|
|
- Θέτις Καψής
- 8 χρόνια πριν
- Προβολές:
Transcript
1
2
3
4
5
6 C n a k
7 max 1 = 92% max 1 = 70% max 1 = 60% max 1 = 50% min(p) = 180 max(p) = 180 min(p) = 90 max(p) = 145 min(p) = 0 max(p) = 90 min(w) = w q min(w) = 2 w q min(w) = 3 w q
8
9
10
11
12 1 2
13 3
14 X L R Z δ 37% δ = 1 π µ σ f [m] µ σ f
15 f
16 90 δ f 90/2 f 90/3 f 90 = 516 σt 2 [khz], f 90/n = f 90 n σ t
17 S n S = x 1 y 1 x n y n S S 1 f 1 S 2 f 2 x 1 y 1 S 1 = x n y n, S 2 = x 1 y 1 x n y n x = x + T x, y = y + T y [ x y 1 ] = [ x y 1 ] T x T y 1 x = xcosθ ycosθ, y = ycosθ + ycosθ
18 [ x y 1 ] = [ x y 1 ] cosθ sinθ 0 sinθ cosθ [ x x = xs x, y = ys y y 1 ] = [ x y 1 ] S x S y S x cosθ S y sinθ A = S x sinθ S y cosθ S x (T x cosθ T y sinθ) S y (T x sinθ + T y cosθ) [ x y ] = [ x y 1 ] A S 2 S 1 T x T y θ S x S y E = S 2 A S E = 0 T x n [[[ ] ] x i (x i S x cosθ) + (y i S x sinθ) (S x T x cosθ) + (S x T y sinθ) [ S x cosθ] i=1 [[ y i (x i S y sinθ) (y i S y cosθ) (S y T x sinθ) (S y T y cosθ) i=1 ] ]] [ S y sinθ] = 0 E = 0 T y n [[[ ] ] x i (x i S x cosθ) + (y i S x sinθ) (S x T x cosθ) + (S x T y sinθ) [S x sinθ] [[ y i (x i S y sinθ) (y i S y cosθ) (S y T x sinθ) (S y T y cosθ) ] ]] [ S y cosθ] = 0
19 2 n i=1 E θ = 0 [[[ ] x i (x i S x cosθ) + (y i S x sinθ) (S x T x cosθ) + (S x T y sinθ) [(x i S x sinθ) + (y i S x cosθ) + (S x T x sinθ) + (S x T y cosθ)]] [[ ] + y i (x i S y sinθ) (y i S y cosθ) (S y T x sinθ) (S y T y cosθ) [ (x i S y cosθ) + (y i S y sinθ) (S y T x cosθ) + (T y sinθ)]]] = 0 2 n i=1 E = 0 S x [[ ] x i (x i S x cosθ) + (y i S x sinθ) (S x T x cosθ) + (S x T y sinθ) [ (x i cosθ) + (y i sinθ) (T x cosθ) + (T y sinθ)]] = 0 2 n i=1 E = 0 S y [[ ] y i (x i S y sinθ) (y i S y cosθ) (S y T x sinθ) (S y T y cosθ) [ (x i sinθ) (y i cosθ) (T x sinθ) (T y cosθ)]] = 0 T x T y + 2 n i=1 E θ = 0 [[[ ] ] x i (x i S x cosθ) + (y i S x sinθ) [(x i S x sinθ) + (y i S x cosθ)] [[ y i (x i S y sinθ) (y i S y cosθ) ] ]] [ (x i S y cosθ) + (y i S y sinθ)] = n i=1 n i=1 E S x = 0 [[ x i (x i S x cosθ) + (y i S x sinθ) ] E S y = 0 [[ y i (x i S y sinθ) (y i S y cosθ) ] ] [ (x i cosθ) + (y i sinθ)] = 0 ] [ (x i sinθ) (y i cosθ)] = 0
20 A T x T y [ ] Sx cosθ S A = y sinθ S x sinθ S y cosθ x 1 y 1 x n y n S 1 S 2 A 0 x 1 y 1 [ Sx cosθ S y sinθ S x sinθ S y cosθ x n y n ] 0 C 1 C 2 f 1 f 2 A D 1 f 1 D 1 C 1 C 2 A u l L u(l) = u(l + l), u(l) = x(l) + y(l)j
21 u(l) = C n e j2πnl/l n= C n C n = 1 L ˆL 0 u(l) e j2πnl/l C n u(l) = M n= M C n e j2πnl/l C n (f 1 ) f 1 C n (f 2 ) f 2 Cn SP (f 1 ) f 1 Cn SP (f 2 ) f 2 C D n (f 1 ) f 1 C n
22 C D n (f 1 ) C n (f 2 ) CSP n (f 1 ) C SP n (f 2 ) C n(f 2 ) T n (x) = cos [ n cos 1 (x) ], x [ 1, 1], n N 0 z m 1 z(x) = k=0 [a k T k (x)] a 0 2 N T n [ 1, 1] [( x = cos k 1 ) ] π, k = 1, 2,..., N 2 N m N a j a j = 2 N N f k=1 a j = 2 N [ [( cos k 1 2 ) π N N [f(x k )T j (x k )] k=1 ]] [( cos k 1 ) ] jπ, j = 0, 1,..., m 1 2 N a k
23 a k a k (f 1 ) f 1 a k (f 2 ) f 2 a SP k (f 1) f 1 a SP k (f 1) f 2 a D k (f 1) f 1 a D k (f 1 ) a k (f 2 ) asp k (f 1) a SP k (f 2) a k(f 1 )
24
25 1 f 90 f 90 f 90/2
26 e w = w w w w w e ph = p p p p
27 N e w (i) i=1 ē w = N N e ph (i) i=1 ē ph = N N N ē w e w (i) 2 i=1 s w = N 1 N ē ph e ph (i) 2 i=1 s ph = N 1 e w e ph NoE e w max 1 e ph max 2 A(i) = 1 e w > max 1 e ph > max 2 A(i) = 0 N A(i) i=1 NoE(e ph, e w ) = 100% N w p P od w min(w) p min(p) p max(p) B(i) = 1 w < min(w) p < min(p) p < max(p) B(i) = 0 N B(i) i=1 P od(p, w) = 100% N
28 p w
29
30
31 e w e ph
32 e w e ph
33 e w e ph
34 e w e ph
35 e w e ph
36 e w e ph
37 e w e ph
38 e w e ph
39 e w e ph
40 e w e ph
41 e w e ph
42 e w e ph
43 e w e ph
44 e w e ph
45 e w e ph
46 e w e ph
47 e w e ph
48 e w e ph
49 ē w ē ph s w s ph
50
51 e w e ph
52 e w e ph
53 e w e ph
54 e w e ph
55 e w e ph
56 e w e ph
57 e w e ph
58 e w e ph
59 e w e ph
60 e w e ph
61 e w e ph
62 e w e ph
63 e w e ph
64 e w e ph
65 e w e ph
66 e w e ph
67 e w e ph
68 e w e ph
69 ē w ē ph s w s ph
70
71 e w e ph
72 e w e ph
73 e w e ph
74 e w e ph
75 e w e ph
76 e w e ph
77 e w e ph
78 e w e ph
79 e w e ph
80 e w e ph
81 e w e ph
82 e w e ph
83 e w e ph
84 e w e ph
85 e w e ph
86 e w e ph
87 e w e ph
88 e w e ph
89 ē w ē ph s w s ph
90 ē w ē ph s w s ph max 1 = 92%, 70%, 60%, 50% max 2 = 0, 1, ē w ē ph s w s ph
91 max 1 = 92% max 1 = 70%
92 max 1 = 60% max 1 = 50%
93 min(p) = , max(p) = 180, 145, 90 min(w) = w q, 2 w q, 3 w q w q w q = w q f min(p) = 180 max(p) = 180
94 min(p) = 90 max(p) = 145 min(p) = 0 max(p) = 90
95 min(w) = w q, 2 w q, 3 w q w q = min(p) = 45, max(p) = 45, w q f ± min(w) = w q
96 min(w) = 2 w q min(w) = 3 w q
97
98
Σχεδίαση με Ηλεκτρονικούς Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 2: Μετασχηματισμοί συντεταγμένων στις 2 διαστάσεις Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα
x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1)
x sin x cosx e x lnx x3 + (sin x)/x e x {}}{ (f(g(x))) = f ( g(x)) g (x). }{{}}{{} f(g(x)) 3x cos(x 3 ). 3x cos(x 3 ) x 3 3x sin(x 3 ) (sin(x3 )) = cos(x 3 ) (3x ). 3x cos(x 3 ) = sin(x 3 ) + C. e ( +).
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός Ax μπορεί να ειδωθεί σαν μετασχηματισ
Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός
! : ;, - "9 <5 =*<
ITU-R M.473- (00/0)! (TDMA/FDMA) ""# $ %!& ' " ( ) 34 --./ 0, (MSS) * * )! +, 56 78 89 : ;, - "9
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Ι(ΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ ΙΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι. ΡΙΖΟΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΦΕΒΡΟΥΑΡΙΟΥ 9 ΘΕΜΑ.4 μονάδες)
Τριγωνοµετρική (ή πολική) µορφή µιγαδικού αριθµού. Έστω z = x+ yi ένας µη µηδενικός µιγαδικός αριθµός και OM
1 Τριγωνοµετρική (ή πολική µορφή µιγαδικού αριθµού Έστω z = x+ yi ένας µη µηδενικός µιγαδικός αριθµός και OM η αντίστοιχη διανυσµατική ακτίνα του Ονοµάζοµε όρισµα του µιγαδικού αριθµού z κάθε µια από τις
Ρυθµοί µεταβολής Παράγωγος σε σηµείο Όρια. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης
3 η Διάλεξη Ρυθµοί µεταβολής Παράγωγος σε σηµείο Όρια 26 Σεπτεµβρίου 2016 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Finney R.L. / Weir M.D. / Giordano F.R. Πανεπιστημιακές
Κεφάλαιο 3 ο : Αναπαράσταση θέσης
ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ Μάθηµα 3 ο Αναπαράσταση θέσης στο επίπεδο (2 ) και στο χώρο (3 ) Οµογενής Μετασχηµατισµός Κεφάλαιο 3 ο : Αναπαράσταση θέσης Μεταφορά αξόνων σε 2 X Ι Ο Ι Y Ι
12 η Εβδομάδα Ισορροπία Στερεών Σωμάτων. Ισορροπία στερεών σωμάτων
1 η Εβδομάδα Ισορροπία Στερεών Σωμάτων Ισορροπία στερεών σωμάτων Διατήρηση στροφορμής Στροβιλιζόμενος δίσκος μάζας m r 100kg και ακτίνας R r m περιστρέφεται χωρίς τριβές. Παιδί μάζας m c 30kg πηδά στο
ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)
ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διπλά Ολοκληρώματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Ορθογώνια Χωρία Ορισμός n f( x, y) da lim f( x, y ) = Α Α 0 k
Παραλληλισμός δεδομένων ή Φυσικός παραλληλισμός
Παραλληλισμός δεδομένων ή Φυσικός παραλληλισμός Κ.Γ. Μαργαρίτης προσαρμογή από το μάθημα του Barry Wilkinson ITCS 4145/5145 2006 Cluster Computing Univ. of North Carolina at Charlotte 3.2 Ένας υπολογισμός
Homework#13 Trigonometry Honors Study Guide for Final Test#3
Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.
Ανεξαρτησία κάθετων μεταξύ των κινήσεων
Ανεξαρτησία κάθετων μεταξύ των κινήσεων ΦΥΣ 111 - Διαλ.08 1 Εξαρτώνται οι τιμές των α x, v x και x από τις τιμές των α y, v y και y την ίδια ή κάποια άλλη χρονική στιγμή? Το ερώτημα που τίθεται είναι κατά
ΜΜ803 ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ
ΜΜ83 ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Εαρινό εξάµηνο 8 Λύσεις εργασίας # Λύση άσκησης : Για την πρώτη συνάρτηση ισχύει ότι sin( ωt+ θ) sinωtcosθ + cosωtsinθ άρα L[sin( ωt+ θ)] L[sin ωtcosθ + cosωtsin θ] cos θ L[sin ωt]
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Αντίστροφος μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΜΑΘΗΜΑΤΙΚΑ ΙΙ Παραδείγματα Στις Μερικές Παραγώγους Και τον Κανόνα Αλυσιδωτής Παραγώγισης
ΜΑΘΗΜΑΤΙΚΑ ΙΙ Παραδείγματα Στις Μερικές Παραγώγους Και τον Κανόνα Αλυσιδωτής Παραγώγισης Άσκηση Αν t ( ) < cos t,sin( t) > δύο τρόπους και gt () 3t 4 d gt να υπολογισθεί η παράγωγος ( ()) με Λύση 1 ος
Chapter 2. Stress, Principal Stresses, Strain Energy
Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί
ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ Γ Ρ Α Φ Ι Κ Α Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί εξιόστροφο σύστημα Θετικές περιστροφές ως προς τους άξονες συντεταγμένων x, y, z Αριστερόστροφο Σύστημα Αναπαράσταση
' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4 $!&$3% 2!% #!.1 & &!" //! &-!!
..!! "#$% #&" 535.34 ' ( )* *,,, ) - ". &!: 1.4.7 &/#&$&& &!&11 5.7.1 $#/&! 1!#&, #/&!#&3 &"&!3, #&- &!#&, "#4 $!&$3%!% #!.1 & &!" //! &-!!% 3 #&$&/!: /&!&# &-!!%, "#&&# 56$.., //! &-!!% ).. &$ 13 .
Αρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Ενότητα 6 Πίνακες Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Τύπος πίνακα (array) Σύνθετος τύπος δεδομένων Αναπαριστά ένα σύνολο ομοειδών
(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy )
(product-operator) I I cos( t) + I sin( t) x x y z 2π (rad) y 1 y t x = 2πν x t (rad) sin t Iy# cos t t Ix# Ix# (t ) z Ix# Iy# Ix# (t ) z Ix cos (t ) + Iy sin (t ) -x -y t y I-y# I-y# (t ) z (t ) z x I-y#
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο
FM & PM στενής ζώνης. Narrowband FM & PM
FM & PM στενής ζώνης Narrowband FM & PM Διαμόρφωση γωνίας στενής ζώνης Το διαμορφωμένο κατά γωνία σήμα μπορεί να γραφεί ως [ π φ ] st () = Acos2 ft+ () t c όπου η στιγμιαία φάση είναι φ() t c Δφxt () PM
Επίλυση Δ.Ε. με Laplace
Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή
ϕ n n n n = 1,..., N n n {X I, Y I } {X r, Y r } (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ 0 0 0 1 Ẋ I = R(θ)Ẋr y r ẏa r
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Στροφορµή στην Κβαντική Μηχανική 1.1.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συστήματα πρώτης και δεύτερης τάξης Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Εισαγωγή Ο νόµος του Gauss: Μπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού της έντασης του ηλεκτρικού πεδίου. Βασίζεται
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Εισαγωγικές Ένvοιες ΙI Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Τοµογραφία Μετασχηµατισµός Radon
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τοµογραφία Μετασχηµατισµός Radon Βιοϊατρική Τεχνολογία ιδάσκων: Σεργιάδης Γεώργιος Τοµογραφία
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ618)
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ68) Διδάσκων: Χρήστος Τάντος, Εαρινό εξάμηνο 06-07 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0-3-07 Ημερομηνία
22Y504 : ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΛΥΣΗ # 5 ΑΠΑΝΤΗΣΕΙΣ
Y504 : ΕΙΣΑΓΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιδάσκων: Γαβριήλ Γιαννακόπουλος, Καθηγητής ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΛΥΣΗ # 5 ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΗ ΑΣΚΗΣΗΣ (5.) Το µονοφασικό ισοδύναµο του συστήµατος φαίνεται στο σχήµα
= 5 cos(2π500t π/2) + 9 cos(2π900t + π/3) cos(2π1400t) (9) H(f) = 4.5, αλλού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.5/10.0 Θέµα 1ο - 5
ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού).
1 ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού). Πλάτος δοκού t beam =0.30m Πλάτος υποστυλωμάτων 0.50m
Επιβάρυνση των εδαφών από τη διάθεση αποβλήτων ελαιοτριβείων. Αποτελέσματα από τον πιλοτικό Δήμο του έργου PROSODOL.
Επιβάρυνση των εδαφών από τη διάθεση αποβλήτων ελαιοτριβείων. Αποτελέσματα από τον πιλοτικό Δήμο του έργου PROSODOL. Δρ. Β. Καββαδίας (Ινστιτούτο Εδαφολογίας Αθηνών-ΕΘ.Ι.ΑΓ.Ε.) Δειγματοληψία Εδαφών Μέχρι
FM & PM στενής ζώνης. Narrowband FM & PM
FM & PM στενής ζώνης Narrowband FM & PM Διαμόρφωση γωνίας στενής ζώνης Το διαμορφωμένο κατά γωνία σήμα μπορεί να γραφεί ως [ π φ ] st () = Acos2 ft+ () t c όπου η στιγμιαία φάση είναι φ() t c Δφxt () PM
Fourier Analysis of Waves
Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman
Συμπλήρωμα 1 2 ος νόμος του Νεύτωνα σε 3 διαστάσεις
Συμπλήρωμα 1 ος νόμος του Νεύτωνα σε 3 διαστάσεις = iˆ+ j ˆ+ kˆ F = Fiˆ+ F ˆj+ Fkˆ ˆk F ος Νόμος του Νεύτωνα d = F î O ĵ ( ˆ) d iˆ+ j ˆ+ k = Fiˆ ˆ ˆ + F j+ Fk d d d iˆ+ ˆj+ kˆ= Fiˆ ˆ ˆ + F j+ Fk d ˆ d
Ανακατασκευή εικόνας από προβολές
Ανακατασκευή εικόνας από προβολές Μέθοδος ανακατασκευής με χρήση χαρακτηριστικών δειγμάτων προβολής Αναστάσιος Κεσίδης Δρ. Ηλεκτρολόγος Μηχανικός Θέματα που θα αναπτυχθούν Εισαγωγή στις τομογραφικές μεθόδους
Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ
Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς έ ν τ ε κ α ( 1 1 ) τ ο υ μ ή ν α Α π ρ ι λ ί ο υ η μ έ ρ α Π α ρ α σ κ ε υ ή, τ ο
Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Θεωρία Κελυφών Βασικές αρχές (διαφορική γεωµετρία) Καµπύλη στο χώρο Μοναδιαίο Εφαπτοµενικό ιάνυσµα
Κεραίες & Ασύρματες Ζεύξεις
Κεραίες & Ασύρματες Ζεύξεις Εισαγωγή στις ΣΤΟΙΧΕΙΟΚΕΡΑΙΕΣ Το μάθημα αυτό πραγματεύεται το αντικείμενο των κεραιών και των Ασύρματων Ζεύξεων. Περιέχει τη θεμελίωση και τις βασικές έννοιες /αρχές που διέπουν
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 4 Μαίου 2018 Ασκηση
Δυναμική Μηχανών I. Εισαγωγική Ανάλυση και Γραμμικοποίηση. Μη-Γραμμικών Δυναμικών Εξισώσεων
Δυναμική Μηχανών I Εισαγωγική Ανάλυση και Γραμμικοποίηση 4 5 Μη-Γραμμικών Δυναμικών Εξισώσεων 25 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε
e jθ = cos θ j sin θ(1.2)
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - Λύσεις ης Σειράς Ασκήσεων Ασκηση. Σχέσεις του Euler
x 3 D 1 (x 1)dxdy = dydx = (x 1)[y] x x 3 dx + x)dx = 3 x5
1 Επαναληπτικές Ασκήσεις 19-1-18 Διπλά Ολοκληρώματα 1. Να υπολογισθεί το ολοκλήρωμα (x 1)dxdy όπου το χωρίο περιέχεται από τις καμπύλες y x και y x. Λύση Οι δύο καμπύλες τέμνονται στα σημεία όπου x x.
