Fotometrija. Področja svetlobe. Mimogrede
|
|
- Γάννη Δυοβουνιώτης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo Izbirni predmet Svetlobna tehnika Fotometrija predavatelj prof. dr. Grega Bizjak, u.d.i.e. Mimogrede Izraz (fotometer) je splošen izraz za napravo, ki meri eno ali več svetlobnih veličin. Lahko je to merilnik sestavljen iz svetlobnoobčutljivega sprejemnika, merilnega pretvornika in kazalnika (merilnik osvetljenosti, merilnik svetlosti). Lahko pa je tudi precej večja naprava (naprava za merjenje svetilnosti ali svetlobnega toka). Področja svetlobe nm nm UV-A žarki 315 nm UV-B 280 nm UV-C 100 nm IR-C nm IR-B nm IR-A sevanje nm Vidna svetloba
2 Fizikalno merjenje svetlobe Veda, ki se v fiziki ukvarja z meritvami elektromagnetnih valovanj, torej tudi svetlobe, se imenuje: RADIOMETRIJA. Fizikalno merjenje svetlobe Radiometrija pozna 4 glavne veličine: sevalni tok ali flux, jakost sevanja, obsevanost in sevalnost. Energija in moč, ki jo oddaja vir Φ e sevalni tok (W) Vir s sevanjem oddaja energijo in moč. Govorimo o sevalnem toku ali fluksu (radiant flux), ki predstavlja energijo, ki jo vir izseva v enoti časa.
3 Jakost sevanja Če vir ne seva energije v vse smeri enakomerno, lahko govorimo o jakosti sevanja (radiant intensity). Jakost sevanja je definirana s pomočjo sevalnega toka v enoti prostorskega kota. φ e I I e jakost sevanja (W/sr) e = ω Prostorski kot A ω = 2 r Prostorski kot je definiran kot razmerje med površino krogelnega izseka in polmerom krogle. Enota je steradian (sr). Podobno je definiran tudi ravninski kot: kot razmerje med krožnim lokom in polmerom kroga. Enota je radian (rd). Obsevanost Obsevanost (irradiance) je merilo za količino sevalnega toka, ki pada na neko ploskev oziroma ploskovno gostoto sevalnega toka. φe e = E A E e obsevanost (W/m 2 )
4 Sevalnost S sevalnostjo (radiance) označimo jakost sevanja določene ploskve pod določenim kotom. Ie Le = A cosθ L e sevalnost (W/sr m 2 ) Medsebojna povezanost veličin Sevalni tok Φ e (W) : Ω Jakost sevanja I e (W/sr) : r 2 : A : A Obsevanost E e (W/m 2 ) : Ω Sevalnost L e (W/sr m 2 ) Človeško oko - organ vida Človeško oko je organ s katerim zaznavamo svetlobo.
5 Fotometrija Ko moramo svetlobo meriti tako kot jo vidimo npr. v razsvetljavi, moramo uporabiti fotometrijo in ne radiometrije. Fotoreceptorji v očesu Fotoreceptorji v očesu vpadlo svetlobo pretvorijo v impulze, ki jih živci vodijo v možgane. Za oči niso vsi Watti enaki Wattom v svetlobni tehniki pravimo Lumni, povezava pa je določena s spektralno občutljivostjo očesa: 1W pri 400 nm je 0,000 lm 1W pri 500 nm je 220,609 lm 1W pri 600 nm je 430,973 lm 1W pri 700 nm je 2,732 lm 1W pri 800 nm je 0,000 lm 1W pri 555 nm je 683,000 lm
6 Fotometrične enote Na podlagi fizikalnih enot so bile določene fotometrične enote: Sevalni tok Svetlobni tok Jakost sevanja Svetilnost Obsevanost Osvetljenost Sevalnost Svetlost Φ lumen (lm) Svetlobni tok Svetlobni tok (Luminous flux) je merilo za količino energije, ki jo vir seva v prostor. Je ekvivalent moči v Wattih vendar z upoštevanjem občutljivosti oči na svetlobo posameznih valovnih dolžin. Svetlobni tok Φ lumen (lm) Svetlobni tok dobimo iz izsevane moči preko formule: Φ = K m 0 dφe V dλ ( λ) dλ Kjer je K m enak 683 lm/w in predstavlja svetlobni tok (v lm) pri 1W izsevane moči z valovno dolžino 555 nm. 1 W svetlobe z 555 nm podnevi pomeni 683 lm 1W svetlobe z 507 nm ponoči pomeni 1700 lm
7 Svetlobni tok V ( ) λ Funkcija V(λ) predstavlja občutljivost človeških oči na različne valovne dolžine in je določena za standardnega opazovalca (CIE), torej je statistično povprečje. Svetlobni tok Φ lumen (lm) Nekaj karakterističnih vrednosti: Navadna žarnica 100W 1300 lm Fluorescenčna svetilka 58 W 5200 lm Visokotlačna natrijeva sijalka 100W lm Nizkotlačna natrijeva sijalka 90W lm Svetilnost I candela (cd) Svetilnost (Luminous intensity) je merilo za svetlobni tok v določeni smeri. Vsota svetilnosti v vseh smereh je enaka svetlobnemu toku. dφ I = d Ω
8 Svetilnost dφ I = d Ω Candela (cd) je osnovna enota SI in je enaka svetilnosti, ki jo v izbrani smeri seva vir z močjo 1/683 W in valovno dolžino 555 nm (poenostavljena definicija). Svetilnost Svetilnost je odvisna od izbrane smeri, zato jo podajamo v polarnih diagramih. Svetilnost Nekaj karakterističnih vrednosti: Sveča 0,6 do 1,0 cd Navadna žarnica 100W 110 cd Natrijeva visokotlačna sijalka 70W 500 cd Sonce (zunaj atmosfere) cd
9 Osvetljenost Osvetljenost (Illuminance) je merilo za količino svetlobnega toka, ki pada na neko ploskev. E lux (lx) E = dφ da 1. osnovni zakon svetlobe Zakon 1/r 2 ali fotometrični zakon oddaljenosti Energija, ki jo seva vir, je konstantna, ker pa površina z razdaljo od vira narašča z kvadratom razdalje, gostota energije na površino pada z kvadratom razdalje od vira. Gostota energije je torek obratno sorazmerna kvadratu razdalje od vira. I E = 2 r 1. osnovni zakon svetlobe Zakon 1/r 2 ali fotometrični zakon oddaljenosti Velja samo za točkaste vire (razdalja>5 velikost)
10 2. osnovni zakon svetlobe Kosinusni zakon Energija, ki pade na ploskev, ki ni pravokotna na smer sevanja je enaka energiji, ki bi končala na pravokotni ploskvi pomnoženi z kosinusom kota nagnjenosti: E = E 0 cos θ Osvetljenost Osvetljenost je veličina, ki jo največkrat računamo ali merimo. Tudi predpisi, ki obravnavajo razsvetljavo, podajajo potrebne osvetljenosti v prostorih. Osvetljenost Poznamo več vrst osvetljenosti: horizontalno, vertikalno, prostorsko, cilindrično, vektorsko,...
11 Osvetljenost Nekaj karakterističnih vrednosti: Travnik ob jasnem poletnem dnevu ob 12:00: lx Travnik v senci drevesa lx Namizna površina v pisarni 500 lx Žarnica moči 100W na razdalji 1m 110 lx Cesta razsvetljena s cestno razsvetljavo: 3 lx Travnik v mesečini 0,05 lx Svetlost L (cd/m 2 ) Svetlost (luminance) je merilo za občutek, ki ga neka površina povzroča v naših očeh (temno - svetlo). Je edina svetlobno tehnična veličina, ki jo lahko ocenimo z očmi. Svetlost Svetlost je definirana s sledečo enačbo: 2 d Φ L = da cosγ dω γ dω da cos γ dφ Pri tem je dφ del svetlobnega toka v prostorskem kotu dω. da je del površine tega snopa, ki vsebuje izbrano točko in γ kot med normalo te ploskve in smerjo snopa.
12 di L = da cosγ Svetlost Enačba se da preoblikovati v: kadar je opazovana točka del ploskve, ki sveti s podano svetilnostjo; de L = cosγ dω kadar je opazovana točka del ploskve, ki je osvetljena. Svetlost Nekaj karakterističnih vrednosti: Sonce kcd/m 2 Navadna žarnica (prozoren balon) kcd/m 2 Fluorescenčna sijalka 10 kcd/m 2 Sveča 8 kcd/m 2 Luna 2,5 kcd/m 2 Stena sobe osvetljena z električno razsvetljavo: 0,04 kcd/m 2 Medsebojna povezanost fotometričnih veličin Svetlobni tok Φ (lm) : Ω Svetilnost I (cd) : r 2 : A : A Osvetljenost E (lx) : Ω Svetlost L (cd/m 2 )
13 Medsebojna povezanost fotometričnih veličin Kaj, kako in s čim merimo SI sistem enot definira enoto za svetilnost I (cd) Veličino predstavimo z normalo. Merilnike se umerja tako, da jih primerjamo z normalo enote. Candela Definicija candele 1 candela (cd) je svetilnost v določeni smeri vira z monokromatsko svetlobo frekvence 540 x Hz, ki ima jakost sevanja v tej smeri 1/683 W.
14 Fotometrične normale - candela Prve normale za candelo so bile sveče. Ime candela namreč izvira iz besede candle (sveča). Fotometrične normale - candela Ker je svečo težko vsakič narediti enako, so se kasneje odločili za petrolejko imenovano Hefnerjeva svetilka (Hefner- Alteneck 1884). Fotometrične normale - candela Naslednji korak so bile električne žarnice. Ker pa tudi te niso bile popolnoma zanesljive, so se odločili za normalo, temelječo na sevanju črnega telesa.
15 Fotometrične normale - candela Leta 1933 so se dogovorili, da bo nova normala temeljila na svetlobnem sevanju črnega telesa pri temperaturi strjevanja platine (2045 K). B črno telo (Thorijev oksid) Pt platina K talilna posoda (Th. oksid) Fotometrične normale - candela Danes se take normale, temelječe na viru sevanja (črnem telesu) le redko še uporabljajo. Uveljavile so se normale, temelječe na merilniku. Kot merilni element se lahko uporablja silicijeva fotodioda in pa kriogenski radiometer. Fotometrične normale - Lumen Večina normal za svetlobni tok je danes izvedenih kot posebne žarnice ali fluorescentne cevi. Pri slednjih je potrebno uporabljati ustrezno umerjeno predstikalno napravo
16 Fotometrične normale - lux Posebne normale za osvetljenost ni. Uporabljajo se ustrezno umerjeni precizijski merilniki osvetljenosti (lux-metri) Fotometrične normale - cd/m 2 Normala za svetlost je narejena iz krogle v kateri je posebna žarnica. En del plašča krogle je nadomeščen s posebno, za svetlobo ustrezno prepustno, snovjo. Definirana svetlost je nanaša na sredinski del tega okenca S čim merimo (smo merili) svetlobo Včasih so se fotometrične meritve izvajale na fotometrični klopi...
17 S čim merimo (smo merili) svetlobo pri čemer so bile za fotometer uporabljene oči merilca. Na primer: meritev svetilnosti Meritev svetilnosti neznanega vira se lahko izvede s pomočjo fotometrične klopi, vira z znano svetilnostjo in fotometra: Neznana svetilnost se izračuna na podlagi fotometričnega zakona oddaljenosti ( 1/r 2 zakona) iz: I x I = r n 2 r 2 x n Fotoelement Danes za merjenje svetlobe uporabljamo foto-napetostne celice, ki svetlobo pretvarjajo v električno energijo. Če je kratko sklenjena je tok proporcionalen osvetljenosti.
18 Fotoelement Dve glavni pomankljivosti fotoelementa sra: njegova spektralna občutljivost je drugačna od spektralne občutljivosti človeških oču; kotna odvisnost ne gre po kosinusnem zakonu. Fotoelement - spektralna občutljivost Za prilagoditev spektralni občutljivosti očesa lahko uporabimo: polni filter, pasovni filter ali spektralno šablono. Fotoelement - spektralna občutljivost Največji pogrešek se pri merilnikih osvetljenosti pojavi ravno zaradi neprilagojenosti na V(λ)
19 Fotoelement cosinusna korekcija Tudi kotno občutljivost se da ustrezno popraviti (motno steklo, šablone..), tako da ustreza kosinusnem zakonu. dufuzor (opalno steklo) črn tubus Hartig-ov design fotoelement Keitz-ov design difuzor (opalno steklo) črn tubus Reeb-ov design fotoelement Fotoelement - temperaturna odvisnost Fotoelementi so temperaturno odvisni: M ( ϑ) f kadmijev-sulfid: 5%/K, 6 = 1 M ( ϑ0 ) selen: 0,5%/K, ΔY 1 α = 100 silicij: 0,1%/K. Y ( ϑ 0 ) Δϑ Referenčna temperatura pri umerjanju fotoelementov je 25 C. Da se izognemo pogreškom so fotoelementi lahko termostatizirani - zaprti v ohišje s konstantno temperaturo (običajno 30 C). Pogrešek lux-metra Pogrešek lux-metra se izraža kot celotni pogrešek, ki pa je sestavljen iz večih pogreškov. Največje vrednosti celotnega pogreška so: razred C: f cel = 20% razred B: f cel = 10% razred A: f cel = 5% razred L: f cel = 3%
20 Pogrešek lux-metra Celoten pogrešek je sestavljen iz: f 1 : pogrešek prilagoditve krivulji V(λ) f 2 : pogrešek smerne odvisnosti f 3 : pogrešek linearnosti f 4 : pogrešek kazalnika f 5 : pogrešek utrujanja f 6 : pogrešek temperaturne odvisnosti f 7 : pogrešek časovno spremenljive svetlobe Pogrešek lux-metra Celoten pogrešek je sestavljen iz: f 8 : pogrešek polarizacije f 9 : pogrešek neenakomerne osvetlitve f 11 : pogrešek preklapljanja merilnih področij občutljivost v UV področju občutljivost v IR področju... Pogrešek lux-metra Standardi poleg največje dovoljene vrednosti celotnega pogreška za posamezen razred inštrumenta navajajo tudi največje dovoljene vrednosti posameznih pogreškov! f 1 : C: 9%, B: 6%, A: 3%, L: 1,5% f 3 : C: 5%, B: 2%, A: 1%, L: 0,2%
21 Fotometrične glave Danes so na voljo različne vrste fotoelementov ( fotometričnih glav, merilnih celic). Ločimo jih po velikosti merilne površine, korekciji glede na spektralno občutljivost oči, korekciji glede na smer vpada svetlobe (kosinusna korekcija), temperaturni stabiliziranosti in razredu točnosti. Merilnik osvetljenosti Za merjenje osvetljenosti uporabljamo lux-meter. Sestavljen je iz merilne glave (fotocelice) in dela za prikaz izmerjene vrednosti. Merilnik osvetljenosti Laboratorijski luxmeter omogoča uporabo različnim merilnih glav.
22 Meritev ostalih fotometričnih veličin Za meritev ostalih fotometričnih veličin: svetilnost, svetlobni tok in svetlost Uporabljamo merilne naprave, ki prav tako temeljijo na fotoelementu (torej meritvi osvetljenosti) ter na fizikalnih povezavah med veličinami. Meritev svetilnosti Svetilnost neznanega vira merimo na fotometrični klopi, merimo osvetljenost in razdaljo iz česar lahko izračunamo svetilnost. Meritev kotne porazdelitve svetilnosti Kotna porazdelitev svetilnosti se meri s posebnimi merilnimi napravami - goniofotometri.
23 Merilnik svetlosti Tudi svetlost se danes meri preko meritve osvetljenosti. Uporablja se posebne, kameri podobne, merilnike ki z optičnim sistemom leč omejijo svetlobni snop, ki pade na merilno fotocelico. Merilnik svetlosti 1..objektiv 2..zaslonka 3..leča merilnega polja 4..zaslonka merilnega polja 5..nastavitev zaslonke 6..V(λ) filter 7..fotoelement 8..zrcalni sistem 9..notranji prikazovalnik 10..okular Merilnik svetlosti Z merilnikom merimo povprečno svetlost predmetov, ki se nahajajo znotraj določenega prostorskega kota. Merilni koti se podajajo v stopinjah projekcije prostorskega kota na vertikalno ali horizontalno ravnino. Običajno se uporabljajo merilni koti: 3, 1, 20 in 6
24 Merilnik svetlobnega toka Za merjenje svetlobnega toka uporabljamo fotometrične ali integracijske krogle. Merjeni vir zapremo v kroglo, katere notranje stene imajo znano odbojnost. Merilnik svetlobnega toka Svetlobni tok je možno izračunati tudi iz izmerjene kotne porazdelitve svetilnosti okoli vira oziroma iz izmerjene osvetljenosti na površini (namišljene) krogle okoli svetlobnega vira. 2 Φ = 2π r E( γ )sinγ dγ Ω0 Kaj danes merimo? Meritve osvetljenosti: meritve osvetljenosti notranjih prostorov meritve osvetljenosti delovnega mesta meritve osvetljenosti zunanjih površin meritve osvetljenosti z varnostno razsvetljavo
25 Kaj danes merimo? Meritve svetlobnega toka: meritve svetlobnega toka svetlobnih virov (proizvajalci virov) meritve svetlobnega toka svetilk (proizvajalci svetilk) Kaj danes merimo? Meritve svetilnosti: meritve svetilnosti virov (proizvajalci virov) meritve kotne porazdelitve svetilnosti virov (proizvajalci virov) meritve kotne porazdelitve svetilnosti svetilk (proizvajalci svetilk) Kaj danes merimo? Meritve svetlosti: meritve svetlosti prometnih površin meritve svetlosti površin v notranjih prostorih (bleščanje) meritve svetlosti osvetljenih zunanjih površin (uredba o svetlobnem onesnaženju nočnega neba)
26 Za konec Fotometrične veličine so določene s pomočjo spektralne občutljivosti očesa. Poznamo 4 glavne fotometrične veličine: svetlobni tok, svetilnost, osvetljenost in svetlost. Meritev fotometričnih veličin temelji na uporabi foto-celice, ki pa mora biti ustrezno prilagojena spektralni občutljivosti človeškega očesa. in še: Vprašanja?
Fotometrija mersko vrednotenje svetlobe
Fotometrija mersko vrednotenje svetlobe Svetloba kot del EM spektra Pri fotometriji svetlobo obravnavamo kot del elektromagnetnega spektra, ki se nahaja med mikrovalovi in rentgenskimi žarki. Ima pa tudi
Διαβάστε περισσότεραFotometrija mersko vrednotenje svetlobe
EDC Kranj - višja strokovna šola Kumunala Javna razsvetljava Fotometrija mersko vrednotenje svetlobe 4. poglavje predavatelj doc. dr. Grega Bizjak, u.d.i.e. Javna razsvetljava: Fotometrija 2 Svetloba kot
Διαβάστε περισσότεραFizikalne osnove svetlobe in fotometrija
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Fizikalne osnove svetlobe
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Διαβάστε περισσότεραFunkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Διαβάστε περισσότεραDiferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Διαβάστε περισσότεραPONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Διαβάστε περισσότεραKODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Διαβάστε περισσότεραTretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Διαβάστε περισσότεραOsnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Διαβάστε περισσότεραPRAKTIKUM RAZSVETLJAVA
Univerza v Ljubljani Fakulteta za elektrotehniko PRAKTKUM ZA PREDMET RAZSVETLJAVA Študent(ka): Študijsko leto poslušanja: 010/11 Datum pregleda vaj: Predlagana ocena vaj: Podpis ocenjevalca: Pripravila:
Διαβάστε περισσότεραS53WW. Meritve anten. RIS 2005 Novo Mesto
S53WW Meritve anten RIS 2005 Novo Mesto 15.01.2005 Parametri, s katerimi opišemo anteno: Smernost (D, directivity) Dobitek (G, gain) izkoristek (η=g/d, efficiency) Smerni (sevalni) diagram (radiation pattern)
Διαβάστε περισσότεραFizikalne osnove svetlobe
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo Izbirni predmet - 10142 Svetlobna tehnika Fizikalne osnove svetlobe predavatelj prof. dr. Grega Bizjak, u.d.i.e.
Διαβάστε περισσότεραIntegralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Διαβάστε περισσότεραGimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Διαβάστε περισσότεραVaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje
Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,
Διαβάστε περισσότεραZAPISKI PREDAVANJ IZ PREDMETA RAZSVETLJAVA. Andrej Orgulan
ZAPISKI PREDAVANJ IZ PREDMETA RAZSVETLJAVA Andrej Orgulan Zbrano gradivo je nastalo na osnovi predavanj pri predmetu Razsvetljava na visokošolskem strokovnem študiju na Fakulteti za elektrotehniko, računalništvo
Διαβάστε περισσότεραSKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Διαβάστε περισσότεραUniverza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled
Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q
Διαβάστε περισσότερα1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Διαβάστε περισσότεραKontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Διαβάστε περισσότεραIZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Διαβάστε περισσότεραKotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Διαβάστε περισσότεραKotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
Διαβάστε περισσότεραCO2 + H2O sladkor + O2
VAJA 5 FOTOSINTEZA CO2 + H2O sladkor + O2 Meritve fotosinteze CO 2 + H 2 O sladkor + O 2 Fiziologija rastlin laboratorijske vaje SVETLOBNE REAKCIJE (tilakoidna membrana) TEMOTNE REAKCIJE (stroma kloroplasta)
Διαβάστε περισσότερα1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Διαβάστε περισσότεραPoglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
Διαβάστε περισσότεραProjektiranje cestne razsvetljave
EDC Kranj - višja strokovna šola Kumunala Javna razsvetljava Projektiranje cestne razsvetljave 8. poglavje predavatelj doc. dr. Grega Bizjak, u.d.i.e. Javna razsvetljava: Projektiranje cestne razsvetljave
Διαβάστε περισσότεραNumerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Διαβάστε περισσότερα8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Διαβάστε περισσότεραVarnostna razsvetljava
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Varnostna razsvetljava predavatelj
Διαβάστε περισσότεραRazsvetljava z umetno svetlobo
Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Razsvetljava Razsvetljava z umetno svetlobo predavatelj
Διαβάστε περισσότεραEnergijska bilanca. E=E i +E p +E k +E lh. energija zaradi sproščanja latentne toplote. notranja energija potencialna energija. kinetična energija
Energijska bilanca E=E i +E p +E k +E lh notranja energija potencialna energija kinetična energija energija zaradi sproščanja latentne toplote Skupna energija klimatskega sistema (atmosfera, oceani, tla)
Διαβάστε περισσότεραDelovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Διαβάστε περισσότεραEnergijska bilanca Zemlje. Osnove meteorologije november 2017
Energijska bilanca Zemlje Osnove meteorologije november 2017 Spekter elektromagnetnega sevanja Sevanje Osnovne spremenljivke za opis prenosa energije sevanjem: valovna dolžina - λ (m) frekvenca - ν (s
Διαβάστε περισσότεραSLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4)
Naše oko zaznava svetlobo na intervalu valovnih dolžin približno od 400 do 800 nm. Odvisnost očesne občutljivosti od valovne dolžine je različna od človeka do človeka ter se spreminja s starostjo. Največja
Διαβάστε περισσότεραDržavni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Διαβάστε περισσότερα7 Lastnosti in merjenje svetlobe
7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine in izmeri gostoto
Διαβάστε περισσότεραVideo tehnologija. Video tehnologija. Gradniki video sistemov. Seminarske naloge
Video tehnologija Video tehnologija 1. Uvod elektronski zajem, shranjevanje, prenos in reprodukcija slik in gibljivih slik TV in prikazovalniki z osebnimi računalniki fizikalne osnove svetloba, barve,
Διαβάστε περισσότεραStatistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo
Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki
Διαβάστε περισσότεραNEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Διαβάστε περισσότεραΦωτοµετρικά µεγέθη πολική κατανοµή φωτοβολίας
Ο8 ωτοµετρικά µεγέθη πολική κατανοµή φωτοβολίας 1. Σκοπός Σκοπός της άσκησης είναι αφ ενός η κατανόηση βασικών µεγεθών και νόµων της φωτοµετρίας και αφ ετέρου η µέτρηση της πολικής κατανοµής της φωτοβολίας
Διαβάστε περισσότεραBooleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Διαβάστε περισσότεραVarnostna razsvetljava
Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Razsvetljava Varnostna razsvetljava predavatelj prof.
Διαβάστε περισσότεραKAZALO 1 UVOD KAJ JE SVETLOBA Sonce kot izvor naravne svetlobe Kako zaznamo svetlobo? Kaj so barve in kako jih zaznamo?...
SVETLOBA IN BARVE KAZALO 1 UVOD... 1 2 KAJ JE SVETLOBA... 1 3 Sonce kot izvor naravne svetlobe... 2 4 Kako zaznamo svetlobo? Kaj so barve in kako jih zaznamo?... 4 5 Barvni prostori... 6 5.1 CIE 1931 XYZ
Διαβάστε περισσότεραMerjenje temperature
Merjenje temperature Primarne standardne temperature Mednarodna temperaturna skala iz leta 1948 predstavlja osnovo za eksperimentalno temperaturno skalo. Osnovo omejene skale predstavlja šest primarnih
Διαβάστε περισσότεραp 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
Διαβάστε περισσότεραKVANTNA FIZIKA. Svetloba valovanje ali delci?
KVANTNA FIZIKA Proti koncu 19. stoletja je vrsta poskusov kazala še druga neskladja s predvidevanji klasične fizike, poleg tistih, ki so vodila k posebni teoriji relativnosti. Ti pojavi so povezani z obnašanjem
Διαβάστε περισσότερα*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Διαβάστε περισσότεραmatrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Διαβάστε περισσότεραTabele termodinamskih lastnosti vode in vodne pare
Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net
Διαβάστε περισσότερα7 Lastnosti in merjenje svetlobe
7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine, katere valovne
Διαβάστε περισσότεραSvetlobni viri in svetilke
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Svetlobni viri in svetilke
Διαβάστε περισσότεραNAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU
NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.
Διαβάστε περισσότεραDržavni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
Διαβάστε περισσότεραSvetilke. Svetilke. Naloge svetilke
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo Izbirni predmet - 10142 Svetlobna tehnika Svetilke predavatelj prof. dr. Grega Bizjak, u.d.i.e. Svetilke Svetilka
Διαβάστε περισσότεραMatematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Διαβάστε περισσότεραTransformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Διαβάστε περισσότεραKvantni delec na potencialnem skoku
Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:
Διαβάστε περισσότεραMAGNETNI PRETOK FLUKS
MGNETNI PRETOK FLUKS Equation Section 4 Vsebina poglavja: Določitev magnetnega pretoka, brezizvornost magnetnega polja, upodobitev polja z gostotnicami, induktivnost, lastna induktivnost, magnetni sklep.
Διαβάστε περισσότεραVaje: Električni tokovi
Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότεραMERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
Διαβάστε περισσότερα13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Διαβάστε περισσότεραGimnazija Ptuj. Mikroskop. Referat. Predmet: Fizika. Mentor: Prof. Viktor Vidovič. Datum: Avtor: Matic Prevolšek
Gimnazija Ptuj Mikroskop Referat Predmet: Fizika Mentor: Prof. Viktor Vidovič Datum: 14. 3. 2010 Avtor: Matic Prevolšek Kazalo Opis mikroskopa 3 Povečava mikroskopa 5 Zgradba mikroskopa Ločljivost mikroskopa
Διαβάστε περισσότεραLogatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
Διαβάστε περισσότεραODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI
ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI Spoznavanje osnovnih vlakensko-optičnih (fiber-optičnih) komponent, Vodenje svetlobe po optičnem vlaknu, Spoznavanje načela delovanja in praktične uporabe odbojnostnega
Διαβάστε περισσότερα3.letnik - geometrijska telesa
.letnik - geometrijska telesa Prizme, Valj P = S 0 + S pl S 0 Piramide, Stožec P = S 0 + S pl S0 Pravilna -strana prizma P = a a + av 1 Pravilna -strana prizma P = a + a a Pravilna 6-strana prizma P =
Διαβάστε περισσότεραPROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Διαβάστε περισσότεραVEKTORJI. Operacije z vektorji
VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,
Διαβάστε περισσότεραLaboratorij za termoenergetiko. Vodikove tehnologije
Laboratorij za termoenergetiko Vodikove tehnologije Pokrivanje svetovnih potreb po energiji premog 27% plin 22% biomasa 10% voda 2% sonce 0,4% veter 0,3% nafta 32% jedrska 6% geoterm. 0,2% biogoriva 0,2%
Διαβάστε περισσότεραMerjenje jakosti glavobola
Merjenje jakosti glavobola Seminarska naloga pri predmetu Kompleksni merilni sistemi Avtor: Katja Mihalič Mentor: prof. dr. Janko Drnovšek Ljubljana, januar 2017 Vsebina 1. Uvod... 3 2. Identifikacija
Διαβάστε περισσότεραMATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Διαβάστε περισσότεραIzpitna vprašanja za prvi del izpita (1. kolokvij)
TEHNIŠKE MERTIVE Izpitna vprašanja za prvi del izpita (1. kolokvij) 1. Osnovni pravili merjenja. Merjena veličina mora biti nedvoumno definirana; pri fizikalnih veličinah to vedno velja. Referenčna veličina
Διαβάστε περισσότεραDISKRETNA FOURIERJEVA TRANSFORMACIJA
29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,
Διαβάστε περισσότερα1. kolokvij iz predmeta Fizika 2 (VSŠ)
0 0 0 4 2 5 9 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: 1. kolokvij iz predmeta Fizika 2 (VSŠ) 4.4.2013 1. Kolikšen je napetost med poljubno
Διαβάστε περισσότερα1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
Διαβάστε περισσότεραPisni izpit iz predmeta Fizika 2 (UNI)
0 0 0 0 3 4 0 0 0 0 0 0 5 Pisni izpit iz predmeta Fizika (UNI) 301009 1 V fotocelici je električni tok posledica elektronov, ki jih svetloba izbija iz negativne elektrode (katode) a) Kolikšen električni
Διαβάστε περισσότεραSlika 1.120: Frekvenčne omejitve za različne fotopretvornike. Slika 1.121: Diagram relativnih občutljivosti v primerjavi s spektralno emisijo žarnice
Optoelektronske komponente 1.7 OPTOELEKTRONSKE KOMPONENTE Splošno Foto-električni efekt je pojav, pri katerem svetloba vpliva ali spremeni fizikalne oz. kemične lastnosti neke snovi. V kolikor je komponenta
Διαβάστε περισσότερα3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.
3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti
Διαβάστε περισσότεραCM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
Διαβάστε περισσότεραPolarizacija laserske svetlobe
Polarizacija laserske svetlobe Optični izolator izvedba z uporabo λ/4 retardacijske ploščice Odboj polarizirane svetlobe na meji zrak-steklo; Brewster-ov kot Definicija naloge predstavitev teoretičnega
Διαβάστε περισσότεραPOROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
Διαβάστε περισσότεραFunkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
Διαβάστε περισσότεραProjektiranje notranje razsvetljave
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Projektiranje notranje razsvetljave
Διαβάστε περισσότερα3. Merski sistemi M3-1
3. Merski sistemi To je celota, ki jo sestavljajo: sistemi veličin, sistemi merskih enot in etalonov. Poznamo merske sisteme: mehanike (CentimeterGramSekunda; MKS), elektromagnetike (1901 G. Giorgi predlaga:
Διαβάστε περισσότεραIZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Διαβάστε περισσότεραizr. prof. dr. Ciril Arkar, asis. dr. Tomaž Šuklje, asis mag. Suzana Domjan
Gradbena fizika 2016/2017 Predavanja: Vaje vodijo: prof. dr. Sašo Medved Univerza v Ljubljani, Fakulteta za strojništvo Aškerčeva 6; dvoriščna stavba DS N3 saso.medved@fs.uni-lj.si izr. prof. dr. Ciril
Διαβάστε περισσότεραSvetlobni merilniki odbojnosti
13. Seminar Optične Komunikacije Laboratorij za Sevanje in Optiko Fakulteta za Elektrotehniko Ljubljana, 1. - 3. februar 2006 Svetlobni merilniki odbojnosti Matjaž Vidmar Seznam prosojnic: Slika 1 Meritev
Διαβάστε περισσότεραmerjenje energetskih strojev in naprav termovizija 1 Merjenje temperature s termovizijskimi kamerami
merjenje energetskih strojev in naprav termovizija 1 Merjenje temperature s termovizijskimi kamerami merjenje energetskih strojev in naprav termovizija 2 Uvod Termovizija je postopek, ki omogoča brezdotikalno
Διαβάστε περισσότεραPodobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
Διαβάστε περισσότερα- Geodetske točke in geodetske mreže
- Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano
Διαβάστε περισσότερα1. kolokvij iz predmeta Fizika 2 (UNI)
0 0 0 2 7 1 5 0 0 0 0 0 9 vpisna št: 1 kolokvij iz predmeta Fizika 2 (UNI) 16042010 1 Kvadratni žičnati okvir s stranico 2 cm in upornostjo 007 Ω se enakomerno vrti okoli svoje diagonale tako da naredi
Διαβάστε περισσότεραIzpit iz predmeta Fizika 2 (UNI)
0 0 0 4 1 4 3 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: Izpit iz predmeta Fizika 2 (UI) 26.1.2012 1. Svetloba z valovno dolžino 470 nm pada
Διαβάστε περισσότερα