Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži
|
|
- Ιάσων Γεωργίου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 tomi i jezgre.. tomi i kvanti.. tomska jezgra Kvant je najmanji mogući iznos neke veličine. Foton, čestica svjetlosti, je kvant energije: gdje je f frekvencija fotona, a h Planckova konstanta. E = hf, Fotoelektrični učinak je pojava izbacivanja elektrona iz metala s pomoću fotona. Foton energije hf predaje energiju elektronu, koji dio utroši na izlazni rad W i, a dio na kinetičku energiju. hf = W + m v e Izlazni rad je energija potrebna za izbacivanje elektrona iz metala. Valno-čestična priroda tvari iskazana je de Broglievom relacijom koja povezuje valnu duljinu λ i količinu gibanja p. λ = h p Energija fotona pri emisiji i apsorpciji odgovara razlici višeg i nižeg energijskog stanja elektrona. hf = E viši E niži Nukleoni su čestice jezgre: protoni i neutroni. Na okupu ih drži jaka nuklearna sila. Ukupan broj nukleona jednak je zbroju protona i neutrona N. = + N tomsku jezgru ili nuklid označavamo sa X, gdje je maseni broj, atomski broj, a X oznaka kemijskog elementa. tomski broj je broj protona u jezgri. Maseni broj je zbroj protona i neutrona u jezgri. Izotopi su nuklidi koji imaju isti broj protona, a različit broj neutrona. tomska jedinica mase je mase ugljika C, što iznosi: u =, kg. 5
2 Defekt mase je razlika ukupne mase svih pojedinačnih nukleona i mase jezgre sastavljene od tih nukleona. m = m p + Nm n m Energija vezanja je energija koja odgovara defektu mase. E v = mc Radioaktivnost je spontani raspad jezgre uslijed kojeg jezgra zrači. α-zračenje je emisija helijevih jezgara sastavljenih od dva protona i dva neutrona. X 4 Y+ He. β -zračenje je emisija elektrona iz jezgre (pri čemu se emitira i antineutrino) zbog pretvorbe jednog neutrona u proton. + 4 X Y+ e +. β + -zračenje je emisija pozitrona iz jezgre (pri čemu se emitira i neutrino) zbog pretvorbe jednog protona u neutron. + X Y+ e + e. γ-zračenje je emisija elektromagnetskih valova vrlo kratke valne duljine, manje od m, zbog prijelaza jezgre iz višeg u niže energijsko stanje. X X+. Vrijeme poluraspada je vrijeme za koje se raspadne polovica od početnog broja radioaktivnih jezgara. ln T / akon radioaktivnog raspada: N = N ktivnost je broj raspada u jedinici vremena. t T / = λ N Ionizacijsko zračenje je zračenje koje uzrokuje ionizaciju izbacivanje elektrona iz atoma. Ono oštećuje žive organizme. e psorbirana doza je srednja apsorbirana energija po jedinici mase. D = E m Q-faktor je broj koji pokazuje relativni biološki učinak različitih vrsta ionizirajućeg zračenja. Ekvivalentna doza je umnožak Q-faktora i apsorbirane doze D. H = QD 6
3 TOMI I JEGRE.. tomi i kvanti. Masa od 35 g nekog elementa sadrži 3, 3 atoma. Koji je to element?. a) ko je valna duljina nekog elektrona 5 7 m, kojom se brzinom giba? b) ko je brzina elektrona 7 ms, kolika je njegova valna duljina? 3. Izračunajte valnu duljinu ultraljubičastog fotona čija energija iznosi 6,4 9 J. 4. Tamnjenje kože na suncu uzrokuju fotoni energije 3,5 ev. Koja je valna duljina tih fotona? Rješenje: aluminij (7 gmol ) Rješenje: a),46 kms ; b) 7,8 m Rješenje: 3 nm Rješenje: 354 nm 5. Snop monokromatske svjetlosti frekvencije 5 4 Hz i snage,4 mw pada na pločicu cezija. Koliko fotona u sekundi pada na površinu? Rješenje:, 5 6. Kolika je maksimalna kinetička energija fotoelektrona dobivenih kada svjetlost frekvencije 5 4 Hz pada na površinu cezija? Rješenje:,7 ev 7. Snop svjetlosti valne duljine 555 nm pada na metalnu površinu za koju je granična valna daljina jednaka 73 nm. Izračunajte maksimalnu kinetičku energiju elektrona. Rješenje:,54 ev 8. Kad svjetlost valne duljine 35 nm pada na površinu kalija, emitiraju se elektroni čija je najveća kinetička energija,3 ev. Izračunajte: a) izlazni rad kalija b) graničnu valnu daljinu c) frekvenciju koja odgovara graničnoj valnoj daljini. Rješenje: a),4 ev; b) 555 nm; c) 5,4 4 Hz 9. Kolika mora biti valna duljina svjetlosti koja pada na natrij kako bi on emitirao elektrone najveće brzine od 6 ms? Rješenje: 34 nm 7
4 TOMI I JEGRE. račenje određene valne duljine izbacuje elektrone iz metala, čija je najveća kinetička energija,68 ev. Izlazni rad metala je,75 ev. Kolika će biti najveća kinetička energija kojom to isto zračenje izbacuje elektrone iz nekog drugog metala, čiji je izlazni rad,7 ev? Rješenje:,6 ev. Pri prijelazu elektrona u vodikovu atomu s drugog pobuđenog u prvo pobuđeno stanje, emitira se foton čija je valna duljina upravo jednaka graničnoj valnoj duljini za fotoelektrični učinak na nekom metalu. Koliki je izlazni rad za taj metal? Rješenje:,89 ev. Kolika je de Broglieva valna duljina elektrona koji ima energiju ev? Kolika je energija fotona iste valne duljine? Rješenje: 4 m; 3, kev 3. Kolika je de Broglieva valna duljina sitne čestice mase kg koja se giba brzinom 3 8 ms? 4. Odredite energiju fotona infracrvene svjetlosti valne duljine 4 nm. Rješenje:, 5 nm 5. Izračunajte energiju fotona plave svjetlosti valne duljine 45 nm. 6. Koju valnu duljinu imaju fotoni čija energija iznosi 6 ev? Rješenje: ev Rješenje:,8 ev Rješenje:, nm 7. Kojom bi se brzinom morao gibati elektron čija je de Broglieva valna duljina jednaka valnoj duljini fotona dobivenog prijelazom elektrona iz drugog pobuđenog stanja u osnovno stanje u vodikovu atomu? (h = 6,63 34 Js = 4,4 MeVs, m e =,5 MeV, c = 3 8 ms ) Rješenje: 7, 3 ms 8. Jezgra nekog atoma ima promjer 4 m. Da bi elektron ostao zatvoren u jezgri, njegova bi de Broglieva valna duljina morala biti tog reda veličine ili manja. Kolika je kinetička energija elektrona ograničenog na to područje? Rješenje: MeV 8
5 TOMI I JEGRE 9. Promjer atomske jezgre iznosi oko 5 m. U vodikovu je atomu najvjerojatnija udaljenost elektrona od jezgre jednaka Bohrovu polumjeru, koji iznosi 5,3 m. Uz pretpostavku da je atom vodika kugla Bohrova polumjera, izračunajte približni: a) volumen atoma b) volumen jezgre c) postotak volumena atoma koji zauzima jezgra. Rješenje: a) 3 m 3 ; b) 45 m 3 ; c) 3 %. tom vodika emitira foton valne duljine 656 nm. Nađite kvantni prijelaz pri kojem se dogodila ta emisija.. Vodikov se atom nalazi u prvom pobuđenom stanju. Koju najveću valnu duljinu može apsorbirati? Rješenje: 3 Rješenje: 658, nm. tom nekog elementa pri prijelazu iz (prvog) pobuđenog stanja u osnovno emitira foton valne duljine 3 nm. Kolika je energija ionizacije tog atoma? (h = 6,63 34 Js = 4,4 MeVs, c = 3 8 ms ) Rješenje: 7, ev 3. Kako bi se elektron u atomu nekog elementa pobudio iz osnovnog u prvo pobuđeno stanje, mora apsorbirati foton valne duljine 38,75 nm. Kolika je energija ionizacije tog atoma? (h = 6,63 34 Js = 4,4 MeVs, c = 3 8 ms ) Rješenje: 5, ev 4. tom nekog elementa pri prijelazu iz drugog pobuđenog stanja u prvo emitira foton valne duljine 35 nm. Kolika je energija ionizacije tog atoma? (h = 6,63 34 Js = 4,4 MeVs, c = 3 8 ms ) Rješenje: 8,4 ev 5. Pri prijelazu elektrona na treću (Bohrovu) stazu u atomu vodika emitiran je foton koji ima određenu količinu gibanja. Kolika je minimalna brzina atoma zbog odboja ako se pretpostavi da je foton atomu predao cijelu količinu gibanja? Masa atoma vodika je,674 7 kg. Račun provedite nerelativistički. Rješenje:, ms 6. U vodikovu se atomu elektron zamijeni težom česticom pa energija osnovnog stanja postaje E = 8 ev (umjesto 3,6 ev za elektron). Koliki je polumjer prve Bohrove staze r za atom s takvom česticom? (r za elektron je,53 m) Rješenje:,56 3 m 9
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότεραZadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.)
Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.) četvrti razred (valna optika, relativnost, uvod u kvantnu fiziku, nuklearna fizika) Sve primjedbe
Διαβάστε περισσότεραFizika 2. Auditorne vježbe 11. Kvatna priroda svjetlosti, Planckova hipoteza, fotoefekt, Comptonov efekt. Ivica Sorić
Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstava Fizika 2 Auditorne vježbe 11 Kvatna priroda svjetlosti, Planckova hipoteza, fotoefekt, Comptonov efekt Ivica Sorić (Ivica.Soric@fesb.hr)
Διαβάστε περισσότεραFizika 2. Auditorne vježbe 12. Kvatna priroda svjetlosti. Ivica Sorić. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstava
Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstava Fizika Auditorne vježbe Kvatna priroda svjetlosti Ivica Sorić (Ivica.Soric@fesb.hr) Bohrovi postulati Elektron se kreće oko atomske
Διαβάστε περισσότεραAtomska jezgra. Atomska jezgra. Materija. Kristal. Atom. Elektron. Jezgra. Nukleon. Kvark. Stanica
Atomska jezgra Materija Kristal Atom Elektron Jezgra Nukleon Stanica Kvark Razvoj nuklearne fizike 1896. rođenje nuklearne fizike Becquerel otkrio radioaktivnost 1899. Rutherford pokazao da postoje različite
Διαβάστε περισσότεραRješenje 141 Uočimo da je valna duljina čestice obrnuto razmjerna sa razlikom energijskih razina. h = E E n m h E E. m c
Zadatak 4 (Ivia, trukovna škola) Crtež prikazuje dio energijkih razina vodikova atoma. Koja od trjelia prikazuje emiiju fotona najkraće valne duljine? Zaokružite ipravan odgovor. A. a) B. b) C. ) D. d
Διαβάστε περισσότερα( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Διαβάστε περισσότεραTo je ujedno 1/12 mase atoma ugljika koja je određena eksperimentom i koja iznosi kg. Dakle mase nukleona:
Nuklearna fizika_intro Osnovne sile u prirodi, građa atomske jezgre, nukleoni i izotopi, energija vezanja jezgre, radioaktivnost, osnovne vrste radioaktivnog zračenja i njihova svojstva, zakon radioaktivnog
Διαβάστε περισσότεραPITANJA IZ NUKLEARNE FIZIKE I RADIOAKTIVNOSTI
PITANJA IZ NUKLEARNE FIZIKE I RADIOAKTIVNOSTI. Od kojih se čestica sastoji atomska jezgra i koja su osnovna svojstva tih čestica?. Zašto elektroni ne mogu nalaziti u jezgri? 3. Kolika je veličina atoma,
Διαβάστε περισσότεραE 2? E = λ 1 = 10 µm = 10-5 m, λ 2 = 10 nm = 10-8 m,
adata (Brano, srednja šola) Valna je duljina infrarvenog zračenja µm, a ultraljubičaste svjetlosti nm. ato je energija fotona ultraljubičaste svjetlosti: A. puta veća B. puta veća C. puta veća D. puta
Διαβάστε περισσότεραNUKLEARNA FIZIKA. Osnove fizike 4
NUKLEARNA FIZIKA Osnove fizike 4 Atom= jezgra + elektroni jezgra = protoni + neutroni (nukleoni) POVIJEST NUKLEARNE FIZIKE 1896. Becquerel otkriće radioaktivnosti 1898. Pierre & Marie Curie separacija
Διαβάστε περισσότεραUVOD U KVANTNU TEORIJU
UVOD U KVANTNU TEORIJU UVOD U KVANTNU TEORIJU 1.) FOTOELEKTRIČKI EFEKT 2.) LINIJSKI SPEKTRI ATOMA 3.) BOHROV MODEL ATOMA 4.) CRNO TIJELO 5.) ČESTICE I VALOVI Elektromagnetsko zračenje UVOD U KVANTNU TEORIJU
Διαβάστε περισσότεραELEKTRONSKA STRUKTURA ATOMA
