HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 17: Φίλτρα (II)
|
|
- Πολύμνια Βουγιουκλάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 17: Φίλτρα (II)
2 Φίλτρα Bu*erworth, Chebyshev και ελλειπτικά φίλτρα Είναι οι πιο δημοφιλείς τεχνικές σχεδιασμού φίλτρων συνεχούς χρόνου (Appendix B Oppenheim) Υπάρχουν αναλυτικές εκφράσεις και για τις 3 κατηγορίες Ιδιότητες: Bu^erworth μονοτονική απόκριση συχνοτήτων στις ζώνες διέλευσης και αποκοπής, maximally flat in passband Chebyshev Type I: συμμετρική κυμάτωση (ripple) στη διέλευσης, μονοτονική απόκριση στη αποκοπής Type II: μονοτονική απόκριση στη διέλευσης, συμμετρική κυμάτωση στη αποκοπής Ellippc - συμμετρική κυμάτωση στις ζώνες διέλευσης και αποκοπής Ο σχεδιασμός φίλτρων ΔΧ Bu^erworth, Chebyshev, Ellippc με βάση αυτά τα αντίστοιχα φίλτρα ΣΧ και το διγραμμικό μετασχηματισμό έχει επίσης χρησιμοποιηθεί σε ευρεία κλίμακα Εντολές στο Matlab που υλοποιούν τέτοια φίλτρα: bu^er, bu^ord, cheby1, cheby2, cheby1ord, cheby2ord, ellip, ellipord 2
3 Φίλτρα Bu*erworth, Chebyshev και ελλειπτικά φίλτρα Παραδείγματα Butterworth Chebyshev Elliptic 3
4 Φίλτρα - Παράδειγμα Σχεδιασμός με μέθοδο impulse invariance Βαθυπερατό φίλτρο Bu^erworth προ- διαγραφές o Passband: 0-0.2π, κέρδος - 1 με 0 db, stopband: πάνω από 0.3π, εξασθένηση τουλάχιστον 15 db, άρα: διέλευσης µεταβατική αποκοπής Βήμα 1 o Μετασχηματισμός προδιαγραφών σε συνεχή χρόνο Μπορούμε να υποθέσουμε Τ d =1 άρα (Ω=ω/Τ d ): Βήμα 2 o Το φίλτρο Bu^erworth συνεχούς χρόνου έχει μέτρο: o Πρέπει: o Αρα: 4 (1) Ν ακέραιος, άρα Ν=6. Μπορούμε να αλλάξουμε και την τιμή του Ωc. Πχ αντικαθιστώντας Ν=6 στην (1) παίρνουμε Ωc= Για αυτή την τιμή μάλιστα υπερβαίνουμε τις προδιαγραφές στη αποκοπής
5 Φίλτρα - Παράδειγμα Βήμα 3 o Προσδιορισμός πόλων - το κέρδος του φίλτρου συνεχούς χρόνου έχει 12 πόλους (2Ν=12) καθώς Για s=jω: Επομένως οι πόλοι ικανοποιούν την: διέλευσης µεταβατική αποκοπής Οι ποσότητες s/jω c είναι 2Ν- οστές ρίζες του - 1: Οι πόλοι βρίσκονται σε έναν κύκλο με ακτίνα Ωc(=0.7032) και απέχουν π/6 μεταξύ τους. Οι πόλοι του κέρδους προκύπτουν σε ζευγάρια από την συνάρτηση μεταφοράς συνεχούς χρόνου, δηλ αν το s k είναι πόλος της Η(s) τότε και το s k είναι πόλος της Η(s). Πως επιλέγουμε τους πόλους της H(s)? Για να είναι αιτιατό και ευσταθές το σύστημα H(s) πρέπει όλοι οι πόλοι του να είναι στο αριστερό ημιεπίπεδο, άρα: 5
6 Φίλτρα - Παράδειγμα Βήμα 4 o Προσδιορισμός της συνάρτησης μεταφοράς H(s) Πλέον γνωρίζουμε τους πόλους, άρα: o Πως μπορούμε να προσδιορίσουμε το Κ 0? Θέτοντας H c (0)=1 παίρνουμε: διέλευσης µεταβατική αποκοπής Ομως Αρα: o Τελικά λοιπόν: 6
7 Φίλτρα - Παράδειγμα Βήμα 5 o o Προσδιορισμός της συνάρτησης μεταφοράς H(z) Impulse invariance (μετά από ανάλυση σε μερικά κλάσματα): διέλευσης µεταβατική αποκοπής 7 Το τελικό φίλτρο ΔΧ πληροί τις προδιαγραφές, άρα το φίλτρο συνεχούς χρόνου είναι αρκούντως περιορισμένου εύρους ς, οπότε έχουμε μικρό ποσοστό αναδίπλωσης Η μέθοδος impulse invariance είναι κατάλληλη μόνο για φίλτρα με περιορισμένο εύρος ς (πχ βαθυπερατά). Για υψιπερατά η ζωνοφρακτικά φίλτρα χρειάζεται να φιλτράρουμε κατάλληλα!
8 Διγραμμικός μετασχηματισμός (bilinear transformaoon) Ο διγραμμικός μετασχηματισμός αναπαριστά αλγεβρικά την μεταβλητή s στη μεταβλητή z έτσι ώστε ολόκληρος ο άξονας jω του επιπέδου s να αντιστοιχεί σε μια περιστροφή του μοναδιαίου κύκλου στο επίπεδο z, δηλ: Ο (μη γραμμικός) μετασχηματισμός που το επιτυγχάνει είναι: Η παράμετρος δειγματοληψίας T d δεν επηρεάζει το αποτέλεσμα (καθώς πηγαίνουμε από προδιαγραφές ΔΧ σε ΣΧ και πάλι πίσω σε ΔΧ). Ο αντίστροφος μετασχηματισμός είναι: Για έχουμε: Αν σ<0, z <1 για κάθε Ω Αν σ>0, z >1 για κάθε Ω Αρα ευσταθή αιτιατά φίλτρα ΣΧ παραμένουν ευσταθή και αιτιατά σε ΔΧ. Για s=jω, άρα z =1 για κάθε Ω και ο άξονας Ω αναπαριστάται στο μοναδιαίο κύκλο. 8 Ισοδύναμα:
9 Διγραμμικός μετασχηματισμός (bilinear transformaoon) Ποια είναι η σχέση μεταξύ Ω και ω? Αρα: Τελικά: 9 Αποφεύγουμε την αναδίπλωση, αλλά έχουμε μη γραμμικό μετασχηματισμό της συχνότητας!
10 Διγραμμικός μετασχηματισμός (bilinear transformaoon) Θα πρέπει η μορφή της απόκρισης συχνοτήτων να είναι τέτοια ώστε να μην έχουμε σημαντικές παραμορφώσεις από αυτόν το μετασχηματισμό φίλτρα με τμηματικά σταθερή απόκριση (π.χ. βαθυπερατά, υψιπερατά, ζωνοπερατά κλπ) Ο διγραμμικός μετασχηματισμός παραμορφώνει τη φάση Δεν μπορούμε να πάρουμε φίλτρο ΔΧ με γραμμική φάση από ένα φίλτρο ΣΧ με γραμμική φάση 10
11 Παράδειγμα Φίλτρο Bu*erworth Εστω το φίλτρο με τις προδιαγραφές του προηγούμενου παραδείγματος σε ΔΧ: Θα σχεδιάσουμε φίλτρο Bu^erworth με διγραμμικό μετασχηματισμό Βήμα 1: Προδιαγραφές σε συνεχή χρόνο Βήμα 2 - Διαλέγουμε T d =1. Εχουμε μονοτονική απόκριση συχνοτήτων άρα πρέπει: Απόκριση συχνοτήτων: Λύνοντας ως προς Ω,Ν: Ν ακέραιος: 11
12 Παράδειγμα Φίλτρο Bu*erworth Βήμα 3: Εύρεση πόλων Οπως και πριν είναι 2Ν και προκύπτουν από τις 2Ν- οστές ρίζες της μονάδας, και έχουμε ακτίνα Διαλέγουμε τους 6 πόλους στο αριστερό ημιεπίπεδο Βήμα 4: Συνάρτηση μεταφοράς ΣΧ Αρα: Βήμα 5: Συνάρτηση μεταφοράς ΔΧ Διγραμμικός μετ/σμος 12
13 Παράδειγμα Φίλτρο Bu*erworth Η απόκριση συχνοτήτων πέφτει πολύ πιο γρήγορα λόγω του μη γραμμικού μετασχηματισμού συχνότητας (έχουμε αντιστοιχήσει το ω=π στο Ω=άπειρο!) 13
Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 1
Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 1 ΑΝΑΛΟΓΙΚΑ ΦΙΛΤΡΑ ΚΑΝΟΝΙΚΟΠΟΙΗΜΕΝΗ ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 2 ΦΙΛΤΡΑ BUTTERWORTH: Τα βαθυπερατά φίλτρα έχουν
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 13: Ψηφιακά Φίλτρα IIR Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ψηφιακά Φίλτρα IIR Εισαγωγή στα Φίλτρα Άπειρης Κρουστικής Απόκρισης (IIR) Σχεδίαση IIR Φίλτρων Γενική
Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου
ΜΑΘΗΜΑ 6: ΣΧΕ ΙΑΣΗ ΦΙΛΤΡΩΝ 6. Εισαγωγή Τα φίλτρα είναι µια ειδική κατηγορία ΓΧΑ συστηµάτων τα οποία τροποποιούν συγκεκριµένες συχνότητες του σήµατος εισόδου σε σχέση µε κάποιες άλλες. Η σχεδίαση ψηφιακών
Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 10 Κεφ. 7.0-7.2 Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες Σχεδιασμός Φίλτρου Καθορίζονται
Τ.Ε.Ι. Λαμίας Τμήμα Ηλεκτρονικής
Τ.Ε.Ι. Λαμίας Τμήμα Ηλεκτρονικής Σχεδίαση Φίλτρων IIR ( Infinite Impulse Response Filters ) Μπαρμπάκος Δημήτριος Τζούτζης Έλτον-Αντώνιος Τα φίλτρα άπειρης κρουστικής απόκρισης ( Infinite Duration Impulse
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 19: Φίλτρα (IV) Σχεδιασμός φίλτρων FIR Είδαμε ότι για φίλτρα IIR συνήθως σχεδιάζουμε ένα φίλτρο ΣΧ και μετασχηματίζουμε Για φίλτρα FIR θα δούμε
Kεφάλαιο 7 Σχεδιασμός IIR Φίλτρων
Kεφάλαιο 7 Σχεδιασμός IIR Φίλτρων Φίλτρα «άπειρης» κρουστικής απόκρισης IIR - Infinite impule repone filter Recurive filter / 77 / 78 Περιεχόμενα Εισαγωγικά χαρακτηριστικά των IIR φίλτρων, σχεδιασμός στο
Αντίστροφος Μετασχηματισμός Ζ. Υλοποίηση συστημάτων Διακριτού Χρόνου. Σχεδίαση φίλτρων
Αντίστροφος Μετασχηματισμός Ζ Υλοποίηση συστημάτων Διακριτού Χρόνου Σχεδίαση φίλτρων Αντίστροφος Μετασχηματισμός Ζ Αντίστροφος ΜΖ (inverse-zt) Προσεγγίσεις εύρεσης του αντίστροφου ΜΖ Τυπικά ο i-zt γίνεται
Σχεδιασμός Φίλτρων. Κυριακίδης Ιωάννης 2011
Σχεδιασμός Φίλτρων Κυριακίδης Ιωάννης 2011 Εισαγωγή Τα φίλτρα IIR (Infinite Impulse Response) είναι φίλτρα των οποίων η κρουστική απόκριση δεν είναι πεπερασμένη. Συνήθως χρησιμοποιούνται οι παρακάτω τρείς
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 14: Ανάλυση ΓΧΑ συστημάτων (ΙI) Απόκριση συχνοτήτων σε ρητή μορφή Χ (e jω ) Είδαμε ότι (όταν υπάρχει) η απόκριση συχνοτήτων H(e jω ) μπορεί να
ΑΣΚΗΣΗ 6 Σχεδίαση FIR και IIR φίλτρων στο Matlab
Σ. Φωτόπουλος Ασκήσεις ΨΕΣ 1 ΑΣΚΗΣΗ 6 Σχεδίαση FIR και IIR φίλτρων στο Matlab Στην άσκηση αυτή γίνεται σχεδιασµός FIR και ΙΙR ψηφιακών φίλτρων. (Σε επόµενη άσκηση θα γίνει και η υλοποίηση µε τον επεξεργαστή
HMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 Α. Σχεδίαση Ψηφιακών Φίλτρων Β. Φίλτρα FIR Σχετικές εντολές του Matlab: fir, sinc, freqz, boxcar, triang, hanning, hamming, blackman, impz, zplane, kaiser. Α. ΣΧΕΔΙΑΣΗ
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 13: Ανάλυση ΓΧΑ συστημάτων (Ι) Περιγραφές ΓΧΑ συστημάτων Έχουμε δει τις παρακάτω πλήρεις περιγραφές ΓΧΑ συστημάτων: 1. Κρυστική απόκριση (impulse
1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step.
1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. Α) Β) Ε) F) G) H) Ι) 2) Αν το διακριτό σήμα x(n) είναι όπως στην
Παρουσίαση του μαθήματος
Παρουσίαση του μαθήματος Εργαστήριο 1 Ενότητες Μαθήματος 1. Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Τι είναι ψηφιακή εικόνα. Τι σημαίνει Επεξεργασία εικόνας. Ανάλυση εικόνας σε συχνότητα ( Μετασχηματισμός Fourier σε εικόνα)
Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5γ. Σημειώσεις μαθήματος: E mail:
Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/ E mail: pasv@teiath.gr 2 1 Πολλές
Μετασχηματισμός αναλογικών φίλτρων σε ψηφιακά
Η κλασική μέθοδος για το σχεδιασμό ψηφιακών φίλτρων βασίζεται στο μετασχηματισμό ενός αναλογικού φίλτρου σε ψηφιακό το οποίο να πληροί ορισμένες προδιαγραφές N M b X Y d h x y N M d X Y n h x n y M N d
Σχεδιασµός IIR Φίλτρων Φίλτρα «άπειρης» κρουστικής απόκρισης IIR - Infinite impulse response filters
Σχεδιασµός IIR Φίλτρων Φίλτρα «άπειρης» κρουστικής απόκρισης IIR - Infinite impule repone filter Νοέµβριος 005 ΨΕΣ Περιεχόµενα Εισαγωγικά χαρακτηριστικά των IIR φίλτρων, σχεδιασµός στο πεδίο- Συναρτήσεις
Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ηλεκτρονικών Κυκλωμάτων F Ενότητα: Φίλτρα και Επαναληπτικές Ασκήσεις Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής, Σχολή
Filter Design - Part I. Νοέµβριος 2005 ΨΕΣ 1
Filter Deign - Part I Νοέµβριος 005 ΨΕΣ >> t 0:00; >> x co(*pi*t*3/0); >> x 0.5*co(*pi*t*55/0); >> xxx; >> x_f fft(x); Νοέµβριος 005 ΨΕΣ Νοέµβριος 005 ΨΕΣ 3 Deign of a Low-Pa filter >> [B,A]butter(4, 0.)
Άσκηση 1 η Να εξετάσετε αν τα ακόλουθα σήματα είναι περιοδικά. Στην περίπτωση περιοδικού σήματος, ποια είναι η θεμελιώδης περίοδος; 1 )
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα ΠΛΗ 44: Σήματα και Επεξεργασία Εικόνας Ακαδημαϊκό Έτος 007 00 Ημερομηνία Εξέτασης 4.0.00
ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ
Ε. Μ. Πολυτεχνείο Εργαστήριο Ηλεκτρονικής ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Γ. ΠΑΠΑΝΑΝΟΣ ΠΑΡΑΡΤΗΜΑ : Συναρτήσεις Δικτύων Βασικοί ορισμοί Ας θεωρήσουμε ένα γραμμικό, χρονικά
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Laplace Στοιχειωδών Συναρτήσεων Πίνακας Ιδιοτήτων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.
Τα IIR φίλτρα είναι επαναληπτικά ή αναδροµικά, µε την έννοια ότι δείγµατα της εξόδου χρησιµοποιούνται από το σύστηµα για τον υπολογισµό τν νέν τιµών της εξόδου σε επόµενες χρονικές στιγµές. Για να επιτύχουµε
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #5 Ιδιότητες του Μετασχηματισμού Fourier (Συνέχεια) Παραδείγματα Ιδιότητες του Μετασχηματισμού Fourier Χρονική κλιμάκση j xt () X( j) xat ( ) X( ) a a xate ( ) τ=at
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) Εισαγωγή Μέχρι στιγμής έχουμε δει το Μετασχηματισμό Fourier Διακριτού
Σχήμα Χαμηλοδιαβατά φίλτρα:
ΦΙΛΤΡΑ 6.. ΦΙΛΤΡΑ Το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων. Στο Σχήμα 6.6 δείχνουμε την απόκριση συχνότητας
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 8: Μετασχηματισμός Ζ Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Z Μετασχηματισμός Ζ (Ζ-Transform) Χρήσιμα Ζεύγη ΖT και Περιοχές Σύγκλισης (ROC) Ιδιότητες
Σχεδιασµός IIR φίλτρων
Σχεδιασµός IIR φίλτρων. Ένα αναλογικό ζωνοδιαβατό φίλτρο έχει συνάρτηση H(). Σχεδιάστε ( + )( + ) ένα IIR φίλτρο µε την µέθοδο της αµετάβλητης κρουστικής απόκρισης µε συχνότητα δειγµατοληψίας 0 H. Η απάντηση
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας
HMY 49: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου στο χώρο της συχνότητας Μιγαδικά εκθετικά σήματα και
Διάρκεια εξέτασης 2 ώρες
ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΠΕΙΡΑΙΑ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ B ΠΕΡΙΟΔΟΥ ΕΑΡΙΝΟΥ 007-08 Η/Ν ΦΙΛΤΡΑ Εξεταστής: Καθηγητής Ηρ. Γ. Δηµόπουλος Διάρκεια εξέτασης ώρες 0.09.008 ΖΗΤΗΜΑ (5 µονάδες Tο εικονιζόµενο κανονικοποιηµένο
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 12: Ψηφιακά Φίλτρα FIR Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ψηφιακά Φίλτρα FIR Εισαγωγή στα Ψηφιακά Φίλτρα Έλεγχος απολαβής (κέρδους) φίλτρου Φίλτρα ελάχιστης,
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
HMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #20 Πόλοι και μηδενικά Διάγραμμα πόλων και μηδενικών Ιδιότητες της περιοχής σύγκλισης Ο αντίστροφος Μετασχηματισμός Laplace Μετασχηματισμός Laplace Αμφίπλευρος μετασχηματισμός
Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail:
Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/ E mail: pasv@teiath.gr 2 1 Περιοδικά
stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn
Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ 22: Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 7: Σχεδιασμός Φίλτρων!"#!"#! "#$% Σημειώσεις διαλέξεων στο: http://www.eg.ucy.ac.cy/chadcha/
Ψηφιακή Επεξεργασία Σήματος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Σήματος Ενότητα Ι: Σχεδίαση Ψηφιακών Φίλτρων Άπειρης Κρουστικής Απόκρισης (Infinite Impulse Response (I.I.R.)
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #4 Η ιδιότητα της συνέλιξης Απόκριση Συχνότητας ΓΧΑ Συστημάτν Απόκριση συχνότητας ΓΧΑ Συστημάτν που περιγράφονται από Διαφορικές Εξισώσεις Η ιδιότητα πολλαπλασιασμού
(s) V Ιn. ΘΕΜΑ 1 1. Υπολογίστε την συνάρτηση µεταφοράς τάσης του. του κυκλώµατος και χαρακτηρίστε το.
Θέµατα εξετάσεων Η/Ν Φίλτρων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί σε εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα δείχνουν το
Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων
Ψηφιακή Επεξεργασία Σηµάτων 20 Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Α. Εγκατάσταση Αφού κατεβάσετε το συµπιεσµένο αρχείο µε το πρόγραµµα επίδειξης, αποσυµπιέστε το σε ένα κατάλογο µέσα
ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE Δρ Γιώργος Μαϊστρος, Χημικός Μηχανικός
Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ
Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός
ΘΕΜΑΤΑ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟ ΜΑΘΗΜΑ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ (ΚΙΙΙ)
1 ΘΕΜΑΤΑ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟ ΜΑΘΗΜΑ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ (ΚΙΙΙ) 213-214. 1. ΘΕΜΑ 1: Στο Σχ.1, έχουμε ένα κανονικοποιημένο βαθυπερατό φίλτρο τύπου (Τ) τρίτης τάξης Butterworth. Οι αντιστάσεις (R S ) και (R
Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό
Αναλογικά φίλτρα. Τα IIR φίλτρα μπορούν εύκολα να σχεδιασθούν αρχίζοντας από ένα αναλογικό φίλτρο και
Τα IIR φίλτρα είναι επαναληπτικά ή αναδρομικά, με την έννοια ότι δείγματα της εξόδου χρησιμοποιούνται από το σύστημα για τον υπολογισμό των νέων τιμών της εξόδου σε επόμενες χρονικές στιγμές. Για να επιτύχουμε
10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα
-Μαρτ-9 ΗΜΥ 49. Παραθύρωση Ψηφιακά φίλτρα . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 Είδη παραθύρων Bartlett τριγωνικό: n, n Blacman: πn 4πn.4.5cos +.8cos, n < . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 3 Hamming:
HMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά
A k s s k. H c (s) = H(z) = 1 e s kt dz 1
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 208 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Πέµπτο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις
Σχεδιασµός IIR φίλτρων - Λύσεις των Ασκήσεων
Σχεδιασµός IIR φίλτρων - Λύσεις των Ασκήσεων. Ένα βαθυπερατό αναλογικό φίλτρο περιγράφεται από την σχέση Η(). Να βρεθεί ( ιγραµ. Μετασχ.) το αντίστοιχο ψηφιακό µε συχνότητα αποκοπής (-3dB) f 600H όταν
Ανάλυση ΓΧΑ Συστημάτων
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 9 με Μετασχηματισμούς Κεφ. 5 (εκτός 5.7.4 και 5.3 μόνο από διάλεξη) Ένα ΓΧΑ σύστημα καθορίζεται πλήρως από Κρουστική απόκριση (impulse response)
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ Γρήγορος Μετασχηματισμός Fourier Το ζεύγος εξισώσεων που ορίζουν το
ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ενότητα #3: Φίλτρα Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Μετασχηµατισµός αναλογικών φίλτρων σε ψηφιακά
Μετασχηµατισµός αναλογικών φίλτρν σε ψηφιακά Η κλασική µέθοδος για το σχεδιασµό ψηφιακών φίλτρν βασίζεται στο µετασχηµατισµό ενός αναλογικού φίλτρου σε ψηφιακό το οποίο να πληροί ορισµένες προδιαγραφές
ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.
6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z
6-Μαρτ-29 ΗΜΥ 429. Μετασχηματισμός . Μετασχηματισμός 6-Μαρτ-29 Μετασχηματισμός Μέθοδος εκπροσώπησης, ανάλυσης και σχεδιασμού συστημάτων και σημάτων διακριτού χρόνου. Ό,τι είναι η μέθοδος Lplce στο συνεχή
( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 0: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 0-3 -- Εαρινό Εξάµηνο Σειρά Ασκήσεων αρ. 6 Παρασκευή 5 Απριλίου
Ψηφιακός Έλεγχος. 10 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1
Ψηφιακός Έλεγχος 10 η διάλεξη Ασκήσεις Ψηφιακός Έλεγχος 1 Άσκηση1 Ασκήσεις Επιθυμούμε να ελέγξουμε την γωνία ανύψωσης μιας κεραίας για να παρακολουθείται η θέση ενός δορυφόρου. Το σύστημα της κεραίας και
Σχεδιασµός ΙIR Φίλτρων
Σ.Φωτόπουλος ΨΕΣ- KEF 7o ΙΙR Φίλτρα -09- Σχεδιασµός ΙIR Φίλτρων 7. Εισαγωγικά Τα IIR φίλτρα (ΙΙR nfnte mpule repone) χαρακτηρίζονται απο την κρουστική απόκριση των η οποία είναι απείρου µήκους. Για ευκολία
Σύνθεση και Σχεδίαση Παθητικών Φίλτρων LC
Κεφάλαιο 08 Σύνθεση και Σχεδίαση Παθητικών Φίλτρων LC 8. Προκαταρκτικά Στο κεφάλαιο 6 παρουσιάστηκε µια µέθοδος σχεδίασης ενεργών φίλτρων, κατά την οποία από τις προδιαγραφές υπολογίζεται αρχικά, µε µια
Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων
Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Φίλτρα πεπερασμένης κρουστικής απόκρισης Finite Impulse Response (FIR) filters y(n) = M k= bk x(n k) / 68 παράδειγμα (εισαγωγικό) y(n) = 9 x(n k ) k= 2/ 68 Βασικές κατηγορίες
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2
Εργαστηριακές Ασκήσεις Ηλεκτρικών Κυκλωµάτων ΙΙΙ 1 ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΑΝΑΛΥΣΗ, ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΑΝΑΛΟΓΙΚΩΝ ΠΑΘΗΤΙΚΩΝ ΦΙΛΤΡΩΝ ΣΚΟΠΟΣ Η άσκηση αυτή εξετάζει την ανάλυση παθητικών αναλογικών φίλτρων,
ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ
ΕΙΣΑΓΩΓΗ: Όπως θα δούμε και παρακάτω το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων, δηλαδή «κόβουν» κάποιες ανεπιθύμητες
Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι
Σήματα και Συστήματα ΙΙ
Σήματα και Συστήματα ΙΙ Ενότητα 6: Απόκριση Συχνότητας-Φίλτρα Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας,
Ενδεικτικές Ασκήσεις για το μάθημα: «Μετρήσεις Φυσικών Μεγεθών»
Ενδεικτικές Ασκήσεις για το μάθημα: «Μετρήσεις Φυσικών Μεγεθών» Άσκηση 1 Τα φίλτρα Butterworth χαρακτηρίζονται από την ιδιότητα, η συνάρτηση απόκρισής τους να είναι ιδιαίτερα επίπεδη στην περιοχή διέλευσης.
HMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #2 Σειρές Fourier και ΓΧΑ Συστήματα Απόκριση Συχνοτήτων και Φιλτράρισμα Σειρές Fourier: Σειρές Fourier και ΓΧΑ Συστήματα jk( 2π ) Τ k k x () FS.. ak k= k= jkω0 x
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Συναρτήσεις συσχέτισης/αυτοσυσχέτισης Φίλτρα Μετασχηματισμός Hilbert + Περιεχόμενα n Συνάρτηση αυτοσυσχέτισης n Συνάρτηση
Τελικό Project Εργαστηρίου Ηλεκτρονικών Φίλτρων Χειµερινό Εξάµηνο
Τελικό Project Εργαστηρίου Ηλεκτρονικών Φίλτρων Χειµερινό Εξάµηνο 2015-16 Ονοµατεπώνυµο: ΚΑΡΑΜΗΤΡΟΣ ΘΕΜΙΣΤΟΚΛΗΣ ώστε τον Αριθµό Μητρώου σας εδώ ==> AM := 99999 Το φύλλο εργασίας αυτό δέχεται προδιαγραφές
Μετασχηµατισµός Ζ (z-tranform)
Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς
Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +
Μετασχηματισμός aplace ορίζεται ως εξής : t X() [x( t)] xte () dt = = Ο αντίστροφος μετασχηματισμός aplace ορίζεται από το μιγαδικό ολοκλήρωμα : t x(t) = [ X()] = X() e dt π j c C είναι μία καμπύλη που
1. Φάσμα συχνοτήτων 2. Πεδίο μιγαδ
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ 5 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διάρθρωση. Φάσμα συχνοτήτων. Πεδίο μιγαδικής μγ συχνότητας Πόλοι & μηδενικά
Σήματα και Συστήματα
Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες
H ap (z) = z m a 1 az m (1)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 206 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Πέµπτο Εργαστήριο - Ηµεροµηνία : 2/2/206 Σηµείωση : Για
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ευστάθεια Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 16: Απόκριση συχνότητας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
3. Δίνεται ψηφιακό σύστημα που περιγράφεται από τη σχέση. y[n] = x[n]-2x[n-1] y[n] = x[n]-2x[1-n]
1. Δίνεται ψηφιακό σύστημα που περιγράφεται από τη σχέση y[] = x[]+x[-1]+2 για το σύστημα ισχύει η αρχή της: Α) Ομογένειας Β) Επαλληλίας Γ) Γραμμικότητας. Δ) Χρονικής αμεταβλητότητας. 2. Δίνεται ψηφιακό
ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΤΕΙ ΠΕΙΡΑΙΑ -ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΙΛΤΡΩΝ ΧΕΙΜΕΡΙΝΟ 2017-18 ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1. ΕΥΑΙΣΘΗΣΙΑ Ενα κύκλωµα, το οποίο κάνει µια συγκεκριµένη λειτουργία εκφραζόµενη
Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID
Κεφάλαιο 6 Έλεγχος στο Πεδίο της Συχνότητας u Έλεγχος στο Πεδίο της Συχνότητας Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID Τόπος Ριζών Για τον τόπο των ριζών δεν χρειάζεται καµία ιδιαίτερη
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 6: Απόκριση Συχνότητας Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier Διακριτού Χρόνου Η έννοια της Απόκρισης Συχνότητας Ιδιότητες της Απόκρισης
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.
(jω) ΣΧΗΜΑ 3.1 ΣΧΗΜΑ 3.2
Βασικές Προσεγγίσεις Κεφάλαιο 3 3. Προδιαγραφές φίλτρων και προσεγγισεις Αναφερόµενοι στο σχήµα 3., η απόκριση πλάτους ή συνάρτηση κέρδους τάσης G(ω) ορίζεται ως το µέτρο της συνάρτησης µεταφοράς τάσης
Υπολογίζουμε εύκολα τον αντίστροφο Μετασχηματισμό Fourier μιας συνάρτησης χωρίς να καταφεύγουμε στην εξίσωση ανάλυσης.
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουμε εύκολα τον αντίστροφο Μετασχηματισμό Fourir μιας συνάρτησης χωρίς να καταφεύγουμε στην εξίσωση ανάλυσης. Υπολογίζουμε εύκολα την απόκριση
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 2: Συστήματα διακριτού χρόνου Συστήματα διακριτού χρόνου Σύστημα διακριτού χρόνου: Μετασχηματισμός Τ που μετατρέπει το σήμα εισόδου x[] στο σήμα
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 2004., η οποία όµως µπορεί να γραφεί µε την παρακάτω µορφή: 1 e
ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 4 AΣΚΗΣΗ () [ ] (.5)
15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής
15/3/9 Από το προηγούμενο μάθημα... Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 3 η : «Επεξεργαστές Ε ξ έ Δυναμικής Περιοχής» Φλώρος
x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)
Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός Laplace Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αιτιατότητα Μη-Αιτιατότητα. Ευστάθεια. Περιοχή Σύγκλισης Μετασχηµατισµού Laplace
Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί
Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 12: Δειγματοληψία και ανακατασκευή (IV) Παρεμβολή (Interpolation) Γενικά υπάρχουν πολλοί τρόποι παρεμβολής, π.χ. κυβική παρεμβολή (cubic spline
Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται
Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ᄃ Σχεδίαση Ηλεκτρονικών Κυκλωμάτων F Ασκήσεις Ενότητας: Φίλτρα και Επαναληπτικές Ασκήσεις Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής,
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα : Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Συστήματα Διακριτού Χρόνου Εξισώσεις Διαφορών Επίλυση Εξισώσεων Διαφορών με Γραμμικούς Συντελεστές
ΜΕΡΟΣ Α: Απαραίτητες γνώσεις
ΜΕΡΟΣ Α: Απαραίτητες γνώσεις Φίλτρα RC Τα φίλτρα RC είναι από τις σπουδαίες εφαρμογές των πυκνωτών. Τα πιο απλά φίλτρα αποτελούνται από έναν πυκνωτή και μία αντίσταση σε σειρά. Με μια διαφορετική ματιά