Για το μεταφορικό ισοδύναμο
|
|
- Αντίγονος Δασκαλοπούλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Αποσπάσματα από τ ομιλία του Γιώργου Αγοραστάκ, Μέλους του Δ.Σ. τς ΕΝΑΕ, στο Θεματικό συέδριο τς ΕΝΑΕ για τ "σιωτικόττα", στ Μυτιλή 12 Ιού 2009 (Δμοσιεύεται και στο περιοδικό «Ελλική Νομαρχία» τς ΕΝΑΕ τ.40/2009) Για το μεταφορικό ισοδύαμο...κατά τ τελευταία συταγματική ααθεώρσ το 2001, στο άρθρο 101 του Συτάγματος, έγιε μια προσθήκ με τ οποία υποχρεώεται ο ομοθέτς και διοίκσ ότα δρου καοιστικά, α λαμβάου υπόψ τους τις ιδιαίτερες συθήκες τω σιωτικώ περιοχώ. Με το τρόπο αυτό, ααγωρίστκε για πρώτ φορά έοια τς «σιωτικόττας» και τέθκε πολιτική και ομική βάσ για τ συγκεκριμέ προσαρμογή και εξειδίκευσ κάθε ομοθετικής και διοικτικής πράξς στα δεδομέα και τις ιδιομορφίες τω σιωτικώ περιοχώ, όπως και για τ διαμόρφωσ ειδικώ πολιτικώ για τ αάπτυξ τω σιώ. Έκτοτε -από το τα πράγματα 1 / 5
2 έμεια στα λόγια και τίποτα συγκεκριμέο δε έγιε. Στ πράξ, εκείο που δυστυχώς συέβ είαι ό,τι μεγάλωσε περισσότερο απόστασ τω σιώ τς Ελλάδας από το πειρωτικό τς κορμό. Το «ισοδύαμο προσπελασιμόττας» Παρ ότι λοιπό, το Σύταγμα επιβάλει εξειδικευμέ ααπτυξιακή πολιτική και ιδιαίτερ μεταχείρισ στις σιωτικές περιοχές, στο πρόσφατο Εθικό Σχέδιο Περιφερειακής Αάπτυξς (ΕΣΠΑ), σιωτική χώρα παραγκωίστκε τελείως. Η πλέο χαρακτριστική περίπτωσ ετοπίζεται στο σχεδιασμό τω μεταφορώ και στ καταομή τω κοδυλίω του «Επιχειρσιακού Προγράμματος Προσπελασιμόττας». Στο ΕΣΠΑ και στο «Επιχειρσιακό τς Προσπελασιμόττας», ααγωρίζεται με ότι το σύσ τμ α τω μεταφορώ συμβάλλε ι στ ισόρροπ περιφερειακ ή αάπτυξ κα ι στ 2 / 5
3 βελτίωσ τ ς προσπελασιμόττα ς όλω τω περιοχώ τς χώρας, καταέμοται όμως οι κοιοτικοί πόροι στ οδοποιία τς πειρωτικής χώρας. Η λιμεική και αεροπορική σιωτική υποδομή αγοείται σχεδό πατελώς. Συγκεκριμέα συολική χρματοδότσ (δμόσια δαπά) στο «Επιχειρσιακό τς Προσπελασιμόττας» καταέμεται: Στα οδικά έργα τς πειρωτικής χώρας 68,8%, στο σιδρόδρομο 15,5%, στις θαλάσσιες μεταφορές που περιλαμβάου και τα μεγάλα διεθή λιμάια 2,34% και τις αεροπορικές για όλα τα αεροδρόμια τς χώρας 2,55%. Κατά τα υπόλοιπα το πρόγραμμα χρματοδοτεί το Μετρό 10,27% και τις αστικές συγκοιωίες 2,2%. Αυτή είαι ατιμετώπισ τς μειοεξίας τω σιώ στο σοβαρότερο πρόβλμά τους που είαι οι μεταφορές. Απέατι σ αυτή τ πολιτική, -και συζτώτας για το «μεταφορικό ισοδύαμο» σήμερα-, θέτω συγκεκριμέα το ζήτμα του «ισοδύαμου προσπελασιμόττας». Μιλώ για το δικαίωμα που έχου οι Έλλες πολίτες τω σιώ α έχου ίσες δυατόττες πρόσβασς στις υπρεσίες μεταφορώ με τους στεριαούς και για τ υποχρέωσ τς ελλικής πολιτείας α ατιμετωπίσει με ααλογικό τρόπο τα προβλήματα υποδομώ τω σιώ. Που σμαίει με απλά λόγια τ αατροπή τω προτεραιοτήτω και τω καταομώ του «Επιχειρσιακού τς Προσπελασιμόττας». Αυτό επιτάσσει άλλωστε συταγματική επιταγή για τ «σιωτικόττα». «Για λόγους ισόττας τω πολιτώ, για τ κάλυψ ατίστοιχς απόστασς από το Κέτρο, οι προσφερόμεες υπρεσίες θαλάσσιω μεταφορώ πρέπει α συγκλίου με τις υπρεσίες τω χερσαίω μεταφορώ όσο αφορά στ οικοομική επιβάρυσ του χρήστ, στ χροική διάρκεια του ταξιδιού και στ προσφερόμε ποιόττα, σε έα πλαίσιο θεώρσς όπου ο σιώτικος χώρος αποτελεί προέκτασ του χερσαίου χώρου και όπου χρέωσ για τ μεταφορά αάμεσα σε ίσες αποστάσεις πρέπει α είαι δίκαι.» (μελέτ ΙΤΑ) 3 / 5
4 Για τ ακτοπλοΐα Υπάρχου σήμερα σιώτες που υποφέρου, που είαι αποκομμέοι, που στ προσπάθεια τους α μετακιθού και α επικοιωήσου με το έξω κόσμο βιώου μια «οδύσσεια» ταλαιπωρία. Παρά δειγμα από τ περιοχή που βρισκόμαστε: Για α φτάσει καείς εδώ στ Λήμο από τ Αθήα, θέλει μιάμισ μέρα. Ο κάτοικος τς Λήμου δε έχει τα ίδια δικαιώματα με του υπόλοιπους έλλες; Πιστεύω ότι ο τρόπος που ρυθμίζοται τα ζτήματα τω ακτοπλοϊκώ συγκοιωιώ-μεταφορώ στ χώρα μας είαι λάθος. Aυτοί που σχεδιάσαε, ομοθετήσαε και ρυθμίσαε αυτά τα ζτήματα, εεργήσαε σε λάθος βάσ και με ιδεολογικά κίτρα. Το πρόβλμα ξεκίσε το 1992, με το Καοισμό Η ελλική κυβέρσ δε είδε καμία ιδιομορφία στα σιά τς ελλικής επικράτειας και συαίεσε σ έα καοισμό κομμέο και ραμμέο στο κυρίαρχο δόγμα του εοφιλελευθερισμού. Δε μίλσε καέας τότε για το πολυσιωτικό χαρακτήρα τς ελλικής επικράτειας, για το πλήθος τω μικρώ σιώ, και δε διερωτήθκε καείς πως είαι δυατό με το ελεύθερο αταγωισμό α υπάρξει ακτοπλοϊκή συγκοιωία σε πολλά ελλικά σιά που οι γραμμές είαι ζμιογόες. 4 / 5
5 Ο εοφιλελεύθερος Νόμος 2932/2001 που ήρθε στ συέχεια -σε εαρμόισ με το καοισμό 3577/1992- είχε στόχο α θέσει τ ακτοπλοΐα στους καόες τς ελεύθερς αγοράς και σε συθήκες αταγωισμού, με τ κατάργσ τω αδειώ σκοπιμόττας. Ο όμος ααγώρισε με τ αάγκ εφαρμογής τς «υποχρέωσς δμόσιας υπρεσίας» στις «άγοες γραμμές», αλλά σε βάρος τω άλλω σιωτικώ περιοχώ και περισσότερο τς Κρήτς. Για ποιες λύσεις με το αταγωισμό λοιπό μιλάμε και σήμερα ακόμα, ότα στο 70% τω ελλικώ ακτοπλοϊκώ γραμμώ δρομολογούται καράβια από μία μόο εταιρεία; Ποιοι θα αταγωιστού μεταξύ τους για α μειώσου τις τιμές τω αύλω και α πυκώσου δρομολόγια; Ο αταγωισμός στ ελλική ακτοπλοΐα τελικά έφερε τα ατίθετα αποτελέσματα και είσχυσε περισσότερο τα αυτιλιακά μοοπώλια. Σε άλλ βάσ πρέπει α δούμε τ οργάωσ τς ελλικής ακτοπλοΐας. Ιδιαίτερα για τις άγοες γραμμές, ελλική πολιτεία έχει τ υποχρέωσ α ααλάβει πλήρως τ ευθύ τους και μέσω δμόσιου φορέα α καλύψει αυτή υπρεσία με δίκαιο και ισοδύαμο τρόπο για όλους τους σιώτες. Επίσς α καταργήσει άμεσα το επίαυλο και α ααλάβει ολόκλρ τ σχετική δαπά από το κρατικό προϋπολογισμό. Η ΕΝΑΕ πρέπει α προωθήσει άμεσα έα τέτοιο στόχο. 5 / 5
Κεφάλαιο 2. Η ηθική του Κυνηγού M.A
Κεφάλαιο 2 Η ηθική του Κυηγού M.A ΚΕΦΑΛΑΙΟ 2 Η ΗΘΙΚΗ ΤΟΥ ΚΥΝΗΓΟΥ.. Ο κυηγός ο οποίος µαθαίει τα βασικά στοιχεία για τη ασφαλή χρήση τω πυροβόλω όπλω, πρέπει παράλληλα α ααπτύξει και αίσθηµα ευθύης απέατι
ΕΤΗΣΙΟΣ ΑΠΟΛΟΓΙΣΜΟΣ 2016
Βασικές πληροφορίες ΕΤΗΣΙΟΣ ΑΠΟΛΟΓΙΣΜΟΣ 2016 Δήμος: ΔΟΞΑΤΟΥ Όομα: Τούρα Ευαθία Θέση: Συτοίστρια του Προγράμματος Ηλ. Δ/ση:koinprostasia@doxato.gr Ημερομηία λήψης απόφασης για τη έταξη στο Δίκτυο. :30/10/2014
KENTΡΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΟ : ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΔΙΑΔΙΚΑΣΙΑ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ. Έντυπο. Παρακολούθησης/ Ενδιάμεσης Αξιολόγησης
KENTΡΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΟ : ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΔΙΑΔΙΚΑΣΙΑ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ Έτυπο Παρακολούθησης/ Εδιάμεσης Αξιολόγησης του Σχεδίου Δράσης Αθήα, Δεκέμβριος 2011 1 Έτυπο Παρακολούθησης/
Γραπτές ανακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις
Γραπτές αακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις Δρ. Πααγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Για το υπολογισμό του βαθμού της ετήσιας επίδοσης τω
c f(x) = c f (x), για κάθε x R
(http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΚΕΦΑΛΑΙΟ ο. Τι οοµάζεται συάρτηση ; Είαι µια διαδικασία µε τη οποία κάθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα ακριβώς στοιχείο κάποιου άλλου συόλου Β.. Ποιες είαι οι κυριότερες γραφικές παραστάσεις
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΘΟΔΟΛΟΓΙΑ
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΟΡΙΣΜΟΙ ΠΡΑΞΕΙΣ ΣΥΖΥΓΕΙΣ ΜΕΤΡΟ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΘΟΔΟΣ Για α υπολογίσουμε δυάμεις με ακέραιο εκθέτη σε παράσταση με i χρησιμοποιούμε γωστές ταυτότητες και έχουμε υπόψη ότι: i. v v- = με ακέραιο
{[ 140,150 ),[ 160,170 ),...,[ 200, 210]
Σημειώσεις στη Πληροφορική ΙΙΙ 1. Πείραμα τύχης και πιθαότητα Έα φυσικό φαιόμεο με χαρακτηριστικά που δε μπορούμε α τα προβλέψουμε, οομάζεται στοχαστικό ή τυχαίο. Για παράδειγμα το ύψος τω κυμάτω στη θάλασσα,
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ
.Να συμπληρώσετε το παρακάτω πίακα. f N F f 0 0 F 0 0 8 0,4 0 5 4 0,9 5 0 Σύολο. Οι μαθητές του Γ για το μήα Νοέμβρη απουσίασα από το σχολείο τους έως τέσσερις μέρες σύμφωα με το παρακάτω πίακα. ) Να συμπληρωθεί
Τι είναι εκτός ύλης. Σχολικό έτος
Τι είαι εκτός ύλης. Σχολικό έτος 06-07 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε. Το Λεξιλόγιο της Λογικής...9 Ε. Σύολα...3 ΚΕΦΑΛΑΙΟ o: Πιθαότητες. Δειγματικός Χώρος - Εδεχόμεα...0. Έοια της Πιθαότητας...9 ΚΕΦΑΛΑΙΟ
4. Βασικές κατανομές και το Κεντρικό Οριακό Θεώρημα
Μάθημα: Στατιστική (Κωδ. 5) Διδάσκω: Γιώργος Κ. Παπαδόπουλος 4. Βασικές καταομές και το Κετρικό Οριακό Θεώρημα Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Η διωυμική καταομή με παραμέτρους και p Η
c f(x) = c f (x), για κάθε x R
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 2. Τυχαίες μεταβλητές-βασικές κατανομές
Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ 860) Τυχαίες μεταβλητές-βασικές καταομές Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Ο κλασικός ορισμός της πιθαότητας (Laplace, 181) Ο στατιστικός ορισμός
ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή
Μέρος πέµπτο ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ Εισαγωγή Στα προηγούµεα κεφάλαια είδαµε τις διάφορες µεθόδους συλλογής και επεξεργασίας του βιοµετρικού υλικού. Κάθε βιοµετρική επεξεργασία όµως έχει
ΕΤΗΣΙΟΣ ΑΠΟΛΟΓΙΣΜΟΣ 2014
ΕΤΗΣΙΟΣ ΑΠΟΛΟΓΙΣΜΟΣ 2014 Κάθε χρόο, οι Δήμοι μέλη του Εθικού Διαδημοτικού Δικτύου Υγιώ Πόλεω- Προαγωγής Υγείας, εκπληρώοτας τα κριτήρια που θέτει ο Παγκόσμιος Οργαισμός Υγείας για τις πόλεις μέλη τω Εθικώ
+ + = + + α ( β γ) ( )
ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ Αριθµητική παράσταση Αριθµητική παράσταση λέγεται µια σειρά αριθµώ που συδέοται µεταξύ τους µε πράξεις. Η σειρά τω πράξεω σε µια αριθµητική παράσταση είαι η εξής: 1. Υπολογίζουµε
Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού
Κι όµως, τα Ρολόγια «κτυπού» και Εξισώσεις: Η Άλγεβρα τω εικτώ του Ρολογιού Εισαγωγικά ηµήτρης Ι. Μπουάκης Σχ. Σύµβουλος Μαθηµατικώ Σε ορισµέα βιβλία Αριθµητικής, αλλά κυρίως Άλγεβρας Β Γυµασίου και Α
ΕΤΗΣΙΟΣ ΑΠΟΛΟΓΙΣΜΟΣ 2015
ΕΤΗΣΙΟΣ ΑΠΟΛΟΓΙΣΜΟΣ 2015 Κάθε χρόο, οι Δήμοι μέλη του Εθικού Διαδημοτικού Δικτύου Υγιώ Πόλεω- Προαγωγής Υγείας, εκπληρώοτας τα κριτήρια που θέτει ο Παγκόσμιος Οργαισμός Υγείας για τις πόλεις μέλη τω Εθικώ
Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 1. Περιγραφική Στατιστική
Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 860). Περιγραφική Στατιστική Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός πειράματος τύχης
Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα
Ιγάτιος Ιωαίδης Στατιστική Όριο - Συέχεια συάρτησης Παράγωγοι Ολοκληρώματα Περιέχει: Συοπτική Θεωρία Μεθοδολογία Λύσης τω Ασκήσεω Λυμέα Παραδείγματα Ασκήσεις με τις απατήσεις τους ΘΕΣΣΑΛΟΝΙΚΗ Το βιβλίο
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΚΕΝΤΡΟ ΕΛΕΓΧΟΥ & ΠΡΟΛΗΨΗΣ ΝΟΣΗΜΑΤΩΝ (ΚΕ.ΕΛ.Π.ΝΟ.) ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ & ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΓΓΥΗΣ. (Τμήμα Επιδημιολογικής Επιτήρησης και Παρέμβασης)
ΚΕΝΤΡΟ ΕΛΕΓΧΟΥ & ΠΡΟΛΗΨΗΣ ΝΟΣΗΜΑΤΩΝ (ΚΕ.ΕΛ.Π.ΝΟ.) ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ & ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΓΓΥΗΣ (Τμήμα Επιδημιολογικής Επιτήρησης και Παρέμβασης) ΕΠΙΔΗΜΙΟΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ ΦΥΜΑΤΙΩΣΗΣ ΣΤΗΝ ΕΛΛΑΔΑ, 2004-2010 Η
είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους v,. Συχνότητα (απόλυτη) νi
ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός λέγεται έα σύολο που θέλουμε α εξετάσουμε τα στοιχεία του ως προς έα ή περισσότερα χαρακτηριστικά τους Μεταβλητές λέγοται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε
4. Αντιδράσεις πολυμερισμού
4. Ατιδράσεις πολυμερισμού Ποια μόρια οομάζοται μακρομόρια Τα μακρομόρια είαι μόρια μεγάλου μοριακού βάρους που σχηματίζοται από τη συέωση (= πολυμερισμό) απλούστερω δομικά μορίω (= μοομερή) σύμφωα με
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΗΜΟΣΙΑΣ ΔΙΑΒΟΥΛΕΥΣΗΣ
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΗΜΟΣΙΑΣ ΔΙΑΒΟΥΛΕΥΣΗΣ Στο παρακάτω πίακα παρουσιάζοται τα σχόλια και οι παρατηρήσεις που υποβλήθηκα στο πλαίσιο της από 21.3.2011 δημόσιας αακοίωσης πρόσκλησης της ΡΑΕ για υποβολή απόψεω επί
Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου
Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)
ΓΙΑ ΜΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Περιοδικό ΕΥΚΕΙΔΗ Β Ε.Μ.Ε. (τεύχος 7) ΕΡΩΤΗΕΙ ΚΑΤΑΝΟΗΗ ΓΙΑ ΜΙΑ ΕΠΑΝΑΗΨΗ ΤΗΝ ΥΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ Α) Να χαρακτηρίσετε τις παρακάτω προτάσεις με () α είαι σωστές και με () α είαι λάθος, αιτιολογώτας
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
5. Περιγραφική Στατιστική
Μάθημα: Στατιστική (Κωδ. 05) Διδάσκω: Γιώργος Κ. Παπαδόπουλος 5. Περιγραφική Στατιστική Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πληθυσμός (ή στατιστικός πληθυσμός) Τυχαίο δείγμα και πραγματοποίηση
Η παραπάνω ιδιότητα γενικεύεται και για περισσότερους από δύο πραγµατικούς αριθµούς. Έτσι έχουµε: αβγ α β γ = β β. d a β = α
ΑΜΥΡΑ ΑΚΗ 0, ΝΙΚΑΙΑ ΤΗΛ:0-903576 e-mail : tetrakti@ otenet.gr γρήγορα&εύκολα www.tetraktis.gr ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΜΑΘ Α0 ΑΠΟΛΥΤΗ ΤΙΜΗ Τυπολόγιο - Μεθοδολογία. Ορισµός: Έστω α έας πραγµατικός
ΑΣΕΠ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΚΛΑΔΟΣ: ΠΕ 03 Μαθηματικών
ΑΣΕΠ ΕΚΠΑΙΔΕΥΤΙΚΩΝ 9 ΚΛΑΔΟΣ: ΠΕ 3 Μαθηματικώ Ερώτημα Ο Εισαγωγή ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΕΡΩΤΗΜΑΤΑ ΕΙΔΙΚΗΣ ΔΙΔΑΚΤΙΚΗΣ. Το συγκεκριμέο ερώτημα θα μπορούσε α έχει ισοδύαμα τη μορφή: «Να προτείετε σχέδιο μαθήματος,
5. Περιγραφική Στατιστική
Μάθημα: Στατιστική (Κωδ. 05) Διδάσκω: Γιώργος Κ. Παπαδόπουλος 5. Περιγραφική Στατιστική Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πληθυσμός (ή στατιστικός πληθυσμός) Τυχαίο δείγμα και πραγματοποίηση
Κάνουμε πρώτα διαλογή και κατασκευάζουμε τον πίνακα συχνοτήτων: και επίσης κατασκευάζουμε το ραβδόγραμμα: Αυτοκίνητο Τραμ Τρόλεϊ Μετρό Λεωφορείο
.Στη ερώτηση με ποιο μέσο πηγαίετε στη δουλειά σας 0 άτομα απάτησα: αυτοκίητο, τραμ, τρόλεϊ, αυτοκίητο, λεωφορείο, τραμ, τραμ, αυτοκίητο, λεωφορείο, τραμ, τρόλεϊ, αυτοκίητο, τραμ, αυτοκίητο, μετρό, τρόλεϊ,
Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ
Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ ΕΙΣΑΓΩΓΗ Όπως είαι γωσό, η Μουσική είαι Μαθημαικά και (σο βάθος) υπάρχει, μία «αδιόραη αρμοία» μεαξύ αυώ ω δύο. Έα μουσικό έργο, διέπεαι από μαθημαικούς όμους, σε ό,ι αφορά ις σχέσεις
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ δ υ α σ τ ι κ ή Πειραιάς 7 Μάθημα 8ο ΣΥΝΔΥΑΣΤΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ Μ. Κούτρας Συδυαστική 7-8 8 Το διωυμικό θεώρημα μπορεί α αποτελέσει τη βάση για τη απόδειξη
Δυνάμεις πραγματικών αριθμών
Κεφάλαιο 1 ο 45 Β. Δυάμεις πραγματικώ αριθμώ Α έχουμε έα γιόμεο της μορφής (-) (-) (-) (-) όπου κάθε παράγοτας είαι (δηλαδή ο ίδιος ο αριθμός) μπορούμε α το συμβολίσουμε με μια πιο απλή μορφή : (-) 4.
δειγµατοληψία µέθοδοι συλλογής στοιχείων δίκτυο & ζωνικό σύστηµα βασικές έννοιες διαστήµατα εµπιστοσύνης
δειγµατοληψία µέθοδοι συλλογής στοιχείω δίκτυο & ζωικό σύστηµα ΕΙΓΜΑΤΟΛΗΨΙΑ : Βασικές έοιες Μέθοδος ειγµατοληψία κατά στρώµατα: Χρησιµοποιείται υπάρχουσα ειγµατοληψίας πληροφορία για α χωρισθεί ο πληθυσµός
4. Δεσμευμένη Πιθανότητα - Ανεξαρτησία Ενδεχομένων
Δεσμευμέη Πιθαότητα Αεξαρτησία Εδεχομέω 4 Δεσμευμέη Πιθαότητα - Αεξαρτησία Εδεχομέω 4 Γιατί δεσμευμέη πιθαότητα Το όημα της δεσμευμέης πιθαότητας Η πιθαότητα, ως έα μέτρο του βαθμού βεβαιότητας που έχουμε
Όταν πραγματοποιείται το Α πραγματοποιείται και το Β.
Βασικές έοιες και τύποι πιθαοτήτω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός πειράματος τύχης (πεπερασμέος, απείρως αριθμήσιμος, συεχής) Εδεχόμεα Α, Β, (απλά, σύθετα) Βέβαιο εδεχόμεο Αδύατο
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ Στο άρθρο αυτό θα παρουσιάσουμε μια μικρή συλλογή ασκήσεω οι οποίες καλύπτου τις έοιες που μάθαμε στο κεφάλαιο της Στατιστικής. Σε
----- : Ψαρών 15 - Γραφείο 620 Διοικητήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑ- ΤΩΝ ----- Καλαμάτα, 26/10/2017 / ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΕΛΟΠΟΝΝΗΣΟΥ Αρ.Πρωτ.661 ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ
{[ 140,150 ),[ 160,170 ),...,[ 200, 210]
Σημειώσεις στις Πιθαότητες Πείραμα τύχης και πιθαότητα Έα φυσικό φαιόμεο με χαρακτηριστικά που δε μπορούμε α τα προβλέψουμε, οομάζεται στοχαστικό ή τυχαίο Για παράδειγμα το ύψος τω κυμάτω στη θάλασσα,
ΜΑΘΗΜΑ Πράξεις Συζυγής
ΜΑΘΗΜΑ. Πράξεις Συζυγής Ασκήσεις Εξισώσεις Από σχέση σε σχέση ΑΣΚΗΣΕΙΣ. Α, είαι οι ρίζες της εξίσωσης + i + = + i. 5 = 7 + i + 5 + 7 = 0 + = = = 7, α αποδείξετε ότι =, = 7 = 7 ( + ) + i = + i 5 7 5 = 6
Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας
ΘΕΜΑ Α. Παελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γεικης Παιδειας Θέµατα-Εδεικτικές Λύσεις Νικόλαος. Κατσίπης 17 Μαϊου 2010 Α1. Εστω t 1, t 2,..., t οι παρατηρήσεις µιας ποσοτικής µεταβλητής X εός δείγµατος
1. Το σύνολο των μιγαδικών αριθμών
Το σύολο τω μιγαδικώ αριθμώ Γωρίζουμε ότι η εξίσωση δε έχει λύση στο σύολο τω πραγματικώ αριθμώ Για α ξεπεράσουμε αυτή τη αδυαμία «μεγαλώσαμε» το σύολο και δημιουργήσαμε το σύολο, έτσι, ώστε α έχει τις
φ = 2ω = = 2 2(ν 2) + 4 = 2 + 4
Γιατί οι μέλισσες κάου εξαγωικές τις κηρήθρες τους ; Χριστία Δασκαλάκη Α.Μ. 99 Ημερομηία παράδοσης 9-10-014 Θεωρούμε έα καοικό -γωο και σημειώουμε μια γωία του καθώς και τις γωίες του ισοσκελούς τριγώου
Παρουσίαση 1 ΜΕΤΡΑ ΘΕΣΗΣ
Παρουσίαση ΜΕΤΡΑ ΘΕΣΗΣ Παρουσίαση.4 Μέτρα θέσης Στη συέχεια θα περιγράψουµε κάποια µέτρα, τα οοµαζόµεα µέτρα θέσης. Τα µέτρα θέσης µίας καταοµής, είαι κάποια αριθµητικά µεγέθη που δίου τη θέση του κέτρου
Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4
(http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Μετρήσεις Χρόνου Η ακρίβεια
Μετρήσεις Χρόου Η ακρίβεια 1. 1. Παρατηρώτας διάφορες συσκευές μέτρησης του χρόου στις παρακάτω εικόες, ατιστοίχισε ποιες είαι "κλεψύδρα", "ααλογικές", "ηλιακές", "ψηφιακές" και συμπλήρωσε το παρακάτω
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΙΟΥΝΙΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Επίπεδο εκπαίδευσης πατέρα 2
Περιγραφική Στατιστική Όπως, ήδη έχουμε ααφέρει, στόχος της Περιγραφικής Στατιστικής είαι, «η αάπτυξη μεθόδω για τη συοπτική και τη αποτελεσματική παρουσίαση τω δεδομέω» Για το σκοπό αυτό, έχου ααπτυχθεί,
ΜΕΡΟΣ ΙI ΥΠΟΔΕΙΓΜΑΤΑ ΕΝΔΟΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ
ΜΕΡΟΣ ΙI ΥΠΟΔΕΙΓΜΑΤΑ ΕΝΔΟΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλαιο 7 ΑΝΘΡΩΠΙΝΟ ΚΕΦΑΛΑΙΟ Εισαγωγή Στα επόμεα Κεφάλαια η αάλυση θα επικετρωθεί στη κατηγορία υποδειγμάτω που αποκαλούται υποδείγματα εδογεούς
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 7-05-00 ΘΕΜΑ Α Α. ος τρόπος Οι παρατηρήσεις t, t,..., t έχου μέση τιμή. Οι έες παρατηρήσεις είαι της μορφής: yi = ti, όπου i =,,...,
7. Βασικές Συνεχείς Κατανομές και το Κεντρικό Οριακό Θεώρημα
Βασικές Συεχείς Καταομές και το Κετρικό Οριακό Θεώρημα 7. Βασικές Συεχείς Καταομές και το Κετρικό Οριακό Θεώρημα 7. Η Καοική Καταομή H καοική καταομή (normal dstrbuton) θεωρείται η σπουδαιότερη καταομή
2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ
ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ Σύμφωα με το ορισμό του R, η πρόσθεση και ο πολλαπλασιασμός δύο μιγαδικώ αριθμώ γίοται όπως ακριβώς και οι ατίστοιχες πράξεις με διώυμα α + βx στο, όπου βέβαια ατί για
(c f (x)) = c f (x), για κάθε x R
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Α η συάρτηση f είαι
ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικώ της Ώθησης ευτέρα, 7 Μα ου 00 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 ευτέρα, 7 Μα ου 00 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ
Στον πίνακα που ακολουθεί φαίνονται οι παρατηρήσεις που πήραμε για το ύψος και το βάρος 16 εργατών μιας βιομηχανίας.
Συσέτιση δύο μεταβλητώ Συσέτιση δύο μεταβλητώ Θεωρούμε δύο τυαίες μεταβλητές X, Y και ζεύγη παρατηρήσεω,,,,...,, από τυαίο δείγμα μεγέθους. Ααφερόμαστε, δηλαδή, σε μη πειραματικά δεδομέα ο ερευητής δε
ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ
ΚΕΦΑΛΑΙΟ 4 ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ. ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ H απλούστερη συεχής καταοµή πιαότητας είαι η οµοιόµορφη η οποία εκχωρεί ίσες (οµοιόµορφες) πιαότητες στα στοιχειώδη δυατά αποτελέσµατα εός τυχαίου
2 ΣΤΑΤΙΣΤΙΚΗ Εισαγωγή
ΣΤΑΤΙΣΤΙΚΗ Εισαγωγή Ο όρος Στατιστική εδεχομέως α προέρχεται από τη λατιική λέξη status (πολιτεία, κράτος) η οποία, χρησιμοποιήθηκε αρχικά για το χαρακτηρισμό αριθμητικώ δεδομέω που ααφέροται κυρίως στο
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Θεωρία - Μέθοδοι
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχολογική Κατεύθυση Θεωρία - Μέθοδοι ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Μάθημα ο ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ Η εξίσωση x δε έχει λύση στο σύολο τω πραγματικώ αριθμώ, αφού
«Πίνουν» το αίμα μισθωτών και συνταξιούχων Υποθηκεύουν το μέλλον της χώρας και των νέων
HPøMENO TE O OΔIKA PI PI ΔEΣ ΠE AÚÈıÌfi Õ ÂÈ 1439/99 MHNIAIA E Φ H M E P I Δ A γ ι α τ η T O Π Ι Κ Η A Y T O Δ I O I K H Σ H (X+7) EKΔOTΩN EΦHME T. Ú ÊÂ Ô KEM A KAPOΛOY 24 104 37 AΘHNA ETOΣ 13ο ΦYΛΛO 150ο
78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας
Στα Μαθηματιά Γειής Παιδείας Tι οομάζουμε συάρτηση Tι οομάζουμε παραγματιή συάρτηση πραγματιής μεταβλητής Μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α πεδίο ορισμού ατιστοιχίζεται σε έα αριβώς στοιχείο
www.fr-anodos.gr (, )
ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Το lim f ( ) έχει όηµα σε γειτοικά σηµεία µε το δηλαδή ότα ( a, ) (, β ) a. Δε µε εδιαφέρει α το ίδιο το αήκει η όχι στο πεδίο ορισµού της f αλλά µε εδιαφέρει α υπάρχου στο πεδίο ορισµού
4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή
49 43 ΔΙΑΙΡΕΤΟΤΗΤΑ Εισαγωγή Στα Στοιχεία του Ευκλείδη, βιβλία VII, VIII και IX (περίπου 300 πχ), οι θετικοί ακέραιοι παριστάοται ως ευθύγραμμα τμήματα και η έοια της διαιρετότητας συδέεται άμεσα με τη
ΔΗΜΟΣ ΣΠΑΤΩΝ ΑΡΤΕΜΙΔΟΣ Σελίδα 1 από 5
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΣΠΑΤΩΝ ΑΡΤΕΜΙΔΟΣ Α Π Ο Σ Π Α Σ Μ Α Από τα πρακτικά της με αριθμό 30 ης Τακτικής Συεδρίασης της 24 ης Νοεμβρίου 2015 ΑΡΙΘΜ. ΑΠΟΦ. 319/2015 Π Ε Ρ Ι Λ Η Ψ Η Λήψη απόφασης
«Χρηματοδοτική Ανάλυση και Διοικητική», Τόμος A
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδώ : Διοίκηση Επιχειρήσεω και Οργαισμώ Θεματική Εότητα : Δ.Ε.Ο. 3 Χρηματοοικοομική Διοίκηση Ακαδημαϊκό Έτος : 202-203 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ «Χρηματοδοτική Αάλυση
Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει α είαι σε θέση: 1 Να μπορεί α βρίσκει απο τη γραφική παράσταση μιας συάρτησης το πεδίο ορισμού της το σύολο τιμώ της τη τιμή της σε έα σημείο x 2
ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΗΣ/ΕΩΝ ΠΡΟΣ ΣΥΝΑΨΗ ΣΥΜΒΑΣΗΣ/ΕΩΝ ΜΙΣΘΩΣΕΩΣ ΕΡΓΟΥ ΙΔΙΩΤΙΚΟΥ ΔΙΚΑΙΟΥ Π371_06_04_2015
ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΗΣ/ΕΩΝ ΠΡΟΣ ΣΥΝΑΨΗ ΣΥΜΒΑΣΗΣ/ΕΩΝ ΜΙΣΘΩΣΕΩΣ ΕΡΓΟΥ ΙΔΙΩΤΙΚΟΥ ΔΙΚΑΙΟΥ Π371_06_04_2015 ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΕΩΝ ΠΡΟΣ ΣΥΝΑΨΗ
Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2
Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ ΕΙΔΗ ΕΞΙΣΩΣΗΣ ( ΔΙΕΡΕΥΝΗΣΗ ΕΞΙΣΩΣΗΣ): i. αχ=β µε α 0 έχει µία λύση ii. 0χ=β µε β 0 αδύατη εξίσωση ( καµία λύση ) iii. 0χ=0 αόριστη εξίσωση ( άπειρες λύσεις ) ΕΙΔΗ ΣΥΣΤΗΜΑΤΟΣ (ΔΙΕΡΕΥΝΗΣΗ
ΕΥΕΛΙΚΤΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΗΜΥ 499
ΕΥΕΛΙΚΤΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΗΜΥ 499 ΕΙΔΙΚΕΣ ΣΥΣΚΕΥΕΣ ΙΣΧΥΟΣ ~ ΔΥΝΑΜΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΤΑΣΗΣ,, DVR ΕΝΟΠΟΙΗΜΕΝΟΣ ΡΥΘΜΙΣΤΗΣ ΠΟΙΟΤΗΤΑΣ ΙΣΧΥΟΣ, UPQC Δρ Αδρέας Σταύρου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ
ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
1. Τι λέγεται δειγματικός χώρος εός πειράματος τύχης. Το σύολο τω δυατώ αποτελεσμάτω λέγεται δειγματικός χώρος (sample space) και συμολίζεται συήθως με το γράμμα Ω. Α δηλαδή ω 1,ω 2,...,ω κ είαι τα δυατά
Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ.
Μάθημα: Στατιστική αάλυση δεδομέω με χρήση Η/Υ του 8 ου Εξαμήου Σπουδώ του Τμήματος Βιοτεχολογίας Διδάσκω: Γιώργος Κ. Παπαδόπουλος 5. Γραμμική Συσχέτιση και Παλιδρόμηση Σύτομη αασκόπηση ασικώ εοιώ, προτάσεω
(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ
ΙΑΙΡΕΤΟΤΗΤΑ Ορισµός: Λέµε ότι ο ακέραιος β 0διαιρεί το ακέραιο α και γράφουµε β/α, ότα η διαίρεση του α µε το β είαι τέλεια, δηλαδή υπάρχει κ Z τέτοιος ώστε α = κ β. Συµβολίζουµε ότι α = πολβ. Α ο β δε
xf(y) + yf(x) = (x + y)f(x)f(y)
ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ Επιμέλεια: Καρράς Ιωάης Μαθηματικός Φίλος μὲ δή, ὡς ἔοικε, τούτῳ τῷ λόγῳ ὁ ἀγαθὸς ἔσται, ἐχθρὸς δὲ ὁ ποηρός. gxkarras@gmail.com 1. Να βρεθού όλες οι συαρτήσεις f : R R για τις οποίες
5.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΜΟΡΦΗ ΜΙΓΑΔΙΚΟΥ
5 54 ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΜΟΡΦΗ ΜΙΓΑΔΙΚΟΥ Εισαγωγή Η αοδοχή τω μιγαδικώ αριθμώ, εκτός αό τις δυατότητες ου άοιξε στη είλυση τω εξισώσεω, έδωσε μεγάλη ευελιξία στο αλγεβρικό λογισμό Για αράδειγμα, η αράσταση
Στατιστική. μονάδα και ισχύει: i. ν ν. = ή ως ποσοστό % οπότε % = i fi
Στατιστική "Υπάρχου τα μικρά ψέματα, τα μεγάλα ψέματα και οι στατιστικές" Μαρκ Τουαί Σε κάθε πρόβλημα της Στατιστικής υπάρχει έας «πληθυσμός» Ω τα στοιχεία του οποίου (άτομα) εξετάζοται ως προς έα χαρακτηριστικό
Οικονομικά Στοιχεία για τις Ξένες Γλώσσες στην Ελλάδα
Οικοομικά Στοιχεία για τις Ξέες Γλώσσες στη Ελλάδα Τα στοιχεία που παρατίθεται έχου ατληθεί αυτούσια από τη δημοσιευμέη Έκθεση του Κέτρου Αάπτυξης Εκπαιδευτικής Πολιτικής της ΓΣΕΕ με τίτλο «Τα Βασικά Μεγέθη
Παρατηρήσεις 1 Για α ααζητήσουµε το όριο της f στο, πρέπει η f α ορίζεται όσο θέλουµε κοτά στο, δηλαδή η f α είαι ορισµέη σ έα σύολο της µορφής ( α, )
Η έοια του ορίου Όριο συάρτησης Ότα οι τιµές µιας συάρτησης f προσεγγίζου όσο θέλουµε έα πραγµατικό αριθµό l, καθώς το προσεγγίζει µε οποιοδήποτε τρόπο το αριθµό, τότε γράφουµε lim f() = l και διαβάζουµε
Συσκευασίες από αλουμίνιο, π.χ. αναψυκτικά, μπίρες κ.ά. Συσκευασίες από λευκοσίδηρο, π.χ. από γάλα εβαπορέ, τόνο, ζωοτροφές, τοματοπολτό κ.ά.
ΑΝΑΚΥΚΛΩΣΗ ΣΥΣΚΕΥΑΣΙΩΝ Η Αακύκλωση σήμερα αποτελεί σηματική προτεραιότητα για το περιβάλλο και το μέλλο μας. Δε είαι μια εφήμερη τάση της εποχής, αλλά ατίθετα, υποχρέωση κάθε πολιτισμέης κοιωίας που συμβάλει
ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ορισµοί. Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 )
ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ 1 ορισµοί Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 ) Γησίως αύξουσα: σε έα διάστηµα του πεδίου ορισµού της λέγεται µια συάρτηση f ότα για κάθε χ 1,χ 2 µε χ 1
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Στατιστική είαι ο κλάδος τω μαθηματικώ, ο οποίος ως έργο έχει τη συγκέτρωση στοιχείω, τη ταξιόμησή τους και τη παρουσίασή τους σε κατάλληλη μορφή, ώστε α μπορού
ΘΕΜΑ : Ι ΑΚΤΙΚΟ ΥΛΙΚΟ ΓΥΜΝΑΣΙΟΥ (ΣΧΕ ΙΑ Ι ΑΣΚΑΛΙΑΣ)
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ /ΝΣΗ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΡΗΤΗΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ.Ε. Ν. ΗΡΑΚΛΕΙΟΥ ηµήτριος I. Μπουάκης Σχολικός Σύµβουλος Μαθηµατικώ
Παλµοκωδική ιαµόρφωση
Παλµοκωδική ιαµόρφωση Η παλµοκωδική διαµόρφωση (PCM) είαι το απλούστερο και αρχαιότερο σχήµα κωδικοποίησης κυµατοµορφής. Έας παλµοκωδικός διαµορφωτής αποτελείται από τρία βασικάµέρη: έαδειγµατολήπτηση,
ΟΔΗΓΟΣ ΠΡΟΠΟΝΗΣΗΣ ΑΝΑΠΤΥΞΙΑΚΩΝ ΗΛΙΚΙΩΝ (GRASSROOTS)
ΟΔΗΓΟΣ ΠΡΟΠΟΝΗΣΗΣ ΑΝΑΠΤΥΞΙΑΚΩΝ ΗΛΙΚΙΩΝ (GRASSROOTS) ΑΓΩΝΙΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2019 2020 Εισαγωγή Παρακάτω ααλύεται ο οδηγός προπόησης ααπτυξιακώ ηλικιώ για τη αγωιστική περίοδο 2019-2020 σε δυο επίπεδα ( Γεικό
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΗΜΟΣΙΑΣ ΔΙΑΒΟΥΛΕΥΣΗΣ
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΗΜΟΣΙΑΣ ΔΙΑΒΟΥΛΕΥΣΗΣ Στο παρακάτω πίακα παρουσιάζοται ομαδοποιημέα τα σχόλια και οι παρατηρήσεις που υποβλήθηκα στο πλαίσιο της από 17.9.2010 δημόσιας αακοίωσης πρόσκλησης της ΡΑΕ για υποβολή
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών z για τους οποίους ισχύει:
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ
υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ,
Προβλήματα Πιθαοτήτω Προβλήματα Πιθαοτήτω Από εξετάσεις που έγια σε 5000 ζώα μιας κτηοτροφικής μοάδας, διαπιστώθηκε ότι 000 είχα προσβληθεί από μια ασθέεια Α, 800 είχα προσβληθεί από μια ασθέεια Β εώ 00
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Μηχαολόγω Μηχαικώ Τοµέας Βιοµηχαικής ιοίκησης & Επιχειρησιακής Έρευας ΕΦΟ ΙΑΣΤΙΚΗ Σηµειώσεις Μαθήµατος Έλεγχος Αποθεµάτω Οι σηµειώσεις αυτές απευθύοται αποκλειστικά στους
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α.. Να αποδείξετε ότι η παράγωγος της συάρτησης f ( ), για κάθε R. Α.. Α.. (
ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Η Παρατηρησιακή Αστροφυσική ως Επιστήµη
ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ.. Η Παρατηρησιακή Αστροφυσική ως Επιστήµη Η Παρατηρησιακή Αστροφυσική-Αστροοµία κατέχει µια ξεχωριστή θέση ως επιστήµη, γιατί, εκτός από λίγες εξαιρέσεις, ολόκληρη η γώση και οι πληροφορίες
Ανάλυση Παλινδρόμησης. Εργαστήριο. Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 252
Αάλυση Παλιδρόμησης Αάλυση Παλιδρόμησης Με τη αάλυση παλιδρόμησης (regresson analss) εξετάζουμε τη σχέση μεταξύ δύο ή περισσοτέρω μεταβλητώ με σκοπό τη πρόβλεψη τω τιμώ της μιας, μέσω τω τιμώ της άλλης
, θα παίρνουμε πάντα την ίδια τιμή για το Υ. Για παράδειγμα, Υ 12
Αάλυση Παλιδρόμησης Αάλυση Παλιδρόμησης Με τη αάλυση παλιδρόμησης (regresson analss) εξετάζουμε τη σχέση μεταξύ δύο ή περισσοτέρω μεταβλητώ με σκοπό τη πρόβλεψη τω τιμώ της μιας, μέσω τω τιμώ της άλλης
Δεσμευμένη πιθανότητα και Ανεξαρτησία ενδεχομένων
Δεσμευμέη πιθαότητα και Αεξαρτησία εδεχομέω 4 Γιατί δεσμευμέη πιθαότητα Το όημα της δεσμευμέης πιθαότητας 4 Ο πολλαπλασιαστικός τύπος 4 Το θεώρημα ολικής πιθαότητας 44 Το θεώρημα Bayes 45 Αεξαρτησία εδεχομέω
5.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C
5 55 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C Εισαγωγή Η επίλυση τω εξισώσεω ου και 4ου βαθμού, η ααγκαστική επαφή με τους μιγαδικούς αριθμούς για τη έκφραση τω πραγματικώ ριζώ και η εξέλιξη του αλγεβρικού λογισμού
ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ ρ Αθ. Ρούτουλας Καθηγητής ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ 3 η ΤΣΙΜΕΝΤΑ - ΣΚΥΡΟ ΕΜΑ ΑΣΚΗΣΗ 10
ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ. 1. Τι ονομάζουμε σύνολο Μιγαδικών Αριθμών; Τι ονομάζουμε πραγματικό μέρος - φανταστικό μέρος ενός μιγαδικού αριθμού z = α + βi.
ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Τι οομάζουμε σύολο Μιγαδικώ Αριθμώ; Τι οομάζουμε πραγματικό μέρος - φαταστικό μέρος εός μιγαδικού αριθμού α + βi. Σύολο τω μιγαδικώ αριθμώ οομάζουμε έα υπερσύολο τω
ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ
ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Ρωτήσαμε 50 μαθητές μιας τάξης για το αριθμό τω αδελφώ τους Οι απατήσεις που πήραμε είαι: 0,,,,4,5 Α v, v, v, v4, v5, v 6 είαι οι ατίστοιχες συχότητες τους