ELEKTRONSKA STRUKTURA ATOMA EMISIJA I APSORPCIJA SVIJETLOSTI Zašto užarene tvari emitiraju svijetlost? električna žarulja neonka svijeća užareno željezo vatromet sunce... Vidljive zrake Ultraljubičaste
Διαβάστε περισσότεραλ =. m = kg,
Zadata 6 (Ante, srednja šola) Kolia je valna duljina teralni neutrona energije 0.04 ev? (asa neutrona =.675 0-7 g, Plancova onstanta = 6.66 0-34 J s) Rješenje 6 E = 0.04 ev = [ 0.04.6 0-9 ] = 6.4 0 - J,
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότεραzračenjem. U atmosferi, pa stoga i u živim organizmima, postoji stalan dobiven iz neke grobnice davao 7.1 raspada u minuti po gramu uzorka,
1RR. Radioaktivni ugljik 14 C proizvodi se u atmosferi kozmičkim zračenjem. U atmosferi, pa stoga i u živim organizmima, postoji stalan omjer 14 C i ostalih izotopa ugljika na svakih 9.3 10 11 atoma 12
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότεραPošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Διαβάστε περισσότεραĈetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Διαβάστε περισσότεραRa smanjiti za 20%, ako je
Zadaak 81 (Marija, gimnazija) akon koliko će e vremena akivno 1 g izoopa radija vrijeme polurapada og izoopa 1622 godine? Rješenje 81 m = 1 g, p = 2% =.2, 1/2 = 1622 god, =? 1 226 88 Ra manjii za 2%, ako
Διαβάστε περισσότεραPOBUĐENJA JEZGRE I RASPADI
POBUĐENJA JEZGRE I RASPADI Radioaktivni raspadi iz osnovnog ili pobuđenih stanja jezgre γ-raspad : elektromagnetska interakcija. Početno i konačno stanje pripadaju istoj Jezgri. Elektromagnetski prijelazi
Διαβάστε περισσότερα2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Διαβάστε περισσότεραOvisnost intenziteta zračenja idealnog crnog tijela o valnoj duljini
Kvantna fizika_intro Stefan-Boltzmannov i Wienov zakon, ovisnost intenziteta zračenja idealnog crnog tijela o valnoj duljini, Planckova kvantna hipoteza, fotoelektrični efekt (Einsteinovo objašnjenje),
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραANALITIČKA KEMIJA II BOLTZMANNOVA RASPODJELA. nositelj: prof.dr.sc. P. Novak održao: doc.dr.sc.t. Jednačak; ak.god. 2017/18.
ANALITIČKA KEMIJA II BOLTZMANNOVA RASPODJELA nositelj: prof.dr.sc. P. Novak održao: doc.dr.sc.t. Jednačak; ak.god. 2017/18. Ludwig Boltzmann rođen umro boravio nacionalnost struka 20. veljače 1844. Beč
Διαβάστε περισσότεραSpektar X-zraka. Atomska fizika
Spektar X-zraka Emitirana X- zraka Katoda Anoda Upadni elektron 1895. godine W. Röntgen opazio je nevidljivo (X-zrake) zračenje koje nastaje pri izboju u cijevi s razrijeđenim plinom. Rendgensko zračenje
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότεραDomaće zadaće iz nuklearne fizike
Domaće zadaće iz nuklearne fizike Matko Milin Prosinac 2, 2007 1 Simetrije i algebra momenta impulsa 1. (1 bod) Izračunajte veličinu c u relaciji: J j m = c j m 1. 2. (1 bod) Pokazati: [J ±, J z ] = J
Διαβάστε περισσότερα= = (1) h n n. X. vježba ATOMSKA SPEKTROSKOPIJA Linijski spektri atoma vodika i helija
X. vježba ATOMSKA SPEKTROSKOPIJA Linijski spektri atoma vodika i helija SVRA RADA Snimanje emisijskih spektara atoma vodika i helija pomoću digitalnog spektrometra i određivanje položaja opaženih linija.
Διαβάστε περισσότερα7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Διαβάστε περισσότερα6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Διαβάστε περισσότεραNumerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Διαβάστε περισσότεραRad, energija i snaga
Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).
Διαβάστε περισσότεραS t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Διαβάστε περισσότεραAmpèreova i Lorentzova sila zadatci za vježbu
Ampèreova i Lorentzova sila zadatci za vježbu Sila na vodič kojim prolazi električna struja 1. Kroz horizontalno položen štap duljine 0,2 m prolazi električna struja jakosti 15 A. Štap se nalazi u horizontalnom
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότεραElektron u magnetskom polju
Quantum mechanics 1 - Lecture 13 UJJS, Dept. of Physics, Osijek 4. lipnja 2013. Sadržaj 1 Bohrov magneton Stern-Gerlachov pokus Vrtnja elektrona u magnetskom polju 2 Nuklearna magnetska rezonancija (NMR)
Διαβάστε περισσότεραDISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Διαβάστε περισσότεραFizika 2. Predavanje 12. Rendgensko zračenje, Laseri. Atomska jezgra. Dr. sc. Damir Lelas
Fakultet elektrotehnike, strojarstva i brodogradnje Razlikovni studiji (910/920/930/940/950) Fizika 2 Predavanje 12 Rendgensko zračenje, Laseri. Atomska jezgra Dr. sc. Damir Lelas (Damir.Lelas@fesb.hr
Διαβάστε περισσότεραZadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Διαβάστε περισσότεραF2_kolokvij_K2_zadaci izbor_rješenja lipanj, 2008
F_kolokvij_K_zadai izbor_rješenja lipanj, 008 Fermatov prinip:. Fermatov prinip o širenju svjetlosnih zraka; izvedite zakon refleksije pomoću prinipa minimalnog vremena širenja svjetlosti između dviju
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότερα( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότεραOsnovne karakteristike atomskog jezgra
Osnovne karakteristike atomskog jezgra Otkriće atomskog jezgra (Raderford, 1911., rasejanje α-čestica) - skoro celokupna masa atoma je skoncentrisana u prostoru dimenzija 10 15 m. Jezgro sadrži protone
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Διαβάστε περισσότεραFizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009.
Fakule elekoehnike, sojasva i bodogadnje Računasvo Fiika Audione vježbe - 7 lekomagneski valovi 15. avnja 9. Ivica Soić (Ivica.Soic@fesb.h) Mawellove jednadžbe inegalni i difeencijalni oblik 1.. 3. 4.
Διαβάστε περισσότεραFunkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Διαβάστε περισσότεραFizika atomskog jezgra Sadržaj
Osnovne karakteristike atomskog jezgra 30 Defekt mase jezgra i energija veze 303 Stabilnost atomskog jezgra 305 Radioaktivni raspad 308 akon radioaktivnog raspada 309 Vrste radioaktivnog raspada 30 α-radioaktivni
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότεραUvod u atomsku fiziku
Uvod u atomsku fiziku Do kraja 20. stoljeća Različiti modeli o grañi materije (atoma). J.J. Thomson Atom je pozitivno nabijena kuglica u kojoj su vrlo sitni elektroni ravnomjerno rasporeñeni. Atom kao
Διαβάστε περισσότερα. Iz lonca ključanjem ispari 100 vode za 5. Toplota
ELEKTROTEHNIČKI FAKULTET SARAJEVO RIJEŠENI ISPITNI ZADACI IF2 II PARCIJALNI Juni 2009 2A. Sunce zrači kao a.c.t. pri čemu je talasna dužina koja odgovara max. intenziteta zračenja jednaka 480. Naći snagu
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραIonizirajuće zračenje u biosferi
Sveučilište u Splitu Kemijsko-tehnološki fakultet Ionizirajuće zračenje u biosferi Mile Dželalija Split, 2006. M. Dželalija, Ionizirajuće zračenje u biosferi (interna skripta), Sveučilište u Splitu, Kemijsko-tehnološki
Διαβάστε περισσότεραFIZIKA. Rezultati državne mature 2010.
FIZIKA Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 9395 k 36 38,4 St. pogreška mjerenja 5,25 edijan 36 od 18 St. devijacija 18,57 Raspon 80 inimum 0 aksimum
Διαβάστε περισσότεραPovijesni pregled rođenje nuklearne fizike; Henri Becquerel ( ) otkrio radioaktivnost u uranovoj rudi
Nuklearna fizika Povijesni pregled 1896. rođenje nuklearne fizike; Henri Becquerel (1852.-1908.) otkrio radioaktivnost u uranovoj rudi 1898. Pierre & Marie Curie: separacija Ra Rutherford pokazao da postoji
Διαβάστε περισσότεραSEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Διαβάστε περισσότεραElementarne čestice Elementarne ili osnovne ili fundamentalne čestice = Najmanji dijelovi od kojih je sastavljena tvar. Do 1950: Elektron, proton,
Elementarne čestice Elementarne ili osnovne ili fundamentalne čestice = Najmanji dijelovi od kojih je sastavljena tvar. Do 1950: Elektron, proton, neutron Građa atoma Pozitron, neutrino, antineutrino Beta
Διαβάστε περισσότεραKvantna optika Toplotno zračenje Apsorpciona sposobnost tela je sposobnost apsorbovanja energije zračenja iz intervala l, l+ l na površini tela ds za vreme dt. Apsorpciona moć tela je sposobnost apsorbovanja
Διαβάστε περισσότεραNUKLEARNI ALFA-RASPAD
NUKLEARNI ALFA-RASPAD U lakim jezgrama energija separacije α-čestice usporediva je s energijom separacije nukleona: 8-10 MeV. Tek za teške jezgre A>150 energija separacije može biti negativna i energetski
Διαβάστε περισσότεραF2_ zadaća_ L 2 (-) b 2
F2_ zadaća_5 24.04.09. Sistemi leća: L 2 (-) Realna slika (S 1 ) postaje imaginarni predmet (P 2 ) L 1 (+) P 1 F 1 S 1 P 2 S 2 F 2 F a 1 b 1 d -a 2 slika je: realna uvećana obrnuta p uk = p 1 p 2 b 2 1.
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Διαβάστε περισσότεραIZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Διαβάστε περισσότεραIskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Διαβάστε περισσότερα( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Διαβάστε περισσότεραI.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Διαβάστε περισσότεραI. Zadatci višestrukoga izbora
I. Zadatci višestrukoga izbora U sljedećim zadatcima od više ponuđenih odgovora samo je jedan točan. Točne odgovore morate označiti znakom X na listu za odgovore kemijskom olovkom. Svaki točan odgovor
Διαβάστε περισσότεραSkulptura mamuta, dužine samo 3.7cm koja je isklesana od mamutove kljove, delo je umetnika koji je živeo u severozapadnoj Nemačkoj pre godina.
NUKLEARNA FIZIKA Skulptura mamuta, dužine samo 3.7cm koja je isklesana od mamutove kljove, delo je umetnika koji je živeo u severozapadnoj Nemačkoj pre 35000 godina. Koji fizički principi omogućavaju vremensko
Διαβάστε περισσότεραRADIOHEMIJA.