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Αέρια υψηλής Καθαρότητας 2000. Ο συνεργάτης σας για Αέρια, Εξοπλισµό και Υπηρεσίες
Αέρια υψηλής Καθαρότητας 2000 Ο συνεργάτης σας για Αέρια, Εξοπλισµό και Υπηρεσίες Αέρια Υψηλής Καθαρότητας από την MESSER Αέρια Υψηλής Καθαρότητας Το παρόν κεφάλαιο δείνει ένα πανόραµα των αερίων υψηλής
Αναλυτική Φωτογραμμετρία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 3: Μαθηματικό υπόβαθρο Αναλυτικής Φωτογραμμετρίας Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων
= R{(a + jb)e j2π 3 4 t } (6) a + jb = j2.707 = e j π (7) A = (9) f 0 = 3 4
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης
Κεφάλαιο 3 - Γεωμετρικοί Μετασχηματισμοί και Προβολές
Κεφάλαιο 3 - Γεωμετρικοί Μετασχηματισμοί και Προβολές Σύνοψη Το παρόν κεφάλαιο είναι θεμελιώδες για τα συστήματα γραφικών. Αποτελεί τη βάση για την υλοποίηση πολλών πιο πολύπλοκων διαδικασιών όπως ο φωτισμός,
Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)
Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1
Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2)
Να μελετηθεί η συνάρτηση Β Λυκείου - Ασκήσεις Συναρτήσεις x+ 5 f(x = ως προς τη μονοτονία. x Το πεδίο ορισμού της f(x είναι το {}. Διακρίνουμε δύο περιπτώσεις: Έστω x1 < x
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις)
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (x+)(x 2 +) (ϐ) Να υπολογισθεί το ολοκλήρωµα f(x) f(x)+f(x+) για κάθε
Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε
Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε ηλεκτροµαγνητικό κύµα κυκλ. Συχνότητας ω. Παρατηρούµε ότι η πολωσιµότητα του µέσου εξαρτάται µε την εκφραση 2.42
TRIGONOMETRY:+2.1++Degrees+&+Radians+ Definitions:* 1*degree*/* ** * 1*radian* * * *
TRIGONOMETRY:+2.1++Degrees+&+Radians+ Definitions: 1degree/ 1radian s s FORMULA: θ = radians;wheres=arclength,r=radius r θ r IMPLICATIONOFFORMULA:Ifs=rthen θ =1radian EXAMPLE1:Whatistheradianmeasureofacentralanglesubtendedbyanarcof32cminacircleofradius8cm.?
P m (x)p n (x)dx = 2 2n + 1 δn m. P 1 (x) = x. P 2 (x) = 1 2 (3x2 1) P 3 (x) = 1 2 (5x3 3x) P 4 (x) = 1 8 (35x4 30x 2 + 3)
ΠΟΛΥΩΝΥΜΑ LEGENDRE Τα πολυώνυμα Legendre P n (x είναι ορθογώνια πολυώνυμα στο διάστημα [ 1, +1], με συνάρτηση βάρους την w(x = 1, άρα ισχύει: +1 1 P m (xp n (xdx = 2 2n + 1 δn m Τα επτά πρώτα πολυώνυμα
x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Να σχεδιάσετε το
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F
Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως
ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6. = + tβ r. zk και εξισώνουµε τις συνιστώσες των διανυσµάτων x(t) = 1+ 2t, y(t) = 1+ 3t, z(t) = 4 + t
ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6 ) Ευθεία Ευθεία διέρχεται από το σηµείο Α µε διάνυσµα θέσης = i j+ 4k το διάνυσµα β = 2i + 3j + k. και είναι παράλληλη προς Α = + tβ α β ιανυσµατική εξίσωση: Εισάγουµε
Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο.
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διάλεξη # Δ Μετασχηματισμοί (γενικά) Γραμμικοί Μετασχηματισμοί Απλοί Συσχετισμένοι
Ενυδάτωση και Προστασία Τόνωση & Θρέψη Θρέψη & Λάμψη Ρυθμίζει τη Λιπαρότητα, Αίσθηση Φρεσκάδας Αναζωογόνηση & Eνυδάτωση Ενυδάτωση & Λάμψη
1 2 3 ΜΑΛΛΙΑ Σαμπουάν για κανονικά μαλλιά Τόνωση & Θρέψη Περιέχει σησαμέλαιο, προβιταμίνη B5 και άρωμα κέδρου. Το σησαμέλαιο, γνωστό για τα φυσικά αντιοξειδωτικά του, σε συνδυασμό με την προβιταμίνη Β5,
( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2
ΦΥΣ 211 - Διαλ.04 1 Παραδείγματα Κίνηση ενός και μόνο σωματιδίου, χρησιμοποιώντας Καρτεσιανές συντεταγμένες και συντηρητικές δυνάμεις. Οι εξισώσεις Lagrange θα πρέπει να επιστρέφουν τα ίδια αποτελέσματα
CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets
System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions
Μικρές ταλαντώσεις Συζευγμένες ταλαντώσεις
Μικρές ταλαντώσεις Συζευγμένες ταλαντώσεις q Ταλαντώσεις εμφανίζονται παντού Ø Μικρές ταλαντώσεις γύρω από θέση ισορροπίας Ø Εμφανίζονται σε πολλά προβλήματα κβαντοµηχανικής Ø Έχουμε ήδη συναντήσει σε
0 1 0 1/3 2/3 1 0 1/9 2/9 1/3 2/3 7/9 8/9 1 0 1 0 1 0 1/3 2/3 1 0 1/9 2/9 1/3 2/3 7/9 8/9 1 0 1 0 1 0 1/3 2/3 1 0 1/9 2/9 1/3 2/3 7/9 8/9 1 0 1 0 1 0 1/3 2/3 1 0 1/9 2/9 1/3 2/3 7/9 8/9 1 0 1 Α
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Μαθηματική Ανάλυση ΙI
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 8: Διπλά ολοκληρώματα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Ορίζοντας την δυναμική ενέργεια σαν: Για μετακίνηση του φορτίου ανάμεσα στις πλάκες: Ηλεκτρικό Δυναμικό 1
Ηλεκτρική Δυναμική Ενέργεια Ένα ζεύγος παράλληλων φορτισμένων μεταλλικών πλακών παράγει ομογενές ηλεκτρικό πεδίο Ε. Το έργο που παράγεται πάνω σε θετικό δοκιμαστικό φορτίο είναι: W W Fl q y q l q y Ορίζοντας
Ολοκλήρωση. Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι
Ολοκλήρωση Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι Το ζητούμενο Είδαμε μεθόδους υπολογισμού για το πώς μεταβάλλονται οι συναρτήσεις στιγμιαία. Αν αθροίσουμε αυτές τις στιγμιαίες μεταβολές θα έχουμε ένα
Το ελαστικο κωνικο εκκρεμε ς
Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
fysikoblog.blogspot.com
fysikobog.bogspot.co Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙΙΙ: Σφαιρικές Αρμονικές Στις σημειώσεις αυτές δίνομε την αναπαράσταση των ιδιοανυσμάτων της
1 Το φυσικό πρόβλημα και εξισώσεις
Αριθμητική επίλυση των εξισώσεων της ελαστοδυναμικής και μελέτη της κυματικής διάδοσης στα στερεά: επιμήκη κύματα(p-waves), εγκάρσια κύματα(s-waves) και επιφανειακά κύματα(rayleigh waves) Χρυσούλα Τσόγκα
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]
συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 5 Γραµµικες Απεικονισεις Στην άλγεβρα, και γενικότερα στα Μαθηµατικά,
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
11.4 Graphing in Polar Coordinates Polar Symmetries
.4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry y axis symmetry origin symmetry r, θ = r, θ r, θ = r, θ r, θ = r, + θ .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Μόνιμη ΆκυκληΡοή Άδεια Χρήσης Το παρόν εκπαιδευτικό
( () () ()) () () ()
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t, ( t, z( t, t I = [ a, b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι:
Μαγνητικά Υλικά Υπεραγωγοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαγνητικά Υλικά Υπεραγωγοί ΜΑΓΝΗΤΙΚΗ ΑΝΙΣΟΤΡΟΠΙΑ Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
(Καταληκτική ηµεροµηνία παραλαβής 16/11/2004) (Α) Ποιες είναι οι προϋποθέσεις ώστε να ισχύουν οι παρακάτω διανυσµατικές σχέσεις:
1 η Εργασία 004-005 (Καταληκτική ηµεροµηνία παραλαβής 16/11/004) Άσκηση 1 (7 µονάδες) (Α) Ποιες είναι οι προϋποθέσεις ώστε να ισχύουν οι παρακάτω διανυσµατικές σχέσεις: (α) A+ B C µε A + B C (β) A+ B AB
1 Το φυσικό πρόβλημα και εξισώσεις
Αριθμητική επίλυση των εξισώσεων της ελαστοδυναμικής και μελέτη της κυματικής διάδοσης στα στερεά: επιμήκη κύματα(p-waves) και εγκάρσια κύματα(s-waves) Χρυσούλα Τσόγκα tsogka@tem.uoc.gr 1 Το φυσικό πρόβλημα
( s ) Παραγώγιση στο χρόνο. Ολοκλήρωση στο χρόνο. Θεώρηµα αρχικής και τελικής τιµής Ο ΜΟΝΟΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Σεραφείµ Καραµπογιάς
Ο ΜΟΝΟΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Παραγώγιση στο χρόνο d x( ) sx ( s ) x ( ) [ x ) ] X X x( ) e ( s Μετασχηµατισµός aplace παραγώγου dx ( ) sx Ολοκλήρωση στο χρόνο Μετασχηµατισµός aplace ολοκληρώµατος
Γραφικά Υπολογιστών: Θέαση στις 3D
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Θέαση στις 3D Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Σήμερα θα δούμε τα παρακάτω θέματα: Μετασχηματισμοί
Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials
Linear Time Invariant Systems x(t) Linear Time Invariant System y(t) Linearity input output Ax (t)+bx (t) Ay (t)+by (t) scaling & superposition Time invariance x(t-τ) y(t-τ) Characteristic Functions e
Κίνηση σε δύο διαστάσεις
ΦΥΣ 131 - Διαλ.07 1 Κίνηση σε δύο διαστάσεις Διαδρομή του σώματος Τελική θέση Αρχική θέση Η κίνηση που κάνει το αυτοκίνητο καθώς στρίβει περιορίζεται σε ένα οριζόντιο επίπεδο - Η αλλαγή στο διάνυσμα θέσης
Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα
ΦΥΣ 11 - Διαλ.3 1 Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα q Το παρακάτω σύστημα είναι ανάλογο με το σύστημα των δύο εκκρεμών. q Οι δυο ιδιοσυχνότητες του συστήματος είναι ίδιες με τις ιδιοσυχνότητες
Λύσεις στο επαναληπτικό διαγώνισμα 3
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή