Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο 1 ο -Εισαγωγικά 1. Εισαγωγικά. Σήµατα γενικά είναι µεταβλητές που µεταφέρουν κάποια πληροφορία

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο 1 ο -Εισαγωγικά 1. Εισαγωγικά. Σήµατα γενικά είναι µεταβλητές που µεταφέρουν κάποια πληροφορία"

Transcript

1 Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά. Γενικά Εισαγωγικά Σήµατα γενικά είναι µεταβλητές που µεταφέρουν κάποια πληροφορία Χαρακτηριστικά σήµατα είναι :! Φωνή! Μουσική! Βιοϊατρικα (εγκεφαλογραφήµατα κλπ)! Σεισµικά Ανάλογα µε την περίπτωση σε άλλες περιπτώσεις θέλουµε ενίσχυση η/και εξαγωγή της πληροφορίας ενώ σε άλλες θέλουµε εξασθένηση ή/και απόρριψη. Η διάκριση µεταξύ χρήσιµης και άχρηστης πληροφορίας εξαρτάται από την συγκεκριµµένη περίπτωση. Η επεξεργαστές των σηµάτων είναι είτε αναλογικοί είτε ψηφιακοί. Τα σήµατα που συναντάµε στη φύση είναι αναλογικά δηλ. η τιµή τους µεταβάλλεται συνεχως στο χρόνο και στο πλάτος µέγεθος. Αυτά τα σήµατα επεξεργάζονται µε ηλεκτρικά κυκλώµατα που αποτελούνται από ενεργά (tranitor κλπ) και παθητικά (R,L,C) στοιχεία. Αυτοί είναι αναλογικοί επεξεργαστές και κλασσικό παράδειγµα αποτελεί ο δέκτης ραδιοφώνου ή τηλεόρασης. Εάν όµως η επεξεργασία των γίνει µε ψηφιακά κυκλώµατα δηλαδή αθροιστές, πολλαπλασιαστές, καταχωρητές κλπ. Τότε µιλάµε για ψηφιακούς επεξεργαστές. Στην περίπτωση όµως αυτή τα σήµατα πρέπει να µετατραπούν σε µορφή κατάλληλη για ψηφιακο υλικό. Η µορφή αυτή είναι το ψηφιακό σήµα και το βασικό στοιχείο του είναι ότι παίρνει διακριτές και πεπερασµένες τιµές σε συγκεκριµµένες και όχι ολες τις στιγµές του χρόνου. Εποµένως µπορεί να παρασταθεί µε δυαδικούς αριθµούς (binary number bit). Οι ψηφιακές λειτουργίες µπορούν να κατηγοριοποιηθούν σε δύο κλάσεις: Ανάλυση σήµατος και φιλτράρισµα σήµατος Στην ανάλυση γίνεται µέτρηση των διαφόρων ιδιοτήτων του σήµατος. Μερικές εφαρµογές είναι φασµατική ανάλυση

2 Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά αναγνώριση οµιλίας εύρεση χαρακτηριστικών καρδιογραφήµατος κλπ Στο φιλτράρισµα γίνεται τροποποίηση του σήµατος, όπως ενίσχυση ή εξασθένιση διαφόρων συχνοτήτων. Χαρακτηριστικές εφαρµογές είναι: καταστολή θορύβου διαχωρισµός φασµατικών ζωνών απαλλαγή από παρεµβολές κλπ Ο Ψηφιακός επεξεργαστής (Digital Signal Proceor DSP) περιλαµβάνει διάφορα στάδια που σχηµατικά µπορούν να παρασταθούν στο επόµενο διάγραµµα (σχήµα.) Αναλογικό σήµα Prefilter ADC DSP DAC Potfilter Αναλογικό σήµα Σχήµα. Ένα πλήρες σύστηµα Ψηφιακής επεξεργασίας σήµατος Στο σχήµα αυτό:! Prefilter υποδηλώνεται µία διαδικασία αντιαλλοιωσης που γίνεται µε ένα βαθυπερατό αναλογικό φίλτρο.! ADC analog to digital converter, µετατρέπει το αναλογικό σήµα σε ψηφιακό! DSP είναι η καρδιά του ψηφιακού επεξεργαστή, και µπορεί να είναι ένας επεξεργαστής γενικής χρήσεως ή ψηφιακό υλικό κλπ.! DAC Digital to analog convertor, Eκτελεί την αντίστροφη διαδικασία από τον ADC και αναπαράγει από το ψηφιακό σήµα ένα σηµα συνεχούς χρόνου που συνήθως έχει µία "κλιµακωτή µορφή" και που στη συνέχεια θα γίνει ένα αναλογικό σήµα.! Potfilter Αυτό το αναλογικό φίλτρο "λειαίνει" το σήµα εισόδου και από την κλιµακωτή µορφή που είχε γίνεται ένα κανονικό αναλογικό σήµα Η δοµή του ψηφιακού επεξεργαστή φαίνεται ότι είναι αρκετά πολύπλοκη. Αντίστοιχα ένας αναλογικός επεξεργαστής θα περιελαµβανε ένα µόνο τµήµα και εποµένως είναι πολύ απλούστερος. Η χρησιµοποίηση όµως ψηφιακής τεχνολογίας επεξεργαστών ενδείκνυται και έχει επικρατήσει για τους εξής λόγους:

3 Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά 3! Συστήµατα που χρησιµοποιούν ψηφιακούς επεξεργαστές αναπτύσονται µε λογισµικό που "τρέχει" σε ένα υπολογιστή γενικής χρήσεως. Εποµένως δεν χρειάζεται ειδικό ψηφιακό υλικό ψηφιακά κυκλώµατα.! Οι πράξεις στους ψηφιακούς επεξεργαστές είναι προσθέσεις και πολλαπλασιασµοί και για τον λόγο αυτό η διαδιακασία είναι εξαιρετικά ευσταθής. Πχ. δεν επηρεάζεται από την θερµοκρασία ή την ανοχή των στοιχείων.! Οι ψηφιακές λειτουργίες µπορούν να τροποποιηθούν σε πραγµατικό χρόνο χωρίς να απαιτείται µεταβολή των στοιχείων κλπ.! Το κόστος των ψηφιακών επεξεργαστών είναι εξαιρετικά χαµηλό λόγω της τεχνολογίας ολοκλήρωσης υψηλής κλίµακας (VLSI) Πέρα των ανωτέρω πλεονεκτηµάτων οι ψηφιακοί επεξεργαστές έχουν ένα βασικό µειονέκτηµα: την χαµηλή ταχύτητα εκτέλεσης των πράξεων ειδικά σε σήµατα υψηλής συχνότητας. Τα στάδια που περιγράφονται στο παραπάνω σχήµα. εκτός (αυτού που αναφέρεται στο DSP) θα µας απασχολήσουν στη συνέχεια του κεφαλαίου αυτού. Ιδιαίτερη προσοχή θα δοθεί στη διαδικασία δειγµατοληψίας και ανακατασκευής του (αναλογικού) σήµατος. Το τµήµα που αναφέρεται στο DSP θα µας απασχολήσει ουσιαστικά στο υπόλοιπο τµήµα του βιβλίου αυτού.. ειγµατοληψία Η δειγµατοληψία του αναλογικού σήµατος αποτελεί το πρώτο και το ουσιαστικώτερο βήµα στην διαδικασία της ψηφιοποίησης. Στο σχ.. η διαδικασία αυτή εµπεριέχεται στο τµήµα ΑDC. Θα δούµε στο σηµείο αυτό την διαδικασία της δειγµατοληψίας και τις συνέπειες που έχει στο αναλογικό σήµα. Η µελέτη θα γίνει µε τον µετασχηµατισµό Fourier όπως ορίσθηκε για αναλογικά σήµατα και συνδέει τον αναλογικό µε τον ψηφιακό χώρο. ΕΝ θα αναφερθούµε στα επόµενα κεφάλαια πάλι στον µετασχ. Fourier για αναλογικά σήµατα και κάθε αναφορά στο πεδίο των συχνοτήτων θα σχετίζεται µε το διακριτό µετασχηµατισµό Fourier όπως θα ορισθεί στο κεφ.3 (DTFT) και που είναι βέβαια συµβατός µε τα προηγούµενα Ενα αναλογικό σήµα x(t) µετατρέπεται στο δειγµατοληπτηµένο x * (t) άν πολλαπλασιαστεί µε µία παλµοσειρά δ (t) (Σχήµα.).

4 Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά 4 δ (t) x(t) x*(t)=x(t). δ (t) Σχήµα. Η πράξη της δειγµατοληψίας Θεωρούµε συνήθως ότι η παλµοσειρά αποτελείται απο παλµούς πολύ µικρού πλάτους ώστε να θεωρούνται συναρτήσεις δ(t). + k=_ δ (t) = δ(t - kt ) (.) δ T T (α) (β) Χ(jΩ) Α Χ (jω) Α/Τ Ω Ø Ω Ø Ω Ø Ω Ω (γ) (δ) Σχήµα.3 ειγµατοληψία: Το σήµα x(t) έχει φάσµα X(jΩ) (γ). Oταν δειγµατοληπτηθεί από την δ (α), γίνεται το σήµα x * (t) (β) και έχει φάσµα Χ * (jω) (δ) που είναι άπειρες επαναλήψεις του αρχικού φάσµατος. Η παλµοσειρά αυτή φαίνεται στο σχήµα.3α. Για το σήµα x * (t) ισχύει: x * (t)=x(t) δ (t) Εποµένως: + + * x (t) = x(t) δ(t - kt ) = x(t) δ(t - kt ) = x(kt ) δ(t - kt ) (.)

5 Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά 5 Η σχέση αυτή δειχνει ότι το δειγµατοληπτηµένο σήµα x * (t) έχει τιµή µόνο τις χρονικές τιµές kt. Το σήµα x * (t) δεικνύεται στο σχήµα.3β Ας δούµε στη συνέχεια τι γίνεται στο πεδίο των συχνοτήτων µε τα δύο αυτά σήµατα: * * X (jω) = I{x (t)} = I{x(t)δ (t)} = I{x(t) + - Ck I{x(t)e jkωt + }= - - C e Ck X(jΩ - jk Ω) k jωkt } = (.3) όπου X(jΩ)=I{ x(t)} και Ω =π/τ Η τελευταία αυτή σχέση δείχνει ότι το δειγµατοληπτηµένο σήµα x * (t) έχει ένα φάσµα που παρουσιάζει επαναληπτικότητα. ηλαδή εάν το x(t) έχει φάσµα πλάτους όπως αυτό του σχ..3γ τότε το x * (t) έχει το φάσµα πλατους του σχήµατος.3δ περιέχει δηλαδή εκτός από την βασική ζώνη συχνοτήτων (k=) και ένα άπειρο πλήθος ζωνών µε περίοδο ω και πλάτος ανάλογο του C k που στην περίπτωση της δ είναι ίσον προς /Τ. Εάν η δειγµατοληψία δεν γίνεται µε την δ (t) αλλά µε µια παλµοσειρά πεπερασµένου πλάτους τότε το πλάτος αυτό των ζωνών έχει µία έξασθένηση της µορφής ηµ x/x. Η παραπάνω σχέση (.3) φέρεται µε την ονοµασία σχέση αλλοίωσης (aliaing formula), και ερµηνεύει όλα τα φαινόµενα που παρατηρούνται στη διαδικασία δειγµατοληψίας. Η σχέση (.3) είναι πολύ βασική στη σύνδεση του αναλογικού µε το ψηφιακό σήµα. Ουσιαστικά ο µεσχηµατισµός Fourier στα ψηφιακά σήµατα (ΚΕΦ.3-DTFT) παρότι εισάγεται αξιωµατικά είναι απόλυτα συµβατός µε την σχέση αυτή που προέρχεται από τον αναλογικό µετασχ. Fourier. Αξίζει εποµένως να προτρέξουµε λίγο και να δούµε τις συνέπειες της δειγµατοληψίας σε "ψηφιακή βάση" (DTFT) Καταρχάς η αναλογική συχνότητα Ω που µετρειται σε rad/ec και η ψηφιακή ω που µετρείται σε rad/ample συνδέονται µε την (προφανή) σχέση: Ω=ω/Τ (.4) H σχέση (.3) χρησιµοποιώντας και την (.4) γίνεται: X(e jω ω π ) = X[j( k)] T T Τ (.5) k= Ας σηµειωθεί ότι στο α µέλος ο µετασχ. Fourier είναι στο ψηφιακό χώρο (και το ω είναι σε rad/ample) ενώ στο β µέλος είναι στον αναλογικό χώρο (ω /Τ # rad/ec) Εάν περιορίσουµε την συχνότητα στην περιοχή π/τ <ω/τ <π/τ #

6 Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά 6 X(e jω ) = T X(j ω Τ ) (.6) Η τελευταία αυτή σχέση εκφράζει το θεώρηµα δειγµατοληψίας στο χώρο της συχνότητας για σήµατα περιορισµένου εύρους συχνοτήτων (band limited ignal). Συµπερασµατικά το θεώρηµα δειγµατοληψίας λέγει: Ένα αναλογικό σήµα x a (t) µε περιορισµένο φάσµα εύρους F o µπορεί να ανακατασκευασθεί από τα δείγµατά του x(n)=x a (nt ) εάν η συχνότητα δειγµατοληψίας F = /T είναι διπλάσια του εύρους F o, F >F o (.7) Σε κάθε άλλη περίπτωση υπάρχει αλλοίωση του φάσµατος (aliaing) και το σήµα δεν µπορεί να ανακατασκευασθεί. H συχνότητα F / ονοµάζεται συχνότης Nyquit και το διάστηµα [-F /, F /] διάστηµα Nyquit Αντίστροφα όταν ένα σήµα x a (t) δειγµατοληπτείται η µεγαλύτερη συχνότητα που παραµένει αναλλοίωτη είναι F / Hz (ω=π). H αρχή της δειγµατοληψίας αναφέρεται και σαν θεώρηµα Shannon. Παράδειγµα X(jΩ) (α) (β) (γ) #f (khz) (δ) Σχήµα. 4 Το αποτέλεσµα της δειγµατοληψίας στο φάσµα του σήµατος. Το σήµα έχει µέγιστη συχνότητα f m =3kHz και δειγµατοληπτείται µε f =8kHz. Στην γ γραµµή η αλληλεπικάλυψη των φασµάτων είναι οριακή. Ενώ στην δ έχουµε αλλοίωση διότι f m.> f / Στο Matlab η συχνότητα F / είναι η κανονικοποιηµένη συχνότητα δηλ =.

7 Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά 7 Πίνακας Τυπικές συχνότητες δειγµατοληψίας για συνήθη σήµατα ΤΥΠΟΣ ΣΗΜΑΤΟΣ ΜΕΓΙΣΤΗ ΣΥΧΝΟΤΗΤΑ ΣΥΧΝΟΤΗΤΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Γεωφυσικά 5Hz khz Bιοϊατρικά khz khz Μηχανικά khz 4kHz Φωνή 4kHz 8kHz Ηχος (audio) khz 4kHz Eικόνα (video) 4MHz 8MHz ειγµατοληψία και ασάφεια Η υπο-δειγµατοληψία µπορεί να ερµηνευτεί και σαν αιτία ασάφειας στη διαδικασία ανακατασκευής του αναλογικού σήµατος από το ψηφιακό. ηλ. στα σηµεία x(n) του ψηφιακού σήµατος δεν αντιστοιχεί ένα µονο αναλογικό x a (t) αλλά πολλά εφόσον η µεγαλύτερη επιτρεπόµενη συχνότητα είναι F o >F /.5 x(n) x x.5 -->n Σχήµα. 5 Το σήµα x έχει συχνότητα 5πλάσια του x. Παρόλα αυτά το σήµα x(n) αντιστοιχεί και στα δύο σήµατα. Η δειγµατοληψία που έχει γίνει για το x ικανοποιεί το θεώρηµα δειγµατοληψίας και αναπαριστά σωστά το σήµα x. Για το x όµως δεν ικανοποιείται και δεν µπορεί σε καµµία περίπτωση να θεωρηθεί σωστή δειγµατοληψία. Αυτή είναι και η αιτία της ασάφειας. Φίλτρο περιορισµού συχνοτήτων φίλτρο αντιαλλοίωσης. Συνέπεια των παραπάνω είναι η ανάγκη χρησιµοποίησης ενός βαθυπερατού αναλογικού φίλτρου πρίν από την διαδικασία δειγµατοληψίας για τον περιορισµό των συχνοτήτων του αναλογικού σήµατος. Στο σχήµα. αυτό αποτελεί ουσιαστικά την πρώτη βαθµίδα και πρίν από τον ADC.

8 Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά 8 Παράδειγµα Το βαθυπερατό φίλτρο RC του σχήµατος αποτελεί το φίλτρο αντιαλλοίωσης στην είσοδο ενός συστήµατος DSP. Ζητείται η τιµή της συχνότητας δειγµατοληψίας f εάν η επιτρεπτή άλλοίωση (σφάλµα) είναι %. kω Aναλογικό σήµα kω.8µf S/H ιακριτό σήµα H x b x a f c = f a f khz H απόκριση συχνότητας του φίλτρου είναι : H(f ) = όπου η συχνότητα αποκοπής είναι f c =/πrc=khz [ + (f / f ) ] / c To φάσµα αυτό θα επαναλαµβάνεται λόγω της δειγµατοληψίας κάθε f khz. Στη συχνότητα f c =khz η ενίσχυση είναι x b =.77(του µεγίστου), εποµένως η ενίσχυση x a =.77 x.=.44 και η συχνότητα f a υπολογίζεται ως:.44 = #f a =4.4kHz [ + (f / ] / a ) Αρα f (ελάχιστη) = f c +f a = 4.4+ = 43.4kHz.3 Κβάντιση Μετά τη διαδικασία της δειγµατοληψίας που περιγράψαµε προηγουµένως ακολουθεί η διαδικασία κβάντισης του σήµατος. προκειµένου το σήµα να πάρει την ψηφιακή του µορφή. Στη διαδικασία κβάντισης υπεισέρχεται ένα σφάλµα που είναι συνάρτηση του αριθµού των bit του ADC και προσεγγίζεται µε το ½ του LSB (λιγώτερο σηµαντικού ψηφίου) ή ισοδύναµα το ½ της στάθµης κβάντισης.

9 Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά 9 Παράδειγµα τιµή : σφάλµα: Σχήµα. 6 Στο παραπάνω σχήµα έχουµε 3 = 8 στάθµες κβάντισης. Το βήµα έχει τιµή = που µπορεί να αντιστοιχεί σε κάποια τιµή πχ. τάσεως. V. Όταν η τιµή του σήµατος εµπίπτει στο µεταξύ διάστηµα των σταθµών ('εντονες γραµµές στο σχήµα) τότε λαµβάνει την τιµή της στάθµης (-7). Το σφάλµα µπορεί να είναι θετικό ή αρνητικό αλλά πάντα στο διάστηµα [.5,.5]. Για ένα ADC µε Β αριθµό δυαδικών ψηφίων ο αριθµός των σταθµών κβάντισης είναι Β και το διάστηµα µεταξύ των σταθµών αυτών, δηλαδή το βήµα κβάντισης q ισούται µε q= V/( B -) V/ B όπου V είναι το εύρος τιµών του ADC. Το µέγιστο σφάλµα κβάντισης δηλ. στρογγυλοποίησης είναι q/=v/ B+ Γιά ένα ηµιτονικό σήµα εισόδου πλάτους Α που έχει δηλ διακύµανση peak-to-peak A το βήµα κβάντισης είναι: q=a/ B Στη περίπτωση αυτή το σφάλµα κβάντισης (για κάθε δείγµα e ) είναι τυχαίος αριθµός που έχει οµοιόµορφη κατανοµή (uniform) στο διάστηµα q/, q/ µε µηδενική µέση τιµή. Η ισχύς θορύβου σ e ( διακύµανση) είναι: σ e =q / (.8) σ e = q / q / q P (e)e de = q / q e de = q /

10 Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά Aν προχωρήσουµε ένα βήµα ακόµα και υπολογίσουµε το λόγο σήµατος προς θόρυβο SNR λαµβάνουµε (σε db): A SNR=log q / B 3 = log = 6.B +.76dB (.9) ηλαδή ο SNR αυξάνει 6dB ανά bit.! Στο φίλτρο αντιαλλοίωσης ένα όριο για την εξασθένηση στην ζώνη αποκοπής (topband) τίθεται από τον θόρυβο κβάντισης. Η ενίσχυση Α min είναι: A min µ έ γιστη RMS τιµ ή εισ ό δου V = = " θό ρυβος κβ ά ντισης " σ Εάν εκφράσουµε τα V και σ σαν συνάρτηση του βήµατος κβάντισης έχουµε: Α min = B q / B+ q / 3 =.5 A A min διέλευση Βαθυπερατό φίλτρο αποκοπή Το φίλτρο αντιαλλοίωσης και ο ΑDC ουσιαστικά ολοκληρώνουν την διαδικασία της µετατροπής του αναλογικού σήµατος σε ψηφιακό και εποµένως την καταλληλότητα για επεξεργασία από τον ψηφιακό επεξεργαστή (DSP). Στη συνέχεια θα µελετήσουµε την διαδικασία µετατροπής του ψηφιακού σήµατος σε αναλογικό µετα την επεξεργασία του από τον DSP..4 Μετατροπή ψηφιακού σήµατος σε αναλογικό (ανακατασκευή) Η διαδικασία µετατροπής του σήµατος από ψηφιακό σε αναλογικό αποτελεί το τελευταίο στάδιο επεξεργασίας, και δεν είναι πάντα υποχρεωτικό. Στο σχήµα. η διαδικασία αυτή περιλαµβάνεται στη βαθµίδα DAC (digital to analog converter) που µπορεί να θεωρηθει σαν η αντίστροφη διαδικασία του ADC. Στο σχήµα.7 περιγράφεται η µετατροπή του ψηφιακού σήµατος σε αναλογικό. Περιλαµβάνει το βασικό βήµα της δειγµατοληψίας και κράτησης (ample and hold) που δεικνύεται στο µεσαίο διάγραµµα και έχει µια κλιµακωτή µορφή. Φέρεται µε την ονοµασία " κράτηση µηδενικής τάξεως" (zero order hold) και είναι ουσιαστικά ένας τρόπος interpolation. Στο τελαυταίο διάγραµµα του σχήµατος.7 δεικνύεται η

11 Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά ανάγκη εξοµάλυνσης της µε ένα βαθυπερατό αναλογικό φίλτρο που στο διάγραµµα. αποτελεί το τελευταίο στάδιο του συστήµατος. Μία ακριβέστερη µελέτη της ανακατασκευής του αναλογικού σήµατος από το ψηφιακό περιγράφεται ως εξής: υαδικός κώδικας 5 έξοδος DAC n--> έξοδος αναλογ. φίλτρου Σχήµα. 7 Mετατροπή ψηφιακού σήµατος σε αναλογικό. Στο επάνω διάγραµµα δεικνύεται το ψηφιακό σήµα και ο δυαδικός κώδικας. Στο µεσαίο διάγραµµα είναι το σήµα που προκύπτει από το κύκλωµα ample and hold, και µάλιστα µηδενικής τάξεως (zero order hold). Στο τελευταίο διάγραµµα φαίνεται η έξοδος µετά την εξοµάλυνση από το αναλογικό βαθυπερατό φίλτρο. t-->. Για να είναι δυνατή η ανακατασκευή πρέπει να ισχύει το θεώρηµα δειγµατοληψίας και το φασµατικό περιεχόµενο του σήµατος πρέπει να βρίσκεται µεταξύ F / και - F / (ζώνη Nyquit).. Aπο το επαναλαµβανόµενο φάσµα του ψηφιακού σήµατος πρέπει να επιλεγεί µόνο η βασική µπάντα συχνοτήτων που επιτυγχάνεται µε ένα ιδανικό βαθυπερατό φίλτρο συχνότητας αποκοπής F /. Αυτό δεικνύεται στο επόµενο σχήµα.8 που προέρχεται από το σχήµα.4. Το έντονο ορθογώνιο δεικνύει την επιθυµητή απόκριση του ιδανικού βαθυπερατού φίλτρου που έχει συχνότητα αποκοπής 4kHz.

12 Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά X(jΩ) (α) (β) Σχήµα.8 Για να ανακατασκευασθεί το αναλογικό σήµα (α) πρέπει από το αντίστοιχο στο (β) να επιλεγεί µόνο η βασική ζώνη. Αυτό επιτυγχάνεται µε το ιδανικό φίλτρο που έχει συχνότητα αποκοπής 4kHz. 3. Η µαθηµατική έκφραση της πράξεως αυτής δίνεται από τον ακόλουθο τύπο 3. ηµ [( π / Τ)(t nt)] x a (t) = x(n) (.) n= ( π / Τ)(t nt) H σχέση αυτή ουσιαστικά δηλώνει ότι η ανακατασκευή του σήµατος είναι δυνατή αν δίνονται όλα τα σηµεία x(n) του ψηφιακού σήµατος και αφού διαµορφωθούν για κάθε t από τις συναρτήσεις inc(x) όπου x=π/τ(t-nt). Προφανώς η διαδικασία αυτή είναι µη αιτιατή και δεν γίνεται σε πραγµατικό χρόνο. Η διαδικασία που περιεγράφει στην αρχή της παραγράφου αυτού και εδείχθη στο σχήµα.7 είναι υλοποιήσιµη και βασίζεται στην δειγµατοληψία (και κράτηση) µηδενικής τάξεως (zero order hold- ΖΟΗ). Η τιµή του αναλογικού σήµατος προέρχεται από την τιµή του ψηφιακού και είναι: x a (t)=x(n) για nt t (n+) T (.) Η πράξη αυτή είναι ουσιαστικά διαδικασία βαθυπερατού φιλτραρίσµατος και το σήµα εξόδου έχει την κλιµακωτή µορφή που εδείχθη στο σχήµα.7 και όπου φαίνεται η ανάγκη του βαθυπερατού φίλτρου για να "λειάνει τις γωνίες" ή ακριβέστερα να φιλτράρει τις ψηλές συχνότητες.. Βεβαίως και άλλοι τύποι βαθυπερατών φίλτρων µπορούν να χρησιµοποιηθούν όπως "κράτηση πρώτης τάξεως" (firt order hold) κλπ. Ολες οι διαδικασίες αυτές είναι διαδικασίες interpolation. 3 Η απόδειξη γίνεται µε χρήση του DTFT (διακριτου Μετασχ. Fourier). Βλέπε πχ."digital Signal Proeing" by A. Oppenheim and R Shcafer, Prentice Hall, New Jerey, 975

13 Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά 3 H διαδικασία ΖΟΗ περιγράφεται εκτενέστερα στο σχήµα.9 όπου ένα ψηφιακό σήµα y(n) µετατρέπεται στο αναλογικό κλιµακωτό ŷ (t) µετα από διαδικασία κράτησης µηδενικής τάξεως (ZOH). y(n) Y(ω) n ω ŷ(t) Ŷ( ω) ηµx/x t ω Σχήµα.9 To ψηφιακό σήµα y(n) µετατρέπεται µέσω του ΖΟΗ στο αναλογικό ŷ (t) το οποίο έχει επίσης υψηλές συχνότητες, όπως φαίνεται από τα αντίστοιχα φάσµατα, παρότι εµφανιζεται η εξασθένιση ηµx/x. Στη συνέχεια θα γίνει µία εξήγηση της µορφής του φάσµατος Ŷ( ω ). To σήµα ŷ(t) είναι ŷ (t) = n= Στο πεδίο των συχνοτήτων (Μετασχ. Laplace) γίνεται: y (n)[u(t nt) u(t ( + )T] (.) T T e nt e T / in ωτ / Ŷ() = y(n)e T Y() = e Y() (.3) T n= T ωτ / Aπό την τελευταία αυτή σχέση (.3) φαίνεται ότι η αναλογική έξοδος Υ() έχει "διαµορφωθεί" µε τον παράγοντα ηµx/x οπου x=ωτ/

Σ.Δ.ΦΩΤΟΠΟΥΛΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΔΠΜΣ. ΗΛΕΚΤΡΟΝΙΚΗ και ΕΠΕΞΕΡΓΑΣΙΑ της ΠΛΗΡΟΦΟΡΙΑΣ

Σ.Δ.ΦΩΤΟΠΟΥΛΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΔΠΜΣ. ΗΛΕΚΤΡΟΝΙΚΗ και ΕΠΕΞΕΡΓΑΣΙΑ της ΠΛΗΡΟΦΟΡΙΑΣ Σ.Δ.ΦΩΤΟΠΟΥΛΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΔΠΜΣ ΗΛΕΚΤΡΟΝΙΚΗ και ΕΠΕΞΕΡΓΑΣΙΑ της ΠΛΗΡΟΦΟΡΙΑΣ Περιεχόμενα Εισαγωγικά - Ένα πλήρες σύστημα ψηφιακής επεξεργασίας Ψηφιακάσήματακαισυστήματα Ανάλυση στο χρόνο

Διαβάστε περισσότερα

Σ.Δ.ΦΩΤΟΠΟΥΛΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ

Σ.Δ.ΦΩΤΟΠΟΥΛΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ.Δ.ΦΩΤΟΠΟΥΛΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΗΛΕΚΤΡΟΝΙΚΗ και ΕΠΕΞΕΡΓΑΣΙΑ της ΠΛΗΡΟΦΟΡΙΑΣ Περιεχόμενα Εισαγωγικά - Ένα πλήρες σύστημα ψηφιακής επεξεργασίας Ψηφιακά σήματα και συστήματα Ανάλυση στο χρόνο Ανάλυση

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ N. Λάσκαρης Οκτώβριος 2005 ΨΕΣ 1 Digital Signal Processing (DSP( DSP) N. Laskaris Οκτώβριος 2005 ΨΕΣ 2 meaning Οκτώβριος 2005 ΨΕΣ 3 A little history Archimedes of Syracuse 287-212

Διαβάστε περισσότερα

Σ.Δ.ΦΩΤΟΠΟΥΛΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΗΛΕΚΤΡΟΝΙΚΗ και ΕΠΕΞΕΡΓΑΣΙΑ της ΠΛΗΡΟΦΟΡΙΑΣ

Σ.Δ.ΦΩΤΟΠΟΥΛΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΗΛΕΚΤΡΟΝΙΚΗ και ΕΠΕΞΕΡΓΑΣΙΑ της ΠΛΗΡΟΦΟΡΙΑΣ Σ.Δ.ΦΩΤΟΠΟΥΛΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΔΠΜΣ ΗΛΕΚΤΡΟΝΙΚΗ και ΕΠΕΞΕΡΓΑΣΙΑ της ΠΛΗΡΟΦΟΡΙΑΣ Περιεχόμενα Εισαγωγικά - Ένα πλήρες σύστημα ψηφιακής επεξεργασίας Ψηφιακάσήματακαισυστήματα Ανάλυση στο χρόνο

Διαβάστε περισσότερα

Σ.Δ.ΦΩΤΟΠΟΥΛΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΗΛΕΚΤΡΟΝΙΚΗ και ΕΠΕΞΕΡΓΑΣΙΑ της ΠΛΗΡΟΦΟΡΙΑΣ

Σ.Δ.ΦΩΤΟΠΟΥΛΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΗΛΕΚΤΡΟΝΙΚΗ και ΕΠΕΞΕΡΓΑΣΙΑ της ΠΛΗΡΟΦΟΡΙΑΣ Σ.Δ.ΦΩΤΟΠΟΥΛΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΔΠΜΣ ΗΛΕΚΤΡΟΝΙΚΗ και ΕΠΕΞΕΡΓΑΣΙΑ της ΠΛΗΡΟΦΟΡΙΑΣ Περιεχόμενα Εισαγωγικά - Ένα πλήρες σύστημα ψηφιακής επεξεργασίας Ψηφιακά σήματα και συστήματα Ανάλυση στο χρόνο

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 2 Βασικά μέρη συστήματος ΨΕΣ Φίλτρο αντι-αναδίπλωσης

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.

Διαβάστε περισσότερα

Γενική εικόνα τι είναι σήµα - Ορισµός. Ταξινόµηση σηµάτων. Βασικές ιδιότητες σηµάτων. Μετατροπές σήµατος ως προς το χρόνο. Στοιχειώδη σήµατα.

Γενική εικόνα τι είναι σήµα - Ορισµός. Ταξινόµηση σηµάτων. Βασικές ιδιότητες σηµάτων. Μετατροπές σήµατος ως προς το χρόνο. Στοιχειώδη σήµατα. ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι

Διαβάστε περισσότερα

Σεραφείµ Καραµπογιάς ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ

Σεραφείµ Καραµπογιάς ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα» Εξεταστική Ιανουαρίου 27 Μάθηµα: «Σήµατα και Συστήµατα» Θέµα 1 ο (3%) Έστω δύο διακριτά σήµατα: x(n) = {1,,, -1} και h(n) = {1,, 1} µε το πρώτο δείγµα να αντιστοιχεί σε n= και για τα δύο. Υπολογίστε τα

Διαβάστε περισσότερα

Διάλεξη 3. Δειγματοληψία και Ανακατασκευή Σημάτων. Δειγματοληψία και Ανακατασκευή Σημάτων. (Κεφ & 4.6,4.8)

Διάλεξη 3. Δειγματοληψία και Ανακατασκευή Σημάτων. Δειγματοληψία και Ανακατασκευή Σημάτων. (Κεφ & 4.6,4.8) University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 3 Δειγματοληψία και Ανακατασκευή (Κεφ. 4.0-4.3 & 4.6,4.8) Περιοδική δειγματοληψία (periodic sampling) Περίοδος (sampling period) T Συχνότητα

Διαβάστε περισσότερα

Αρχές Τηλεπικοινωνιών

Αρχές Τηλεπικοινωνιών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #12: Δειγματοληψία, κβαντοποίηση και κωδικοποίηση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε.

Διαβάστε περισσότερα

x[n] x(nt s ) y c x c Discrete Time System D /C Conversion C/D Conversion Conv. From continous to discrete and from discrete to continous x trne

x[n] x(nt s ) y c x c Discrete Time System D /C Conversion C/D Conversion Conv. From continous to discrete and from discrete to continous x trne Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ 1: Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 8: Δειγματοληψία Η γέφυρα από τα συνεχή στα διακριτά!"#!"#! "#$%

Διαβάστε περισσότερα

Ημιτονοειδή σήματα Σ.Χ.

Ημιτονοειδή σήματα Σ.Χ. Ημιτονοειδή σήματα Σ.Χ. Αρμονική ταλάντωση και επειδή Ω=2πF Περιοδικό με βασική περίοδο Τ p =1/F Ημιτονοειδή σήματα Σ.Χ. 1 Ημιτονοειδή σήματα Σ.Χ. Σύμφωνα με την ταυτότητα του Euler Το ημιτονοειδές σήμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 12: Δειγματοληψία και ανακατασκευή (IV) Παρεμβολή (Interpolation) Γενικά υπάρχουν πολλοί τρόποι παρεμβολής, π.χ. κυβική παρεμβολή (cubic spline

Διαβάστε περισσότερα

Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT

Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT Σ. Φωτόπουλος ΨΕΣ Κεφάλαιο 3 ο DTFT -7- Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT (discrete time Fourier transform) 3.. Εισαγωγικά. 3.. Είδη µετασχηµατισµών Fourier Με την ονοµασία Μετασχηµατισµοί Fourier

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙςΤΗΜΗς & ΤΕΧΝΟΛΟΓΙΑς ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 2 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst233

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Παλμοκωδική διαμόρφωση (PCM) I + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ + Περιεχόμενα

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές

Τελεστικοί Ενισχυτές Τελεστικοί Ενισχυτές Ο Τελεστικός Ενισχυτής (ΤΕ) αποτελεί ένα ιδιαίτερο είδος ενισχυτή, το οποίο έχει ευρύτατη αποδοχή ως δομικό στοιχείο των ηλεκτρονικών κυκλωμάτων. Η μεγάλη του δημοτικότητα οφείλεται

Διαβάστε περισσότερα

Επικοινωνίες στη Ναυτιλία

Επικοινωνίες στη Ναυτιλία Επικοινωνίες στη Ναυτιλία Εισαγωγή Α. Παπαδάκης, Αναπλ. Καθ. ΑΣΠΑΙΤΕ Δρ. ΗΜΜΥ Μηχ. ΕΜΠ Βασικά Αντικείμενα Μαθήματος Σήματα Κατηγοριοποίηση, ψηφιοποίηση, δειγματοληψία, κβαντισμός Βασικά σήματα ήχος, εικόνα,

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 3: Δειγματοληψία και Ανακατασκευή Σημάτων Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών

Διαβάστε περισσότερα

Τι είναι σήµα; Σεραφείµ Καραµπογιάς

Τι είναι σήµα; Σεραφείµ Καραµπογιάς Τι είναι σήµα; Σεραφείµ Καραµπογιάς Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές Παραδείγµατα: Σήµα οµιλίας Σήµα εικόνας

Διαβάστε περισσότερα

Ιατρικά Ηλεκτρονικά. Δρ. Π. Ασβεστάς Εργαστήριο Επεξεργασίας Ιατρικού Σήματος & Εικόνας Τμήμα Τεχνολογίας Ιατρικών Οργάνων

Ιατρικά Ηλεκτρονικά. Δρ. Π. Ασβεστάς Εργαστήριο Επεξεργασίας Ιατρικού Σήματος & Εικόνας Τμήμα Τεχνολογίας Ιατρικών Οργάνων Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Εργαστήριο Επεξεργασίας Ιατρικού Σήματος & Εικόνας Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Σήματος. Νόκας Γιώργος

Εισαγωγή στην Επεξεργασία Σήματος. Νόκας Γιώργος Εισαγωγή στην Επεξεργασία Σήματος Νόκας Γιώργος Βιβλιογραφία στον εύδοξο 1. Γ. Β. Μουστακίδης, Βασικές Τεχνικές Ψηφιακής Επεξεργασίας Σημάτων και Συστημάτων, εκδόσεις Α. Τζιόλα & Υιοί Ο.Ε., Θεσσαλονίκη,

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Εισαγωγή. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Εισαγωγή. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Εισαγωγή Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Εφαρµογές της Ψηφιακής Επεξεργασίας Σηµάτων Ακουστικά Σήµατα ü Αναγνώριση, Ανάλυση, Σύνθεση,

Διαβάστε περισσότερα

Περιεχόµενα ΕΠΛ 422: στα Συστήµατα Πολυµέσων. Βιβλιογραφία. ειγµατοληψία. ηµιουργία ψηφιακής µορφής πληροφορίας στα Συστήµατα Πολυµέσων

Περιεχόµενα ΕΠΛ 422: στα Συστήµατα Πολυµέσων. Βιβλιογραφία. ειγµατοληψία. ηµιουργία ψηφιακής µορφής πληροφορίας στα Συστήµατα Πολυµέσων Περιεχόµενα ΕΠΛ 422: Συστήµατα Πολυµέσων Ψηφιακή Αναπαράσταση Σήµατος: ειγµατοληψία Βιβλιογραφία ηµιουργία ψηφιακής µορφής πληροφορίας στα Συστήµατα Πολυµέσων Βασικές Έννοιες Επεξεργασίας Σηµάτων Ψηφιοποίηση

Διαβάστε περισσότερα

Παράδειγµα ενός ηλεκτρικού συστήµατος

Παράδειγµα ενός ηλεκτρικού συστήµατος ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός aplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος A R B i( ) i

Διαβάστε περισσότερα

Κεφάλαιο 5 Διασύνδεση Αναλογικών & Ψηφιακών Συστηµάτων

Κεφάλαιο 5 Διασύνδεση Αναλογικών & Ψηφιακών Συστηµάτων Κεφάλαιο 5 Διασύνδεση Αναλογικών & Ψηφιακών Συστηµάτων Αναλογικές & Ψηφιακές Διατάξεις Control Systems Laboratory Τα διάφορα μεγέθη των φυσικών διεργασιών τα μετράμε με αισθητήρες που ουσιαστικά παρέχουν

Διαβάστε περισσότερα

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω:

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Σημειώσεις Δικτύων Αναλογικά και ψηφιακά σήματα Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Χαρακτηριστικά

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Αναλογικά και ψηφιακά συστήματα Μετατροπή

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ διακριτές σήματα και συστήματα διακριτού χρόνου χρονοσειρές (time series)

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ διακριτές σήματα και συστήματα διακριτού χρόνου χρονοσειρές (time series) Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ Είναι σύνηθες να μελετάμε διάφορα φαινόμενα σε διακριτές (και όχι συνεχείς) τιμές της μεταβλητής του χρόνου, οπότε, μιλάμε για για σήματα και συστήματα διακριτού χρόνου. Τα σήματα διακριτού

Διαβάστε περισσότερα

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V Θέµατα εξετάσεων Θ. Κυκλωµάτων & Σηµάτων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί στις εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Κεφάλαιο 7 ο Ταξινόμηση Συστημάτων Κρουστική Απόκριση Κεφάλαιο

Διαβάστε περισσότερα

Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου

Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου ΜΑΘΗΜΑ 6: ΣΧΕ ΙΑΣΗ ΦΙΛΤΡΩΝ 6. Εισαγωγή Τα φίλτρα είναι µια ειδική κατηγορία ΓΧΑ συστηµάτων τα οποία τροποποιούν συγκεκριµένες συχνότητες του σήµατος εισόδου σε σχέση µε κάποιες άλλες. Η σχεδίαση ψηφιακών

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά Γ ΕΠΑΛ ιδάσκων: Γεώργιος Μακεδών, Φυσικός M.Sc. Μάθηµα 47ο. Ερωτήσεις κατανόησης 1. Τι είναι οι µετατροπείς A/D

Ψηφιακά Ηλεκτρονικά Γ ΕΠΑΛ ιδάσκων: Γεώργιος Μακεδών, Φυσικός M.Sc. Μάθηµα 47ο. Ερωτήσεις κατανόησης 1. Τι είναι οι µετατροπείς A/D Μάθηµα 47ο Θέµα Εισαγωγή Συστήµατα λήψης, επεξεργασίας και διανοµής δεδοµένων. 1. Τι είναι οι µετατροπείς A/D και D/A; Εξηγήστε τη λειτουργία του σχήµατος 11.2.1. 1. Να εξηγήσετε το παράδειγµα αναλογικοψηφιακής

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 9 ο : Δειγματοληψία και Ανασύσταση

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 18

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 18 ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 18 14 Νοεµβρίου, 2006 Γεώργιος Έλληνας Επίκουρος Καθηγητής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

«Επικοινωνίες δεδομένων»

«Επικοινωνίες δεδομένων» Εργασία στο μάθημα «Διδακτική της Πληροφορικής» με θέμα «Επικοινωνίες δεδομένων» Αθήνα, Φεβρουάριος 2011 Χρονολογική απεικόνιση της εξέλιξης των Τηλεπικοινωνιών Χρονολογική απεικόνιση της εξέλιξης των

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Εργαστήριο 7 ο : Δειγματοληψία και Ανασύσταση Βασική

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση Μετάδοση πληροφορίας - Διαμόρφωση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διάρθρωση μαθήματος Μετάδοση Βασικές έννοιες Διαμόρφωση ορισμός είδη

Διαβάστε περισσότερα

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση ΗΜΥ 429 7. Ιδιότητες Συνέλιξης Συσχέτιση 1 Μαθηματικές ιδιότητες Αντιμεταθετική: a [ * b[ = b[ * a[ παρόλο που μαθηματικά ισχύει, δεν έχει φυσικό νόημα. Προσεταιριστική: ( a [ * b[ )* c[ = a[ *( b[ * c[

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Βασικά στοιχεία των Κυκλωμάτων

Κεφάλαιο 1 ο. Βασικά στοιχεία των Κυκλωμάτων Κεφάλαιο 1 ο Βασικά στοιχεία των Κυκλωμάτων Ένα ηλεκτρικό/ηλεκτρονικό σύστημα μπορεί εν γένει να παρασταθεί από ένα κυκλωματικό διάγραμμα ή δικτύωμα, το οποίο αποτελείται από στοιχεία δύο ακροδεκτών συνδεδεμένα

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Δειγµατοληψία. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Δειγµατοληψία. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Δειγµατοληψία Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Σύστηµα Επεξεργασίας Σηµάτων x(t) Σύστηµα Δειγµατοληψίας x1[n] x2[n] Ψηφιακός Επεξεργαστής

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση

Διαβάστε περισσότερα

«Επικοινωνίες δεδομένων»

«Επικοινωνίες δεδομένων» Εργασία στο μάθημα «Διδακτική της Πληροφορικής» με θέμα «Επικοινωνίες δεδομένων» Αθήνα, Φεβρουάριος 2011 Χρονολογική απεικόνιση της εξέλιξης των Τηλεπικοινωνιών Χρονολογική απεικόνιση της εξέλιξης των

Διαβάστε περισσότερα

x(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) )

x(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/10.0

Διαβάστε περισσότερα

DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform

DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform Νοέµβριος 5 ΨΕΣ Ορισµοί O διακριτός µετασχηµατισµός Fourier DFT, αναφέρεται σε µία πεπερασµένου µήκους ακολουθία σηµείων και ορίζεται ως εξής: X(

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 8: Δειγματοληψία - Διαμόρφωση παλμών Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της διαδικασίας

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 17: Φίλτρα (II)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 17: Φίλτρα (II) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 17: Φίλτρα (II) Φίλτρα Bu*erworth, Chebyshev και ελλειπτικά φίλτρα Είναι οι πιο δημοφιλείς τεχνικές σχεδιασμού φίλτρων συνεχούς χρόνου (Appendix

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 10: Παλμοκωδική Διαμόρφωση, Διαμόρφωση Δέλτα και Πολύπλεξη Διαίρεσης Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Παλμοκωδική Διαμόρφωση (PCM) Παλμοκωδική Διαμόρφωση

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 4: Κβάντιση και Κωδικοποίηση Σημάτων Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

Περιεχόµενα διαλέξεων 2ης εβδοµάδας

Περιεχόµενα διαλέξεων 2ης εβδοµάδας Εισαγωγή οµή και πόροι τηλεπικοινωνιακού συστήµατος Σήµατα Περιεχόµενα διαλέξεων 1ης εβδοµάδας Εισαγωγή Η έννοια της επικοινωνιας Ιστορική αναδροµή οµή και πόροι τηλεπικοινωνιακού συστήµατος οµή τηλεπικοινωνιακού

Διαβάστε περισσότερα

Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης

Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης Μορφοποίηση - Κωδικοποίηση πηγής Μορφοποίηση παλµών βασικής ζώνης Μορφοποίηση & µετάδοση βασικής ζώνης Mορφοποίηση-κωδικοποίηση πηγής Mορφοποίηση παλµών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΟΓΟΨΗΦΙΑΚΗ ΜΕΤΑΤΡΟΠΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ και ΣΗΜΑΤΩΝ Σ.Δ. Φωτόπουλος 1/22

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ και ΣΗΜΑΤΩΝ Σ.Δ. Φωτόπουλος 1/22 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ και ΣΗΜΑΤΩΝ Σ.Δ. Φωτόπουλος /22 περιεχόμενα ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ 2 ΚΕΦΑΛΑΙΟ 3 ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 5 ΚΕΦΑΛΑΙΟ 6 ΚΕΦΑΛΑΙΟ 7 ΚΕΦΑΛΑΙΟ 8 ΚΕΦΑΛΑΙΟ 9 ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

Μετατροπή Αναλογικού Σήµατος σε. Ψηφιακό (A/D Conversion) Μετατροπή Ψηφιακού Σήµατος σε Αναλογικό (D/A Conversion)

Μετατροπή Αναλογικού Σήµατος σε. Ψηφιακό (A/D Conversion) Μετατροπή Ψηφιακού Σήµατος σε Αναλογικό (D/A Conversion) Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου Μετατροπή Αναλογικού Σήµατος σε Ο µετασχηµατισµός Ζ Ψηφιακό (A/D Conversion) Μαθηµατική Ανάλυση της ιαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 6 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή

Διαβάστε περισσότερα

Δειγματοληψία και ανακατασκευή αναλογικών σημάτων

Δειγματοληψία και ανακατασκευή αναλογικών σημάτων Δειγματοληψία και ανακατασκευή αναλογικών σημάτων, ή το φάσμα ενός ανα- Ο συνεχούς χρόνου μετασχηματισμός Fourier (CTFT), λογικού σήματος είναι X ( ω ) x (t) jω t X ω = x t e dt x ( ) ( ) = 1 j ω t e d

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. 1 Εισαγωγή Αναλογικό σήμα (analog signal): συνεχής συνάρτηση στην οποία η ανεξάρτητη μεταβλητή και η εξαρτημένη μεταβλητή (π.χ.

Διαβάστε περισσότερα

Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail:

Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail: Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/ E mail: pasv@teiath.gr 2 1 Περιοδικά

Διαβάστε περισσότερα

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου Μετατροπή Αναλογικού Σήµατος σε Ψηφιακό (A/D Conversion) Ο µετασχηµατισµός Ζ Μαθηµατική Ανάλυση της ιαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α)

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α) ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α) 3.1. ΣΚΟΠΟΣ ΑΣΚΗΣΗΣ Σκοπός της εργαστηριακής αυτής άσκησης είναι η μελέτη της παλμοκωδικής διαμόρφωσης που χρησιμοποιείται στα σύγχρονα τηλεπικοινωνιακά

Διαβάστε περισσότερα

Εφαρμογή στις ψηφιακές επικοινωνίες

Εφαρμογή στις ψηφιακές επικοινωνίες Δειγματοληψία Εφαρμογή στις ψηφιακές επικοινωνίες Γεννήτρια σήματος RF, (up converter Ενισχυτής) Προενισχυτής down-converter Ψηφιοποιητής σήματος RF Μονάδα ψηφ. επεξεργασίας Μονάδα ψηφ. επεξεργασίας 100

Διαβάστε περισσότερα

Επεξεργασία Στοχαστικών Σημάτων

Επεξεργασία Στοχαστικών Σημάτων Επεξεργασία Στοχαστικών Σημάτων Ψηφιακή Μετάδοση Αναλογικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Μετάδοση Αναλογικών Σημάτων Τα σύγχρονα συστήματα

Διαβάστε περισσότερα

Σήµατα και συστήµατα διακριτού χρόνου

Σήµατα και συστήµατα διακριτού χρόνου Σήµατα και συστήµατα διακριτού χρόνου Βασικές ψηφιακές πράξεις Πρόσθεση {x 1 (n)}+{x 2 (n)}={x 1 (n)+x 2 (n)} Πολλαπλασιασµός Κλιµάκωση Μετατόπιση Αναδίπλωση {x 1 (n)}.{x 2 (n)}={x 1 (n).x 2 (n)} a{x(n)}

Διαβάστε περισσότερα

Κεφάλαιο 5 Διασύνδεση Αναλογικών & Ψηφιακών Συστημάτων

Κεφάλαιο 5 Διασύνδεση Αναλογικών & Ψηφιακών Συστημάτων Κεφάλαιο 5 Διασύνδεση Αναλογικών & Ψηφιακών Συστημάτων Αναλογικές & Ψηφιακές Διατάξεις Τα διάφορα μεγέθη των φυσικών διεργασιών τα μετράμε με αισθητήρες που ουσιαστικά παρέχουν ηλεκτρικά σήματα χαμηλής

Διαβάστε περισσότερα

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου u Μετατροπή Αναλογικού Σήµατος σε Ψηφιακό (A/D Conversion) Ο µετασχηµατισµός Ζ u Μαθηµατική Ανάλυση της Διαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος

Διαβάστε περισσότερα

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ενότητα #3: Φίλτρα Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα -Μαρτ-9 ΗΜΥ 49. Παραθύρωση Ψηφιακά φίλτρα . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 Είδη παραθύρων Bartlett τριγωνικό: n, n Blacman: πn 4πn.4.5cos +.8cos, n < . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 3 Hamming:

Διαβάστε περισσότερα

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 0: Εισαγωγή στο µάθηµα 2 Διαδικαστικά Παράδοση: Παρασκευή 16:00-18:30 Διδάσκων: E-mail:

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +

Διαβάστε περισσότερα

ΠΑΡΑΔΟΤΕΟ (Π b) ΥΠΗΡΕΣΙΑ ΕΡΓΑΣΤΗΡΙΟΥ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΕΥΡΥΖΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΑΡΑΔΟΤΕΟ (Π b) ΥΠΗΡΕΣΙΑ ΕΡΓΑΣΤΗΡΙΟΥ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΕΥΡΥΖΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΡΑΔΟΤΕΟ (Π 3.2.2.1b) ΓΙΑ ΤΟ ΥΠΟΕΡΓΟ 2 «ΑΝΑΠΤΥΞΗ ΥΠΗΡΕΣΙΩΝ ΠΡΟΣΤΙΘΕΜΕΝΗΣ ΑΞΙΑΣ ΕΙΚΟΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΩΝ» ΤΟΥ ΕΡΓΟΥ «ΥΠΗΡΕΣΙΕΣ ΕΙΚΟΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΩΝ ΤΟΥ ΤΕΙ ΑΘΗΝΑΣ» (MIS 304191) ΥΠΗΡΕΣΙΑ ΕΡΓΑΣΤΗΡΙΟΥ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/62 Πληροφορίας

ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/62 Πληροφορίας ΚΕΦΑΛΑΙΟ 2 /62 Σήματα- συμβολισμοί 5 5 4 4 3 3 2 2 - -4-3 -2-2 3 4 5-2 3 4 5 6 7 8-2 -2-3 -3 x()=, x(-),x(), x(),. x()={,-2,-3,-,,, 2, 3, 4, } x()={x()}={,x(-),x(), x(),.} x()={,-2,-3, -,,, 2, 3, 4, }

Διαβάστε περισσότερα

Ενότητα 4: Δειγματοληψία - Αναδίπλωση

Ενότητα 4: Δειγματοληψία - Αναδίπλωση Ενότητα 4: Δειγματοληψία - Αναδίπλωση Σήματα και Συστήματα Τα συστήματα επεξεργάζονται ένα ή περισσότερα σήματα: Το παραπάνω σύστημα μετατρέπει το σήμα x(t) σε y(t). π.χ. Σε ένα σήμα ήχου μπορεί να ενισχύσει

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 3: Ο Θόρυβος στα Τηλεπικοινωνιακά Συστήματα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Εισαγωγή Τύποι Θορύβου Θερμικός θόρυβος Θόρυβος βολής Θόρυβος περιβάλλοντος

Διαβάστε περισσότερα

ΠΛΗ21 Κεφάλαιο 1. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 1 Εισαγωγή

ΠΛΗ21 Κεφάλαιο 1. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 1 Εισαγωγή Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 1 Εισαγωγή Στόχοι του κεφαλαίου είναι να γνωρίσουμε: Τι είναι τα Αναλογικά κ τι τα Ψηφιακά Μεγέθη Τι είναι Σήμα, Αναλογικό Σήμα, Ψηφιακό Σήμα Τι είναι Δυαδικό Σήμα

Διαβάστε περισσότερα

Σ. Φωτόπουλος -1- ΨΕΣ- AΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ- Κεφάλαιο 2 ο

Σ. Φωτόπουλος -1- ΨΕΣ- AΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ- Κεφάλαιο 2 ο Σ. Φωτόπουλος -- ΨΕΣ- AΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ- Κεφάλαιο ο Άσκηση. Περιγράψτε τα σήµατα που φαίνονται στο σχήµα. χρησιµοποιώντας κατάλληλα την συνάρτηση µοναδιαίας κρούσης δ[]. x[] + x[] + + + + + (a) (b) -.5 Σχήµα.

Διαβάστε περισσότερα

Συστήματα Πολυμέσων. Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Θεώρημα δειγματοληψίας

Θεώρημα δειγματοληψίας Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις τιμές του σε χρονικές στιγμές ισαπέχουσες

Διαβάστε περισσότερα

Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία

Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία Θ.Ε. ΠΛΗ22 (2012-13) 2η Γραπτή Εργασία Στόχος: Η 2 η εργασία αποσκοπεί στην κατανόηση των συστατικών στοιχείων των αναλογικών διαμορφώσεων, της δειγματοληψίας, και της μετατροπής του αναλογικού σήματος

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων

Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων Άσκηση η α) Πώς θα µετρήσετε πρακτικά πόσο κοντά είναι ένα σήµα σε λευκό θόρυβο; Αναφέρατε 3 διαφορετικές µεθόδους (κριτήρια) για την απόφαση: "Ναι, πρόκειται για σήµα που είναι πολύ κοντά σε λευκό θόρυβο"

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Ιατρικά Ηλεκτρονικά. Δρ. Π. Ασβεστάς Εργαστήριο Επεξεργασίας Ιατρικού Σήματος & Εικόνας Τμήμα Τεχνολογίας Ιατρικών Οργάνων

Ιατρικά Ηλεκτρονικά. Δρ. Π. Ασβεστάς Εργαστήριο Επεξεργασίας Ιατρικού Σήματος & Εικόνας Τμήμα Τεχνολογίας Ιατρικών Οργάνων Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Εργαστήριο Επεξεργασίας Ιατρικού Σήματος & Εικόνας Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

ΜΕΤΑΤΡΟΠΕΙΣ D/A & A/D

ΜΕΤΑΤΡΟΠΕΙΣ D/A & A/D ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 5ο ΜΕΤΑΤΡΟΠΕΙΣ D/A & A/D Μετατροπή αναλογικών σημάτων σε ψηφιακά & αντιστρόφως ADC (Analog to Digital Converter) Μετατρέπει τα αναλογικά σήματα σε ψηφιακά για να μπορούμε να

Διαβάστε περισσότερα

ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS

ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS ΔΙΑΡΚΕΙΑ: 1 περιόδους 16/11/2011 10:31 (31) καθ. Τεχνολογίας ΚΑΤΗΓΟΡΙΕΣ ΜΕΓΕΘΩΝ ΑΝΑΛΟΓΙΚΟ (ANALOGUE) ΨΗΦΙΑΚΟ (DIGITAL) 16/11/2011 10:38 (38) ΕΙΣΑΓΩΓΗ ΣΤΑ

Διαβάστε περισσότερα