RADIOHEMIJA http://www.ffh.bg.ac.rs/geografi_fh_procesi.html 1 ATOM I ATOMSKO JEZGRO Karakteristike elementarnih čestica: elektrona, protona i neutrona Redni i maseni broj hemijskog elementa Izotopi, izobari,
Διαβάστε περισσότεραAkvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Διαβάστε περισσότεραTrigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Διαβάστε περισσότεραPismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Διαβάστε περισσότεραNacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA. Ispitna knjižica 1 FIZ IK-1 D-S001
Nacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA Ispitna knjižica 1 12 Prazna stranica 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne odobri dežurni
Διαβάστε περισσότεραElektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I
Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότεραGeometrijska optika Lom svjetlosti na ravnim sistemima
Zadaci - Geometrijska optika - Fizikalna optika - 2007/08 Geometrijska optika Lom svjetlosti na ravnim sistemima ravni dioptar planparalelna ploča prizma Koja svojstva svjetlosti poznajete? Što je svjetlost
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότεραINTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Διαβάστε περισσότεραSTRUKTURA ATOMA. Dalton (1803) Tomson (1904) Raderford (1911) Bor (1913) Šredinger (1926)
Dalton (803) Tomson (904) Raderford (9) Bor (93) Šredinger (96) OTKRIĆA OSNOVNIH SASTOJAKA ATOMA Do početka XX veka važila je Daltonova atomska teorija o nedeljivosti atoma. Karjem XIX i početkom XX veka
Διαβάστε περισσότεραRepetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):
Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja
Διαβάστε περισσότεραFizika 2. Fizikalna optika 2009/10
Fizika 2 Fizikalna optika 2009/10 1 Optika..definicija Optika, u širem smislu, je dio fizike koji proučava elektromagnetske valove; njihova svojstva i pojave. Elektromagnetski valovi ili (elektromagnetsko
Διαβάστε περισσότεραNovi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Διαβάστε περισσότεραa M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Διαβάστε περισσότεραDALTONOV ATOMSKI MODEL Nastao je čitavih 2300 godina posle DEMOKRITA!
DALTONOV ATOMSKI MODEL Nastao je čitavih 2300 godina posle DEMOKRITA! Polazna znanja zakoni o: Održanju mase Stalnom (utvrdjenom) sastavu Umnoženim odnosima Zakon o održanju mase masa supstance ne menja
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραA MATEMATIKA Zadana je z = x 3 y + 1
A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte
Διαβάστε περισσότεραPodsjetnik za državnu maturu iz fizike značenje formula
Podsjetnik za državnu maturu iz fizike značenje formula ukratko je objašnjeno značenje svih slova u formulama koje se dobiju uz ispit [u uglatim zagradama su SI mjerne jedinice] Kinetika v = brzina ( =
Διαβάστε περισσότεραPoglavlje VJEŽBA Balmerova serija i odredivanje Rydbergove konstante. Bohrova teorija atoma
Poglavlje 10 10. VJEŽBA 10.1 Balmerova serija i odredivanje Rydbergove konstante Bohrova teorija atoma Ideja elektrona koji kruže na odredenim udaljenostima od pozitivne jezgre (Slika 10.1) dolazila je
Διαβάστε περισσότεραOsnovne veličine, jedinice i izračunavanja u hemiji
Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice
Διαβάστε περισσότεραOM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Διαβάστε περισσότεραVOLUMEN ILI OBUJAM TIJELA
VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V
Διαβάστε περισσότεραAUDITORNE VJEŽBE IZ FIZIKE, PEIT, 1. GODINA PO BOLOGNI
AUDIORNE VJEŽBE IZ FIZIKE, PEI,. GODINA PO BOLOGNI MJERNE JEDINICE. Izvršite pretvore: a) [n]? [] ) [H]? [kh] c),5 [kg]? [g] d) [MW]? [W] e) [dag]? [dg] dekagra - decigra f) [hl]? [dl] g), [fc]? [C] a)
Διαβάστε περισσότεραSEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Διαβάστε περισσότερα7. Titranje, prigušeno titranje, harmonijsko titranje
7. itranje, prigušeno titranje, harmonijsko titranje IRANJE Općenito je titranje mijenjanje bilo koje mjerne veličine u nekom sustavu oko srednje vrijednosti. U tehnici titranje podrazumijeva takvo gibanje
Διαβάστε περισσότεραElektrodinamika
Elektrodinamika.. Gibanje električnog naboja u električnom polju.2. Električna struja.3. Električni otpor.4. Magnetska sila.5. Magnetsko polje električne struje.6. Magnetski tok.7. Elektromagnetska indukcija
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότερα