ Α β δ 3 δ 4 β 5 Λ βσ γλ δσ ελ ΘΕΜΑ Β Σωστή είνι η πάντηση γ Ο ρυθμός
ΔΗΛΩΣΗ Περιουσιακής κατάστασης έτους 2009 Κατά το άρθρο 56 παρ. 1 του Ν.3979/2011 (ΦΕΚ 138/Α/16-06-2011)
ΔΗΛΩΣΗ Περιουσιακής κατάστασης έτους 2009 Κατά το άρθρο 56 παρ. 1 του Ν.3979/2011 (ΦΕΚ 138/Α/16-06-2011) Στοιχεία του υπόχρεου Επώνυμο: ΒΑΡΒΑΡΙΓΟΣ Κύριο όνομα: ΔΗΜΗΤΡΙΟΣ Όνομα πατέρα: ΑΝΤΩΝΙΟΣ Ιδιότητα
ΛΥΚΕΙΟ ΑΓΙΟΥ ΙΩΑΝΝΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ 2014. ΤΑΞΗ: Β Ενιαίου Λυκείου ΗΜΕΡ.
ΛΥΚΕΙΟ ΓΙΟΥ ΙΩΝΝΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙ 2013-2014 ΓΡΠΤΕΣ ΠΡΟΓΩΓΙΚΕΣ ΕΞΕΤΣΕΙΣ ΜΪΟΥ- ΙΟΥΝΙΟΥ 2014 ΤΞΗ: Β Ενιαίου Λυκείου ΗΜΕΡ. : 26 /05/2014 ΜΘΗΜ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Χρόνος : 2,5 ώρες Το εξεταστικό δοκίμιο αποτελείται
ΠΕΡΙΦΕΡΕΙΑ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ
ΑΓΙΑΣ ΠΑΡΑΣΚΕΥΗΣ 22533-50500 έως 50508 22533-50510,50514 ΑΓΙΑΣΟΥ 1 ΑΓΙΑΣΟΥ ΑΓΙΑΣΟΣ 22523-50500 έως 510 ΑΓΙΑΣΟΥ 1 ΑΓΙΑΣΟΥ ΓΗΠΕ Ο ΜΠΑΣΚΕΤ ΑΓΙΑΣΟΣ 22523-50500 έως 510 ΑΓΙΑΣΟΥ 1 ΑΓΙΑΣΟΥ ΓΗΠΕ Ο ΧΑΝΤΜΠΟΛ ΑΓΙΑΣΟΣ
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
SPEKTROSKOPIJA OSNOVE - zadaci
uvodno predavanje općenito uzorkovanje; norme i standardi; intelektualno vlasništvo BOLTZMANNOVA RAZDIOBA STATISTIKA osnove EKSTRAKCIJA, KROMATOGRAFIJA - osnove ELEKTROANALITIČKE METODE SPEKTROSKOPIJA
Ο13. Μεγεθυντικός φακός. 1. Σκοπός. 2. Θεωρία. θ 1
13 Μεγεθυντικός φακός 1. Σκοπός ι μεγεθυντικοί φακοί ή απλά μικροσκόπια (magnifiers) χρησιμοποιούνται για την παρατήρηση μικροσκοπικών αντικειμένων ώστε να γίνουν καθαρά παρατηρήσιμες οι λεπτομέρειες τους.
ΔΕΔΔΗΕ / Περιοχή Ξάνθης : Αιτήσεις σύνδεσης φωτοβολταϊκών συστημάτων του Ειδικού Προγράμματος
ΔΕΔΔΗΕ / Περιοχή Ξάνθης : Αιτήσεις φωτοβολταϊκών συστημάτων του Ειδικού Προγράμματος 1 ΚΑΡΥΟΦΥΛΛΙΔΗΣ ΑΠΟΣΤΟΛΟΣ ΟΔΥΣΣΕΩΣ 28 ΞΑΝΘΗ ΞΑΝΘΗΣ 2,45 21/10/2009 11/11/2009 11/11/2009 14/5/2010 2 ΠΑΣΧΑΛΗ ΔΗΜΟΥ ΥΙΟΙ
F2_kolokvij_K2_zadaci izbor_rješenja lipanj, 2008
F_kolokvij_K_zadai izbor_rješenja lipanj, 008 Fermatov prinip:. Fermatov prinip o širenju svjetlosnih zraka; izvedite zakon refleksije pomoću prinipa minimalnog vremena širenja svjetlosti između dviju
Řečtina I průvodce prosincem a začátkem ledna prezenční studium
Řečtina I průvodce prosincem a začátkem ledna prezenční studium Dobson číst si Dobsona 9. až 12. lekci od 13. lekce už nečíst (minulý čas probírán na stažených slovesech velmi matoucí) Bartoň pořídit si
2012-2013 Πειραιάς:17/10/2012
ΠΡΟΓΡΑΜΜΑ ΔΙΔΑΣΚΑΛΙΑΣ (ΕΞΑΜΗΝΟ: 1) ΨΣ-001-ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ I 08:15 08:15-10:00, 103 ΚΑΤΣΙΚΑΣ Σ., _ ΔΙΔΑΣΚΩΝ Π.Δ. 11:15 11:15-13:00, 103 ΨΣ-003-ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ 10:15 10:15-12:00, 103 ΚΑΤΣΙΚΑΣ Σ., _ ΔΙΔΑΣΚΩΝ
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Α Π Ο Φ Α Σ Η ΚΑΘΟΡΙΣΜΟΥ ΕΚΛΟΓΙΚΩΝ ΤΜΗΜΑΤΩΝ Α ΕΚΛΟΓΙΚΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΓΙΑ ΤΗ ΔΙΕΝΕΡΓΕΙΑ ΔΗΜΟΨΗΦΙΣΜΑΤΟΣ ΤΗΣ 5ης ΙΟΥΛΙΟΥ 2015
ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΕΣΩΤΕΡΙΚΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΔΙΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗΣ Α Π Ο Φ Α Σ Η ΚΑΘΟΡΙΣΜΟΥ ΚΩΝ ΩΝ Α ΚΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΓΙΑ ΤΗ ΔΙΕΝΕΡΓΕΙΑ ΔΗΜΟΨΗΦΙΣΜΑΤ
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
1 o K E F A L A I O ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ ΚΑΙ ΒΙΟΧΗΜΕΙΑ Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ
1 o K E F A L A I O ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ ΚΑΙ ΒΙΟΧΗΜΕΙΑ Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ Ερωτήσεις πολλαπλής επιλογής Να βάλετε σε κύκλο το γράµµα που αντιστοιχεί στη σωστή απάντηση ή στη φράση που συµπληρώνει σωστά
ΦΑΣΜΑΤΟΜΕΤΡΙΑ ΥΠΕΡΙΩΔΟΥΣ- ΟΡΑΤΟΥ, UV-Vis (ULTRAVIOLET- VISIBLE SPECTROMETRY) ΑΘΗΝΑ, ΟΚΤΩΒΡΙΟΣ 2015
ΦΑΣΜΑΤΟΜΕΤΡΙΑ ΥΠΕΡΙΩΔΟΥΣ- ΟΡΑΤΟΥ, UV-Vis (ULTRAVIOLET- VISIBLE SPECTROMETRY) ΑΘΗΝΑ, ΟΚΤΩΒΡΙΟΣ 2015 ΑΡΧΗ ΤΗΣ ΜΕΘΟΔΟΥ Η Φασματομετρία UV-Vis στηρίζεται στην μέτρηση της απορρόφησης ηλεκτρομαγνητικής ακτινοβολίας
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 1 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ Σάββατο, 1 Απριλίου 007 Ώρα: 10:00 13:00 Οδηγίες: 1) Το δοκίµιο αποτελείται από οκτώ (8) θέµατα. ) Απαντήστε σε όλα τα θέµατα. 3) Επιτρέπεται
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
ΔΕΔΔΗΕ / Περιοχή Σερρών: Αιτήσεις σύνδεσης φωτοβολταϊκών σταθμών κατ' επάγγελμα αγροτών
1 ΠΟΛΥΜΕΡΗΣ ΠΑΝΑΓΙΩΤΗΣ 2 ΠΟΛΥΧΡΟΝΗΣ ΜΑΤΡΑΠΑΖΗΣ 3 ΚΥΡΚΟΣ ΞΑΝΘΟΠΟΥΛΟΣ 4 ΓΕΩΡΓΑΝΤΑ ΓΑΡΟΥΦΑΛΙΑ 5 ΚΑΡΑΓΙΟΒΑΝΗ ΑΘΑΝΑΣΙΑ 6 ΣΙΑΚΑΣ ΠΑΡΑΣΧΟΣ 7 ΓΚΑΤΖΙΟΣ ΔΗΜΗΤΡΙΟΣ ΤΟΥ ΙΩΑΝΝΗ 8 ΜΕΛΙΔΟΥ ΕΥΑΓΓΕΛΙΑ 9 ΧΥΤΑ ΔΙΑΜΑΝΤΟΥΛΑ