Χρηματοοικονομική Διοίκηση
|
|
- Μαριάμ Κουβέλης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Χρηματοοικονομική Διοίκηση Ενότητα 2: Ράντες Γιανναράκης Γρηγόρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο TEI Δυτικής Μακεδονίας και στην Ανώτατη Εκκλησιαστική Ακαδημία Θεσσαλονίκης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
4 Σκοποί ενότητας Μετά το πέρας της διάλεξης ο φοιτητής θα γνωρίζει την έννοια της ράντας κατανοώντας τη χρονική αξία του χρήματος. 4
5 Περιεχόμενα ενότητας Ράντες. Ληξιπρόθεσμη Ράντα. Μέλλουσα Ράντα. Διηνεκής Ράντα. Διηνεκής Ράντα με γεωμετρική αύξηση των όρων. 5
6 ΡΑΝΤΕΣ 1/8 Ράντα είναι μια σειρά κεφαλαίων που καταβάλλονται ή λήγουν ανά ίσα χρονικά διαστήματα. Όρος της ράντας λέγεται καθένα από τα ποσά που αποτελούν τη σειρά και παριστάνεται με το σύμβολο R. 6
7 ΡΑΝΤΕΣ 2/8 Αν οι όροι είναι ίσοι μεταξύ τους, η ράντα λέγεται σταθερή, ενώ αν είναι άνισοι, λέγεται μεταβλητή. Το διάστημα μεταξύ δυο διαδοχικών όρων της ράντα λέγεται περίοδος ράντας. 7
8 ΡΑΝΤΕΣ 3/8 Ληξιπρόθεσμη λέγεται μια ράντα όταν ο κάθε όρος της καταβάλλεται στο τέλος κάθε περιόδου. Προκαταβλητέα λέγεται η ράντα, όταν κάθε όρος της καταβάλλεται στην αρχή κάθε περιόδου. 8
9 ΡΑΝΤΕΣ 4/8 Παρούσα Αξία της ράντας λέγεται το ποσό που είναι ίσο με τη συνολική αξία όλων των όρων της σε μια ορισμένη στιγμή. Αν η χρονική στιγμή συμπίπτει με την αρχή της ράντας, η παρούσα αξία της λέγεται και Αρχική Αξία. Τελική Αξία λέγεται η αξία της ράντας στο τέλος της τελευταίας περιόδου. 9
10 ΡΑΝΤΕΣ 5/8 Εποχή Υπολογισμού λέγεται η χρονική στιγμή που βρισκόμαστε. Άμεσος λέγεται η ράντα, αν η εποχή υπολογισμού συμπίπτει με την αρχή της ράντας. Μέλλουσα λέγεται η ράντα, αν η εποχή υπολογισμού βρίσκεται λ περιόδους, πριν από το σημείο της αρχής της. 10
11 ΡΑΝΤΕΣ 6/8 Αρξάμενη λέγεται η ράντα, αν η εποχή υπολογισμού βρίσκεται λ περιόδους μετά το σημείο της αρχής της. Πρόσκαιρη λέγεται η ράντα όταν το πλήθος των όρων της είναι ορισμένο. Διηνεκής λέγεται η ράντα όταν το πλήθος των όρων της είναι άπειρο. 11
12 Ληξιπρόθεσμη Ράντα 1/2 Παρούσα Αξία Άμεσης, Ληξιπρόθεσμης, Πρόσκαιρης Ράντας. α i nl Αρχική αξία μιας νομισματικής μονάδας με επιτόκιο i και n περιόδους. Α nl = R α i nl - Αν ο κάθε όρος είναι R νομισματικές μονάδες. 12
13 Ληξιπρόθεσμη Ράντα 2/2 Να βρεθεί το ποσό που πρέπει να καταθέσουμε σήμερα σε μια τράπεζα με ετήσιο ανατοκισμό και ετήσιο επιτόκιο 7 %, για να έχουμε δικαίωμα να αποσύρουμε στο τέλος κάθε έτους και επί 10 έτη. ΛΥΣΗ. Σχήμα 1. Ληξιπρόθεσμη Ράντα, πηγή: Διδάσκων (2015). 13
14 Προβλήματα 1/33 Ένα ίδρυμα θέλει να χορηγεί κάθε χρόνο μία υποτροφία και επί 10 χρόνια. Η πρώτη υποτροφία θα χορηγηθεί μετά ένα χρόνο. Ποιο ποσό πρέπει να καταθέσει σήμερα το ίδρυμα σε μια τράπεζα, με ετήσιο ανατοκισμό και ετήσιο επιτόκιο 4 % για να μπορεί να δίνει τις στο τέλος κάθε χρόνου; 14
15 Προβλήματα 2/33 Λύση. Α nl = R*α i nl = * 8, = ,578 θα πρέπει να καταθέσει σήμερα. 15
16 Προβλήματα 3/33 Τι ποσό πρέπει να καταθέσουμε σήμερα σε μια τράπεζα με ετήσιο ανατοκισμό και επιτόκιο 10 %, έτσι ώστε να μπορούμε να εισπράττουμε στο τέλος κάθε έτους για 8 έτη. Λύση. Α n = R α i n = * 5,33 =
17 Μέλλουσα Ράντα Παρούσα Αξία Μέλλουσας, Ληξιπρόθεσμης, Πρόσκαιρης Ράντας. Όταν η αρχή της ράντας βρίσκεται σε απόσταση λ έτη από την στιγμή υπολογισμού η ράντα καλείται μέλλουσα και υπολογίζεται προεξοφλώντας την άμεση ράντα. λ/ Α nl = R * α i nl * 1/(1+i) λ. 17
18 Προβλήματα 4/33 Ένα επιχειρηματίας δανείζεται σήμερα ευρώ προς 8 % θα εξοφλήσει το δάνειο σε 10 ετήσιες δόσεις αλλά η πρώτη δόση θα δοθεί μετά 3 έτη (στο τέλος του χρόνου 3). Να βρεθεί η αξία κάθε δόσης. 18
19 Προβλήματα 5/33 Λύση. λ/ Α nl = R * α i nl * 1/(1+i) λ 2 / Α 10l = R * α 0,08 10l * 1/(1+0,08) = R * 6,71008 * 0,8573 R = Σχήμα 2. Απεικόνοση χρόνου, προβλήματα 5/33, πηγή: Διδάσκων (2015). 19
20 ΡΑΝΤΕΣ 7/8 Όταν θα αναφερόμαστε στο χρόνο 1 θα εννοούμε το τέλος του χρόνου ένα. Η αρχή του χρόνου 3 είναι το τέλος του χρόνου 2. Η δόση που καταβλήθηκε στο τέλος του χρόνου 3 θα πρέπει να προεξοφληθεί για τρία χρόνια. Ενώ η δόση που καταβλήθηκε στην αρχή του χρόνου 3 θα πρέπει να προεξοφληθεί για δυο έτη. Σχήμα 3. Απεικόνηση χρόνου και συντελεστής ράντας, πηγή: Διδάσκων (2015). 20
21 Προβλήματα 7/33 Ποιο ποσό πρέπει να καταθέσουμε σήμερα σε μια τράπεζα με ετήσιο επιτόκιο 5 %, για έχουμε δικαίωμα να αποσύρουμε (στο τέλος κάθε έτους και επί 10 έτη) ευρώ αρχής γενομένης μετά 5 έτη από σήμερα (στο τέλος του 5ου έτους). 21
22 Προβλήματα 8/33 Σχήμα 4. Απεικόνιση χρόνου, προβλήματα 8/33, πηγή: Διδάσκων (2015). 22
23 Προβλήματα 9/33 Λύση. λ/ Α nl = R * α i nl * 1/(1+i)λ 4/ Α 10l = *7,7217* 1/(1,05) 4 4/ Α 10l = * 7,7217 * 0,8227 4/ Α 10l = 63526,71 23
24 Προβλήματα 10/33 Ποια η αξία ασφαλιστηρίου συμβολαίου που θα μας δίνει μετά 4 έτη κάθε χρόνο για 10 χρόνια. Το ετήσιο επιτόκιο είναι 5 % και η καταβολές θα γίνονται στο τέλος κάθε χρόνου. 24
25 Προβλήματα 11/33 Λύση. Σχήμα 5. Προβλήματα 11/33, πηγή: Διδάσκων (2015). 25
26 ΡΑΝΤΕΣ 8/8 Η προκαταβλητέα ράντα όταν πολλαπλασιαστεί με τον συντελεστή (1+i) μετατρέπεται σε ληξιπρόθεσμη. Ο όρος R μεταφέρεται από την αρχή της κάθε περιόδου στο τέλος. Για να υπολογίσουμε την τελική αξία ράντας: υπολογίζουμε την αρχική αξία της ράντας και την μεταφέρουμε στο τέλος της ράντας με τον τύπο Κ= Κ ο (1+ i ) n. 26
27 Διηνεκής Ράντα Όταν το πλήθος των όρων μιας ράντα είναι άπειρο, τότε η ράντα καλείται Διηνεκής. Η παρούσα αξία της άμεσης ληξιπρόθεσμης διηνεκούς ράντα είναι: Α l = R * α i l = R/i. 27
28 Προβλήματα 12/33 Ένας φιλάνθρωπος θέλει να χορηγεί έπ άπειρο μια ετήσια υποτροφία στο τέλος κάθε χρόνου. Αν το ετήσιο επιτόκιο είναι 4 % ποιο ποσό πρέπει να καταθέσει σήμερα ο φιλάνθρωπος για να χορηγείται στο διηνεκές η υποτροφία ; Λύση. Α l = R * α i l = R/i = /0,04 =
29 Προβλήματα 13/33 Μια επιχείρηση θέλει να χορηγεί έπ άπειρο βοήθεια στην τοπική κοινότητα όπου βρίσκεται το εργοστάσιό της. Αν το ετήσιο επιτόκιο είναι 9 % και οι καταβολές γίνονται στο τέλος κάθε χρόνου ποια η αξία της βοήθειας σήμερα. ΛΥΣΗ. Α = R * α i = R/i = /0,09 =
30 Προβλήματα 14/33 Μια εταιρία επενδύσεων κάνει την έκπληξη στους επενδυτές δίνοντας μέρισμα 100 κάθε τρεις μήνες. Εάν το ετήσιο επιτόκιο είναι 12 % ποια θα πρέπει να είναι η τιμή της μετοχής σήμερα; Λύση. Το τριμηνιαίο επιτόκιο είναι: 0,12/4=0,03 P 1 = 100/0.03 = 3333,33 30
31 Προβλήματα 15/33 Μια εταιρία ανέλαβε ένα έργο το οποίο πρόκειται να ολοκληρωθεί σε 9 χρόνια και κοστίζει $ στο τέλος κάθε έτους. Τα έσοδα από τις δραστηριότητες του έργου θα έρθουν μετά 12 μήνες από την ολοκλήρωσή του. Επίσης η εταιρία υποθέτει ότι θα αυξάνει 4 % τα έσοδα κάθε χρόνου. Αν το επιτόκιο είναι 8 % ποιο θα πρέπει να είναι το ύψος των εσόδων το πρώτο έτος λειτουργίας για να μπορέσει να καλύψει το κόστος; 31
32 Προβλήματα 16/33 ΛΥΣΗ. Σχήμα 6. Προβλήματα 16/33, πηγή: Διδάσκων (2015). 32
33 Διηνεκής Ράντα με γεωμετρική αύξηση των όρων Όταν το πλήθος των όρων μιας ράντα είναι άπειρο, και οι όροι αυξάνονται γεωμετρικά κατά το ποσοστό g, τότε η παρούσα αξία της διηνεκούς ράντα δίνεται από τον τύπο. Α l = R/(i-g). 33
34 Προβλήματα 17/33 Ο ιδιοκτήτης ενός διαμερίσματος αναμένει εισόδημα τον επόμενο χρόνο αφαιρώντας τα τυχόν έξοδα (π.χ φόροι). Επίσης προσδοκά ότι το εισόδημα αυτό θα αυξάνει 5 % επ άπειρο. Ποια θα είναι η παρούσα αξία του διαμερίσματος αν το επιτόκιο προεξόφλησης είναι 11 %. 34
35 Προβλήματα 18/33 Λύση. Α l = R/(i-g) <=> Α l = /(0,11-0,05) <=> Α l =
36 Προβλήματα 19/33 Μια επιχείρηση πρόκειται να πληρώσει 200 ευρώ μέρισμα στο τέλος του έτους. Το μέρισμα αναμένεται να αυξηθεί κατά 8 % στα επόμενα 3 χρόνια, έπειτα προσδοκάται ότι η αύξηση θα είναι 4 % στο άπειρο. Το κατάλληλο προεξοφλητικό επιτόκιο είναι 10 %. Ποια θα πρέπει να είναι η αποτίμηση της μετοχής σήμερα (i=10 %). 36
37 Προβλήματα 20/33 Σχήμα 7. Προβλήματα 20/33, πηγή: Διδάσκων (2015). 37
38 Προβλήματα 21/33 Μια εταιρία, εισηγμένη στο Χρηματιστήριο της Νέας Υόρκης (Dow) πλήρωσε χθες μέρισμα $1,2 στη μετοχή της. Έχει υπολογιστεί ότι το ετήσιο μέρισμα θα αυξάνεται κατά 3%, 4% και 5 % στα επόμενα 3 χρόνια αντίστοιχα και 6 % στη συνέχεια. Αν το επιτόκιο προεξόφλησης είναι 12 % ποια θα πρέπει να είναι η αξία της μετοχής σήμερα. 38
39 Προβλήματα 22/33 ΛΥΣΗ. Σχήμα 8. Προβλήματα 22/33, πηγή: Διδάσκων (2015). 39
40 Προβλήματα 23/33 Ο εισοδηματίας Γεωργίου καταθέτει στην Τράπεζα, στη αρχή κάθε χρόνου, με ετήσιο ανατοκισμό και ετήσιο επιτόκιο 6 %. Αυτό γίνεται επί 10 χρόνια. Να βρεθεί το ποσό που θα έχει συσσωρευτεί στον λογαριασμό του Γεωργίου στο τέλος των ετών. 40
41 Προβλήματα 24/33 Επειδή ο πρώτος όρος προκαταβάλλεται θα πολλαπλασιάσουμε όλοι τη σειρά των όρων με (1+ i) μετατρέποντας την σε ληξιπρόθεσμη. Α nl =(1+i)R α i nl = 1,06* *7,36= Κ= Κ ο (1+ i ) n = (1,06) 10 = ,7. 41
42 Προβλήματα 25/33 Επειδή ο πρώτος όρος προκαταβάλλεται θα πολλαπλασιάσουμε όλοι τη σειρά των όρων με (1+ i) μετατρέποντας την σε ληξιπρόθεσμη. V nl = (1+ i) R S i nl V 10l = * 13,1808 * 1,06 V 10l = ,8 42
43 Προβλήματα 26/33 43
44 Προβλήματα 27/33 Εάν στο προηγούμενο παράδειγμα μειωθεί το επιτόκιο 2 % ποια θα είναι η νέα αξία του ομολόγου σήμερα και ποια ένα εξάμηνο πριν την λήξη του; 44
45 Προβλήματα 28/33 Ο κύριος Βασιλείου αγόρασε το Νοέμβριο του 2000, 10ετές ομόλογο στην ονομαστική αξία των με επιτόκιο αγοράς 10 % και τοκομερίδιο 10 % της ονομαστικής αξίας. Το Νοέμβριο του 2001 μετά την είσπραξη του τόκου αποφάσισε να πουλήσει το ομόλογο. Εάν το επιτόκιο της αγοράς είναι 7 %, ποια θα πρέπει να είναι η αποτίμηση του ομολόγου; 45
46 Προβλήματα 29/33 ΛΥΣΗ. Σχήμα 9. Προβλήματα 29/33, πηγή: Διδάσκων (2015). Τοκομερίδιο 10 % σημαίνει *0,10= Α n =R α i n =Rα 7 9 =10.000*6,5152= Αξία ομολόγου P = /(1,07) 9 =
47 Προβλήματα 30/33 Δυο ομόλογα Α και Β ονομαστική αξίας ευρώ έχουν ετήσια τοκομερίδια 10 % της ονομαστικής αξίας. Εάν το πρώτο είναι δεκαετές και το δεύτερο εικοσαετές, να βρείτε την τιμή των ομολόγων αν το επιτόκιο είναι α) 9 % και β) 5 % γ)9 % με τοκομερίδιο 5 %. Ποια είναι τα συμπέρασμα; 47
48 Προβλήματα 31/33 ΛΥΣΗ. α) Επιτόκιο 9 % *0,10= Α n =R α i n =Rα 9 10 =10.000*6,417657= Αξία ομολόγου: P1= /(1,09) 10 = Α n =R α i n =Rα 9 20 =10.000*9,128545= Αξία ομολόγου: P2= /(1,09) 20 =
49 Προβλήματα 32/33 ΛΥΣΗ. β) Επιτόκιο 5 % *0,10= Α n =R α i n =Rα 5 10 =10.000*7,7217= Αξία ομολόγου: P1= /(1,05) 10 = Α n =R α i n =Rα 5 20 =10.000*12,4622= Αξία ομολόγου: P2= /(1,09) 20 =
50 Προβλήματα 33/33 ΛΥΣΗ. γ) Επιτόκιο 9 % *0,05=5000 Α n =R α i n =Rα 9 10 =5.000*6,417657= Αξία ομολόγου: P1= /(1,09) 10 = Α n =R α i n =Rα 9 20 =5.000*9,128545= Αξία ομολόγου: P2 = /(1,09) 20 =
51 Βιβλιογραφία 1/2 Θεμιστοκλής Λαζαρίδης, Γεώργιος Κοντέος, Νικόλαος Σαριαννίδης (2013) Σύγχρονη Χρηματοοικονομική Ανάλυση, 1 η έκδοση, ISBN Βασιλείου και Ηρειώτης (2008), Χρηματοοικονομική Διοίκηση Θεωρία και Πρακτική, Rosilli. Αρτίκης (2002), ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΑΠΟΦΑΣΕΙΣ ΕΠΕΝΔΥΣΕΩΝ, Interbooks. Χρηματοδότηση επιχειρήσεων /Δασκάλου Γ., Αθήνα: εκδ. Σύγχρονη Εκδοτική,
52 Βιβλιογραφία 2/2 Χρηματοοικονομική διοίκηση /Αρτίκης Γ..,Αθήνα: εκδ. Σταμούλη, Οικονομικό management /Siegel J.- Shim J., Αθήνα: εκδ. Singular, Χρηματοοικονομική διοίκηση /Παπούλιας Γ., Αθήνα: εκδ. Παπούλια, Principles of corporate finance /Brealey R.-Myers S., New York: McGraw Hill,
53 Τέλος Ενότητας
ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ
ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ Ενότητα 1: Αξιολόγηση Επενδύσεων (1/5) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Χρηματοοικονομική Διοίκηση Ενότητα 1: Εισαγωγή
Χρηματοοικονομική Διοίκηση Ενότητα 1: Εισαγωγή Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Χρηματοοικονομική Διοίκηση
Χρηματοοικονομική Διοίκηση Ενότητα 5: Τεχνικές επενδύσεων ΙΙΙ Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Χρηματοοικονομική Διοίκηση
Χρηματοοικονομική Διοίκηση Ενότητα 4: Τεχνικές επενδύσεων ΙΙ Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Χρηματοοικονομική Διοίκηση
Χρηματοοικονομική Διοίκηση Ενότητα 6: Τεχνικές επενδύσεων IV Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 8: Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 9: Διηνεκείς Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Χρηματοοικονομική Διοίκηση
Χρηματοοικονομική Διοίκηση Ενότητα 3: Τεχνικές επενδύσεων Ι Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Χρηματοοικονομική Ι. Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι
Χρηματοοικονομική Ι Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #17: Σειρές Πληρωμών ή Ράντες Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 5: Ισοδυναμία Πιστωτικών Τίτλων Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 4: Ανατοκισμός Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 1: Κεφαλαιοποίηση Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 10: ΡΑΝΤΕΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creatve Commos εκτός και αν αναφέρεται διαφορετικά Το έργο υλοποιείται
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 7: Καθαρή Παρούσα Αξία Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μαθηματικά για Οικονομολόγους
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μαθηματικά για Οικονομολόγους Ενότητα # 19: Επανάληψη Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 5: Ονομαστικό και Πραγματικό Επιτόκιο Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Οικονομικά Μαθηματικά Ενότητα 11: Δείκτης Κερδοφορίας
Οικονομικά Μαθηματικά Ενότητα 11: Δείκτης Κερδοφορίας Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 6: Επιτόκιο Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 7: Καθαρή Παρούσα Αξία Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Ράντες. Χρήση ραντών. Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας
Ράντες Χρήση ραντών Έννοια ράντας Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας Χρήση περιοδικών κεφαλαίων (ράντες) Σχηματισμός κεφαλαίου με ισόποσες καταθέσεις Εξόφληση χρέους με δόσεις Μηνιαίες
Χρηματοοικονομική Ι. Ενότητα 7: Μετοχικοί τίτλοι. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι
Χρηματοοικονομική Ι Ενότητα 7: Μετοχικοί τίτλοι Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Ράντες. - Κατανόηση και χρησιμοποίηση μιας σειράς πληρωμών που ονομάζεται ράντα.
Ράντες Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι - Αρχική αξία - Τελική αξία - Δόση ή όρος - Περίοδος - Διάρκεια (συμβολισμός n) - Διηνεκής ράντα - Κλασματική ράντα ΣΤΟΧΟΙ - Κατανόηση και χρησιμοποίηση
ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-)
ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-) 5. Ράντες 5.1.1.Ορισμοι- Κατηγορίες Ράντα ονομάζουμε σειρά κεφαλαίων που καταβάλλονται ανά ισα χρονικά διαστήματα. Για τα κεφάλαια αυτά ισχύει
Σύγχρονες μορφές Χρηματοδότησης
Σύγχρονες μορφές Χρηματοδότησης Ενότητα 2: Κόστος Κεφαλαίου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης Ιωάννης Τμήμα Διοίκηση Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Μαθηματικά. Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Κεφάλαιο , 05. Τέλος το ποσό της τελευταίας κατάθεσης (συμπλήρωση του 17 ου έτους) θα τοκισθεί μόνο για 1 έτος
Κεφάλαιο 5 5. Ράντες 5.. Εισαγωγικές έννοιες και ορισμοί Είναι σύνηθες στις μέρες μας να καταθέτουν οι γονείς κάποιο ποσό για τα παιδιά τους σε μηνιαία, εξαμηνιαία ή ετήσια βάση έτσι ώστε να συσσωρευτεί
Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Χρηματοοικονομική Διοίκηση
Χρηματοοικονομική Διοίκηση Ενότητα 8: Απόδοση - Κίνδυνος Επενδύσεων Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ. ΚΥΡΙΑΚΗ ΚΟΣΜΙΔΟΥ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ
ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΥΡΙΑΚΗ ΚΟΣΜΙΔΟΥ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ kosmid@econ.auth.gr ΣΗΜΕΙΩςΕΙς ΑΠΟ ΤΟ ΒΙΒΛΙΟ: ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗςΗ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ,
Λογιστική Ι. Ενότητα 4: Μελέτες Περιπτώσεων. Επίκουρος Καθηγητής Γεώργιος Κοντέος ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΓΡΕΒΕΝΑ)
Λογιστική Ι Ενότητα 4: Μελέτες Περιπτώσεων. Επίκουρος Καθηγητής Γεώργιος Κοντέος ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΓΡΕΒΕΝΑ) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Σύγχρονες μορφές Χρηματοδότησης
Σύγχρονες μορφές Χρηματοδότησης Ενότητα 3: Μέθοδοι Αξιολόγησης Επενδύσεων Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης Ιωάννης Τμήμα Διοίκηση Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 5: Ακολουθίες, όρια, σειρές (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Χρηματοοικονομική ΙΙ
Χρηματοοικονομική ΙΙ Ενότητα 3: Αποτίμηση ομολόγων Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ
ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ Απλός Τόκος Εφαρμόζεται στις βραχυπρόθεσμες οικονομικές πράξεις, συνήθως μέχρι τριών μηνών ή το πολύ μέχρι ενός έτους.
ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΑΠΟΦΑΣΕΩΝ
ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΑΠΟΦΑΣΕΩΝ 8 Ο εξάμηνο Χημικών Μηχανικών Δανάη Διακουλάκη, Καθηγήτρια ΕΜΠ diak@chemeng.ntua.gr Άγγελος Τσακανίκας, Επ. καθηγητής ΕΜΠ atsaka@central.ntua.gr ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 11: «Ασκήσεις 1» ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Υπολογιστικά Συστήματα
Υπολογιστικά Συστήματα Ενότητα 2: Ανάλυση Πιθανοτήτων, Σενάρια, Αναζήτηση Στόχου και Συγκεντρωτικοί Πίνακες Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 10: Εφαρμογές των Ράντων Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης
Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
1 2,55 1.250 3,19 0,870 2,78 2 2,55 1.562 3,98 0,756 3,01 3 2,55 1.953 4,98 0,658 3,28
Άσκηση 1 Η κατασκευαστική εταιρία Κ εξετάζει την περίπτωση αγοράς μετοχών της εταιρίας «Ε» με πληρωμή σε μετρητά. Κατά τη διάρκεια της χρήσης που μόλις ολοκληρώθηκε, η «Ε» είχε κέρδη ανά μετοχή 4,25 και
ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ
ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ Ενότητα 4: Αξιολόγηση Επενδύσεων (4/5). Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ. Ενότητα 15: Χρηματιστηριακές Αγορές Κυριαζόπουλος Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής
ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 15: Χρηματιστηριακές Αγορές Κυριαζόπουλος Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 1: ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ ΧΡΗΜΑΤΑΓΟΡΑ. ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ
ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 1: ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ ΧΡΗΜΑΤΑΓΟΡΑ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Χρηματοοικονομικά Παράγωγα και Χρηματιστήριο
Χρηματοοικονομικά Παράγωγα και Χρηματιστήριο Ενότητα 3: ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ ΜΕ ΤΟ ΣΥΝΕΤΛΕΣΤΗ BETA Κυριαζόπουλος Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
www.onlineclassroom.gr
ΕΡΩΤΗΣΗ. (5 μονάδες) Θέλετε να αξιολογήσετε τέσσερα ομόλογα. Όλα τα ομόλογα έχουν 0 χρόνια μέχρι την λήξη και ονομαστική αξία.000. Το ομόλογο Α έχει κουπόνι με ετήσια απόδοση % το οποίο παραμένει σταθερό
ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΤΕ ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΚΑΘΗΓΗΤΗΣ ΔΑΠΗΣ ΔΗΜΗΤΡΙΟΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 11: ΔΑΝΕΙΑ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο υλοποιείται
Ομόλογο καλείται η μορφή επένδυσης μεταξύ δύο αντισυμβαλλομένων μελών όπου ο ένας «δανείζεται» χρήματα και καλείται εκδότης (πχ. κράτος ή εταιρίες) και ο άλλος «δανείζει» χρήματα και καλείται κάτοχος (πχ.
Μικροοικονομία. Ενότητα 7: Μορφές Αγοράς Συμπεριφορά Επιχείρησης στον Πλήρη Ανταγωνισμό. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής
Μικροοικονομία Ενότητα 7: Μορφές Αγοράς Συμπεριφορά Επιχείρησης στον Πλήρη Ανταγωνισμό Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ
ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΑΘΙΑΝΟΣ ΣΤΕΡΓΙΟΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Χρηματοοικονομική Ι. Ενότητα 4: Η Χρονική Αξία του Χρήματος (1/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι
Χρηματοοικονομική Ι Ενότητα 4: Η Χρονική Αξία του Χρήματος (1/2) Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Χρηματοοικονομικά Παράγωγα και Χρηματιστήριο
Χρηματοοικονομικά Παράγωγα και Χρηματιστήριο Ενότητα 14: ΑΠΟΔΟΣΗ ΑΞΙΟΓΡΑΦΩΝ ΚΑΙ ΑΜΟΙΒΑΙΑ ΚΕΦΑΛΑΙΑ Κυριαζόπουλος Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΚΕΦΑΛΑΙΟ 2ο ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ
7 ΚΕΦΑΛΑΙΟ 2ο ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Στα κεφάλαια που ακολουθούν θα ασχοληθούμε με την αξιολόγηση διάφορων επενδυτικών προτάσεων. Πριν από την ανάλυση των προτάσεων αυτών, είναι απαραίτητο να έχετε
Χρηματοοικονομική Διοίκηση
Χρηματοοικονομική Διοίκηση Ενότητα 7: Αμοιβαίως αποκλειόμενες επενδύσεις Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΦΥΣΙΚΩΝ ΠΡΟΣΩΠΩΝ
Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΤΕ ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΦΥΣΙΚΩΝ ΠΡΟΣΩΠΩΝ ΚΑΘΗΓΗΤΗΣ ΔΑΠΗΣ ΔΗΜΗΤΡΙΟΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015
ΜΑΘΗΜΑ: ΔΙΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ
ΜΑΘΗΜΑ: ΔΙΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ ΔΙΔΑΣΚΩΝ: Δρ. Κυριαζόπουλος Γεώργιος ΤΜΗΜΑ: Λογιστικής και Χρηματοοικονομικής 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Αξιολόγηση Επενδύσεων Σύνολο- Περιεχόμενο Μαθήματος
Αξιολόγηση Επενδύσεων Σύνολο- Περιεχόμενο Μαθήματος Ζιώγας Ιώαννης Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Οργάνωση και Διοίκηση Πωλήσεων Ενότητα 1: Ο ΡΟΛΟΣ ΤΩΝ ΠΩΛΗΣΕΩΝ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΜΑΡΚΕΤΙΝΓΚ
Οργάνωση και Διοίκηση Πωλήσεων Ενότητα 1: Ο ΡΟΛΟΣ ΤΩΝ ΠΩΛΗΣΕΩΝ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΜΑΡΚΕΤΙΝΓΚ Αθανασιάδης Αναστάσιος Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και Οικονομία Άδειες Χρήσης Το παρόν
Βάσεις Δεδομένων. Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών
Βάσεις Δεδομένων Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό
2. ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ 1 Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό διάστηµα θέλουµε. Εκτός
Χρηματοοικονομική Ι. Ενότητα 8: Βασικές αρχές αποτίμησης μετοχών. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι
Χρηματοοικονομική Ι Ενότητα 8: Βασικές αρχές αποτίμησης μετοχών Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ
ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Παράδειγµα 1 Να βρεθεί ο τόκος κεφαλαίου 100.000 ευρώ, το οποίο τοκίστηκε µε ετήσιο επιτόκιο 12% για 2 χρόνια. Απάντηση: Ο τόκος ανέρχεται σε I = (100.000 0,12 2=) 24.000 ευρώ
Οργάνωση και Διοίκηση Πωλήσεων
Οργάνωση και Διοίκηση Πωλήσεων Ενότητα 5: ΚΑΘΟΡΙΣΜΟΣ ΣΤΟΧΩΝ ΠΩΛΗΣΕΩΝ Αθανασιάδης Αναστάσιος Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και Οικονομία Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Μακροοικονομική Θεωρία Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μακροοικονομική Θεωρία Ι Διάλεξη 8: Προσφορά Χρήματος Διδάσκων: Γιαννέλλης Νικόλαος ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν
Διοίκηση Έργου. Ενότητα 2: Επιλογή Έργων. Σαμαρά Ελπίδα Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Διοίκηση Έργου Ενότητα 2: Επιλογή Έργων Σαμαρά Ελπίδα Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)
Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1 γ Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας
Χρηματοοικονομική των Επιχειρήσεων
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Χρηματοοικονομική των Επιχειρήσεων Ενότητα: θεμελιώδεις αρχές Καραμάνης Κωνσταντίνος 2 Ανοιχτά Ακαδημαϊκά Τμήμα : ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΛΟΓΙΣΤΙΚΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα # 1: Βασικοί Χρηματοοικονομικοί Ορισμοί Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ Κεφάλαιο 1: Το θεωρητικό υπόβαθρο της διαδικασίας λήψεως αποφάσεων και η χρονική αξία του χρήµατος Κεφάλαιο 2: Η καθαρή παρούσα αξία ως κριτήριο επενδυτικών
Σύγχρονες Μορφές Χρηματοδότησης
Σύγχρονες Μορφές Χρηματοδότησης Ενότητα12: Πιστωτικοί Κίνδυνοι Κυριαζόπουλος Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Μικροοικονομία. Ενότητα 3: Ελαστικότητα Ζήτησης και Προσφοράς. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής
Μικροοικονομία Ενότητα 3: Ελαστικότητα Ζήτησης και Προσφοράς Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Θερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 4: Σφάλματα περικοπής (truncation) και η σειρά Taylor Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Σύγχρονες Μορφές Χρηματοδότησης
Σύγχρονες Μορφές Χρηματοδότησης Ενότητα 3: Ομολογιακά Δάνεια Κυριαζόπουλος Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Θερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 3: Σφάλμα - Προσέγγιση - Στρογγυλοποίηση Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)
Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1. Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΔΙΔΑΣΚΩΝ: Δρ. Μαυρίδης Δημήτριος. ΤΜΗΜΑ: Εισαγωγή στην Διοίκηση Επιχειρήσεων
ΜΑΘΗΜΑ: ΔΙΔΑΣΚΩΝ: Δρ. Μαυρίδης Δημήτριος ΤΜΗΜΑ: Εισαγωγή στην Διοίκηση Επιχειρήσεων 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ
ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ Δημήτριος Βασιλείου Καθηγητής Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών Νικόλαος Ηρειώτης Καθηγητής Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών Περιεχόμενα 1. Εισαγωγή..
Αξιολόγηση Επενδυτικών Σχεδίων
Αξιολόγηση Επενδυτικών Σχεδίων Ενότητα 1: Βασικές έννοιες Δ. Δαμίγος Μ. Μενεγάκη Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ
ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ v.1.0 Ενότητα 6 η : Σύνθετοι Δείκτες Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο "Ανοικτά Ακαδημαϊκά
ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ
ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Κεφάλαιο 1 Η ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Επιτόκιο: είναι η αμοιβή του κεφαλαίου για κάθε μονάδα χρόνου
Ανάλυση Λογιστικών Καταστάσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανάλυση Λογιστικών Καταστάσεων Ενότητα #1: Εισαγωγή Πέτρος Καλαντώνης Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες
Θερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 1: Αριθμητικές μέθοδοι στα φαινόμενα μεταφοράς και στη θερμοδυναμική Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 6: ΜΕΓΕΘΟΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΘΕΜΑ 2
ΘΕΜΑ 2 (Α) H διάρκεια ενός ομολόγου δείχνει σε πόσα χρόνια θα ανακτηθεί το αρχικό κεφάλαιο σε όρους παρούσας αξίας. Θα υπολογιστεί από τον παρακάτω πίνακα. (Τόμος Δ σελ. 80). Η διάρκεια του ομολόγου υπολογίζεται
Οικονομετρία Ι. Ενότητα 10: Διαγνωστικοί Έλεγχοι. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 10: Διαγνωστικοί Έλεγχοι Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Προγραμματισμός Η/Υ 1 (Εργαστήριο)
Προγραμματισμός Η/Υ 1 (Εργαστήριο) Ενότητα 9: Πίνακες Δισδιάστατοι Καθηγήτρια Εφαρμογών: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Στατιστική Ι. Ενότητα 6: Kατανομή Poisson. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 6: Kατανομή Poisson Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Χρηματοοικονομική των Επιχειρήσεων
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Χρηματοοικονομική των Επιχειρήσεων Ενότητα: Διαδικασία άντλησης κεφαλαίου Καραμάνης Κωνσταντίνος Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης