MERANIE MERNEJ TEPELNEJ KAPACITY S VYUŽITÍM PROSTRIEDKOV MATLABU
|
|
- Οφέλια Ίσις Αγγελίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 MERANIE MERNEJ TEPELNEJ KAPACITY S VYUŽITÍM PROSTRIEDKOV MATLABU M. Lukáč, J. Terpák Technická univerzita v Košiciach Fakulta FBERG, Ústav riadenia a informatizácie výrobných procesov Slovenská republika Abstrakt Príspevok sa zaoberá meraním mernej tepelnej kapacity kalorimetrom s využitím prostriedkov MATLABu. Obsahuje analýzu základných pojmov, návrh blokovej schémy meracieho systému, resp. meracieho reťazca, realizáciu technických prostriedkov a realizáciu programových prostriedkov, t.j. tvorbu aplikácie v prostredí MATLAB určenej pre meranie mernej tepelnej kapacity látok, pričom aplikácia obsahuje spracovanie meraných dát a grafické užívateľské rozhranie. V závere príspevku sú uvedené výsledky overenia funkčnosti celého meracieho systému pre navrhnuté metódy merania a možnosti ďalšieho zlepšenia. 1 Analýza základných pojmov Z hľadiska merania mernej tepelnej kapacity k základným pojmom patria teplo, teplota, tepelná kapacita, merná tepelná kapacita a kalorimeter. Teplota je fyzikálna veličina charakterizujúca tepelný stav látok na základe jeho porovnania s referenčným stavom zvoleným za základ [1]. Teplo je miera zmeny vnútornej energie sústavy telesa, keď sa pri deji nekoná práca. Je to energia prenesená medzi sústavou a jej okolím pri teplotnom rozdiele medzi nimi. [1]. Tepelná kapacita je veľmi dôležitá pri procese vedenia tepla, akumulácii tepla a predstavuje množstvo dodaného tepla, ktoré ovplyvňuje hmotnosť a rozdiel teplôt. Teplo prijaté nejakým telesom je úmerné jeho hmotnosti a rozdielu jeho teplôt. Konštantou úmernosti je merná tepelná kapacita c, ktorá sa meria v jednotkách J/kg.K. Napríklad merná tepelná kapacita vody je c=4.19 kj/kg.k. To znamená, že je potrebné dodať energiu 4.19 kj, aby sme ohriali 1 kilogram vody o 1 K. Preto platí nižšie uvedený vzťah výpočtu c [2] c Q m. T, (1) kde Q je dodané teplo, m je hmotnosť telesa, T je rozdiel teplôt, o ktoré bolo teleso ohriate. Kalorimeter je zariadenie, ktoré sa využíva na určovanie merných tepelných kapacít rôznych látok. Kalorimeter určený pre meranie musí byť dobre tepelne izolovaný, aby sa predišlo a zabránilo stratám tepla do okolia a tým pádom predišlo skresleniu, nepresnostiam a chybám pri výsledkoch merania.[3] Pri určovaní hodnoty meraných tepelných kapacít látok sa využíva kalorimetrická rovnica, uvedená týmto vzťahom (2) c1m1 ( T1 TM ) c2m2 ( TM T2 ), (2) kde c 1 je merná tepelná kapacita prvej látky, c 2 je merná tepelná kapacita druhej látky, m 1 je hmotnosť prvej látky, m 2 je hmotnosť druhej látky, T 1 je teplota prvej látky, T 2 je teplota druhej látky, T M je výsledná teplota.
2 2 Návrh meracieho reťazca Pre vykonávanie samotných meraní a experimentov bol potrebný návrh meracieho reťazca. Merací reťazec pozostáva z nasledujúcich častí: zdroj, kalorimeter, termočlánok, vstupno-výstupná karta, osobný počítač. Uvažované sú dva druhy kalorimetrov: prvý je kalorimeter s interným odporovým ohrevom a druhý je kalorimeter bez interného odporového ohrevu. Kalorimeter s interným odporovým ohrevom vyžaduje elektrický zdroj pre správne fungovanie odporového ohrevu vody. Ďalej merací reťazec pozostáva z dvoch termočlánkov typu K, prvým termočlánkom meriame teplotu okolia a druhým termočlánkom meriame teplotu vody v kalorimetri. Termočlánky sú pripojené ku vstupno-výstupnej karte NI USB 6009 na jej dva analógové vstupy. Vstupno-výstupná karta je pripojená k osobnému počítaču prostredníctvom USB rozhrania [4]. Na nasledujúcom obrázku (Obr. 1) je znázornená bloková schéma meracieho reťazca. Obr. 1: Bloková schéma meracieho reťazca 3 Realizácia technických a programových prostriedkov Na základe návrhu meracieho reťazca boli následne realizované technické a programové prostriedky. 3.1 Technické prostriedky Ku kalorimetru s interným odporovým ohrevom bol potrebný zdroj elektrického napätia. Kalorimeter s interným odporovým ohrevom by mal byť pod napätím, vtedy keď sú špirály vo vode, aby nedošlo k ich poškodeniu. Odporový kalorimeter je pripojený k elektrickému zdroju dvomi prepojovacími káblami. Po zapojení prepojovacieho káblu je možné nastaviť na odporovom kalorimetri s interným ohrevom rôzne hodnoty odporov 2, 4 resp. 6 Ω. Pre kompaktnosť, praktickosť a ľahkú použiteľnosť sme zostrojili podložku vyrobenú z plexiskla (Obr. 2). V samotných začiatkoch bolo potrebné zistiť, či zariadenie funguje správne. Najprv sa prepojila karta s počítačom prostredníctvom USB kábla. Správnu funkčnosť a komunikáciu zariadenia s počítačom signalizuje a určuje blikanie zelenej led diódy, ktorá je umiestnená hneď pri USB vstupe na karte. Obr. 2: Kompletný merací reťazec
3 Po správnom zapojení USB karty a termočlánku bol nižšie uvedený zdrojový kód umiestnený do príkazového riadku a prostredníctvom uvedeného zdrojového kódu sa realizovali skúšobné merania. 1. s = daq.createsession('ni'); 2. s.addanaloginputchannel('dev2','ai0', 'Voltage'); 3. s.rate = 2; 4. s.durationinseconds = 5; 5. s.channels.range = [-1 1]; 6. [volty,time]=s.startforeground() Po zadaní všetkých uvedených príkazov do príkazového riadka sa zobrazili namerané hodnoty teploty vo voltoch. 3.2 Programové prostriedky Programové prostriedky boli realizované v prostredí MATLAB a predstavovali dve časti. Prvá časť sa zameriava na spracovanie nameraného signálu termočlánkom, a jeho prevod na teplotu a štatistické spracovanie nameraných teplôt prostredníctvom Data Acquisition Toolbox. Dáta, ktoré sme termočlánkom namerali boli vo voltoch, preto bol potrebný ich prevod na milivolty. Pre prevod milivoltov na teplotu sa využíva prevodová charakteristika termočlánku typu K vzťah(3), kedy na výpočet teploty z nameraného termoelektrického napätia sa používa inverzná funkcia, to znamená že teplota sa vyjadruje ako funkcia generovaného termoelektrického napätia [5] t b. U b U b U... bu... b U i n i n, (3) kde b 0 až b n sú koeficienty polynómu, U je generované termoelektrické napätie v (mv). V druhej časti je realizované grafické rozhranie medzi meracím systémom a užívateľom s využitím grafického užívateľského rozhrania GUI (Graphic User Interface), dôvodom je to aby sa zabezpečila interaktívna komunikácia s meracím systémom. Navrhnuté a realizované boli dve rôzne metódy merania v podobe dvoch samostatných aplikácii. Prvá metóda vyžaduje externý ohrev meranej vzorky a druhá metóda využívala priamo interný ohrev vody a vzorky v kalorimetri. Na nasledujúcom obrázku (Obr. 3) je znázornená aplikácia pre meranie mernej tepelnej kapacity kalorimetrom bez interného odporového ohrevu. Obr. 3: Aplikácia pre kalorimeter bez interného odporového ohrevu
4 Aplikácia sa skladá z desiatich samostatných krokov, z ktorých každý musí byť správne vykonaný, lebo je veľmi dôležitý pri výpočte mernej tepelnej kapacity vzorky. V prvom kroku aplikácie sa sleduje pripravenie meracieho reťazca, skontrolovanie častí meracieho reťazca a overenie správneho zapojenia. Druhým krokom v aplikácii je zadanie hmotnosti kalorimetra s vodou v kilogramoch do príslušného výstupného okna. Tretí krok v sebe zahŕňa spustenie merania teploty T1, prostredníctvom kliknutia na tlačidlo. Po kliknutí sa spustí meranie termočlánkom, ktorý meria teplotu okolia. Po vykonaní tohto merania sa meria teplota vody v kalorimetri druhým termočlánkom. Meranie tejto teploty trvá približne desať minút. Po uplynutí doby sa zobrazí teplota v okne v Celziových stupňoch. Štvrtým krokom je odváženie zvolenej vzorky na váhach a zapísanie nameranej hodnoty hmotnosti v kilogramoch do príslušného výstupného okna. Piatym krokom je pri meraní mernej tepelnej kapacity umiestnenie zvolenej meranej vzorky do 100 C vody. Odporúčame ju nechať v 100 C vode dostatočne dlhý čas, aby sme mali istotu, že vzorka bude mať teplotu 100 C. Šiestym krokom je po uplynutí doby ohrevu vzorky jej rýchle vybratie z vriacej vody a premiestnenie vzorky do kalorimetra. Po premiestení vzorky kalorimeter čo najrýchlejšie uzavrieme. Siedmym krokom je pri meraní mernej tepelnej kapacity spustenie merania teploty T2, prostredníctvom kliknutia na tlačidlo teplota T2 v okne teplota v stupňoch Celzia.. Po uplynutí doby merania sa zobrazí Pri siedmom kroku sa zobrazí graf nameraných hodnôt, v ktorom sú zobrazené namerané hodnoty upravené kĺzavým priemerom. V grafe je možné vidieť odozvu na jednotkový skok, ktorá nastane po vložení zohriatej meranej vzorky. Posledným ôsmym krokom je vypočítanie hodnoty meranej tepelnej kapacity vzorky. V poslednom ôsmom kroku klikneme na tlačidlo a program vypočíta mernú tepelnú kapacitu vzorky, ktorú aplikácia zaznačí do červeného políčka, uvedeného na predchádzajúcom obrázku (Obr. 3). 4 Overenie funkčnosti Po návrhu a realizácii prostriedkov bola overená funkčnosť navrhnutých metód, resp. aplikácií v prostredí MATLAB. Pri overení funkčností meracieho reťazca bolo najprv potrebné vybrať a zvoliť vhodnú vzorku určenú na meranie. Overenie metódy bolo realizované na vzorke mosadze so známou mernou tepelnou kapacitou cp=388.7 kj/kg.k. Realizované boli merania pri rôznych podmienkach a následne boli merania spracované a vyhodnotené v podobe tabuliek a grafov. Pre porovnanie meraní, ktoré sa realizovali na kalorimetri bez interného odporového sa využil vzťah (4), ktorý je určený na výpočet hodnoty relatívnej chyby v percentách, podľa nameraných hodnôt cp 100.( cp cp cp m ), (4) kde cp je známa merná tepelná kapacita a cp m je nameraná merná tepelná kapacita. V nasledujúcej tabuľke (Tab. 1) sú uvedené namerané teploty pri meraniach merných tepelných kapacít, vypočítané merné tepelné kapacity a relatívna chyba v percentách
5 Tab. 1: HODNOTY NAMERANÝCH ÚDAJOV Veličina Metóda 1 1.meranie 2. meranie 3.meranie čas ohrevu (min) T1 ( C) T2 ( C) merná tepelná kapacita (J.kg -1.K -1 ) relatívna chyba (%) Z uvedených výpočtov vyplýva, že čím dlhšie sa zohrievala vzorka v 100 C vode tým mala presnejšiu hodnotu nameranej mernej tepelnej kapacity mosadze. Je to z dôvodu, že vzorka pri realizovaní jednotlivých meraní postupne nadobúdala hodnotu 100 C, čiže pri meraniach 20 a 30 minút nebola ešte vzorka dostatočne zohriata na 100 C. Na nasledujúcom (Obr. 3) je porovnanie jednotlivých meraní. Kde je vidieť, že k presnej hodnote mernej tepelnej kapacity sa priblížilo najviac tretie meranie, keď sa vzorka ohrievala vo vode najdlhšie a to po dobu 40 minút. Obr. 3: Porovnanie meraní na kalorimetri bez interného odporového ohrevu 5 Záver Návrh meracieho reťazca pre meranie mernej tepelnej kapacity, jeho realizácia a overenie popísané v tomto príspevku poukazujú na možnosti realizácie laboratórnych meraní rôznych veličín s využitím jednoduchých technických prostriedkov a prostriedkov MATLABu. V prípade merania mernej tepelnej kapacity pomocou kalorimetra bez interného odporového ohrevu bola nameraná hodnota cp= J/kg/K, čo predstavuje 6.69% relatívnu chybu merania. Na hodnotu relatívnej chyby, resp. neistoty merania vplýva predovšetkým: nedostatočná izolácia plášťa a vrchnáku kalorimetra, použitie termočlánkov s vyššou neistotou merania,
6 použite iba 8 bitového A/D prevodníka. nezapočítanie mernej tepelnej kapacity kalorimetra, pomer medzi hmotnosťou vody a vzorky. Odstránením uvedených nedostatkov a zlepšením niektorých technických parametrov meracieho reťazca je možné znížiť hodnotu relatívnej chyby merania mernej tepelnej kapacity. Zoznam použitej literatúry [1] Petrovič,P Fyzika1. 1. vyd. Košice: EQUILIBRIA, s.r.o., s. ISBN [2] Gascha, H Pflanz,S Kompendium fyziky.,1.vyd.praha: Tlačiarne BB, spol. s.r.o., s., ISBN [3] Podmanická, P [online] [cit ]. Dostupné na internete: [4] NI USB 6009 manual. [online] publikované [citované ]. dostupné na internete: < [5] Halaj, M., Regtien, P., Kureková, E Meranie teploty[online] [cit ]. Dostupné na internete: < M. Lukáč matej.lukac@tuke.sk J. Terpák jan.terpak@tuke.sk
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
Meranie na jednofázovom transformátore
Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................
UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia
AerobTec Altis Micro
AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
PROTOKOL Z MERANÍ A PREVÁDZKY ELEKTRICKÝCH VYKUROVACÍCH ZARIADENÍ A=SÁLAVÝ PANEL, B=KONVEKTOR
Akcia: PROTOKOL Z MERANÍ A PREVÁDZKY ELEKTRICKÝCH VYKUROVACÍCH ZARIADENÍ A=SÁLAVÝ PANEL, B=KONVEKTOR Objednávateľ: Dodávateľ: QUANTUM ELECTRIC, 03039, м.київ, ПРОСПЕКТ 40-РІЧЧЯ ЖОВТНЯ, будинок 6, офіс
UČEBNÉ TEXTY. Pracovný zošit č.7. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.7 Vzdelávacia
Základné poznatky molekulovej fyziky a termodynamiky
Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Úloha č.:...xviii... Název: Prechodové javy v RLC obvode Vypracoval:... Viktor Babjak... stud. sk... F.. dne... 6.. 005
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických
REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu
1. Určenie VA charakteristiky kovového vodiča
Laboratórne cvičenia podporované počítačom V charakteristika vodiča a polovodičovej diódy 1 Meno:...Škola:...Trieda:...Dátum:... 1. Určenie V charakteristiky kovového vodiča Fyzikálny princíp: Elektrický
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003
Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium
MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:
1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených
Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým vyhodnotením.
Priezvisko a meno študenta: 216_Antropometria.xlsx/Pracovný postup Študijná skupina: Ročník štúdia: Antropometria Cieľ: Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým
Strana 1/5 Príloha k rozhodnutiu č. 544/2011/039/5 a k osvedčeniu o akreditácii č. K-052 zo dňa Rozsah akreditácie
Strana 1/5 Rozsah akreditácie Názov akreditovaného subjektu: CHIRANALAB, s.r.o., Kalibračné laboratórium Nám. Dr. A. Schweitzera 194, 916 01 Stará Turá IČO: 36 331864 Kalibračné laboratórium s fixným rozsahom
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)
ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály
7. Meranie teploty. Teoretický úvod
7. Meranie teploty Autor pôvodného textu: Drahoslav Barančok Úloha: Pomocou platinového odporového teplomeru okalibrujte termistorový teplomer a termočlánkový teplomer. Nakreslite kalibračné krivky teplomerov.
Model redistribúcie krvi
.xlsx/pracovný postup Cieľ: Vyhodnoťte redistribúciu krvi na začiatku cirkulačného šoku pomocou modelu založeného na analógii s elektrickým obvodom. Úlohy: 1. Simulujte redistribúciu krvi v ľudskom tele
ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI
ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI 1. Zadanie: Určiť odchýlku kolmosti a priamosti meracej prizmy prípadne vzorovej súčiastky. 2. Cieľ merania: Naučiť sa merať na špecializovaných
ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.
ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Úloha č.:...iv... Název: Meranie malých odporov Vypracoval:... Viktor Babjak... stud. sk... F 11.. dne... 5. 12. 2005 Odevzdal
RIEŠENIE WHEATSONOVHO MOSTÍKA
SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor
Cenník. prístrojov firmy ELECTRON s. r. o. Prešov platný od Revízne meracie prístroje
Cenník prístrojov firmy ELECTRON s. r. o. Prešov platný od 01. 01. 2014 Združené revízne prístroje: Revízne meracie prístroje prístroja MINI-SET revízny kufrík s MINI-01 (priech.odpor), MINI-02 (LOOP)
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z elektroniky
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z elektroniky Zpracoval: Marek Talába a Petr Bílek Naměřeno: 6.3.2014 Obor: F Ročník: III Semestr: VI Testováno:
Ročník: šiesty. 2 hodiny týždenne, spolu 66 vyučovacích hodín
OKTÓBER SEPTEMBER Skúmanie vlastností kvapalín,, tuhých látok a Mesiac Hodina Tematic ký celok Prierezo vé témy Poznám ky Rozpis učiva predmetu: Fyzika Ročník: šiesty 2 hodiny týždenne, spolu 66 vyučovacích
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
MERANIE NA TRANSFORMÁTORE Elektrické stroje / Externé štúdium
Technicá univerzita v Košiciach FAKLTA ELEKTROTECHKY A FORMATKY Katedra eletrotechniy a mechatroniy MERAE A TRASFORMÁTORE Eletricé stroje / Externé štúdium Meno :........ Supina :...... Šolsý ro :.......
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
MERANIE TEPELNEJ VODIVOSTI DRÔTU POMOCOU POČÍTAČA
Tvorivý učiteľ fyziky VI, Smolenice 7. 1. apríl 13 MERANIE TEPELNEJ VODIVOSTI DRÔTU POMOCOU POČÍTAČA Jozef Kúdelčík Katedra fyziky, Elektrotechnická fakulta, Žilinská univerzita v Žiline Abstrakt: Znalosť
Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť
Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky
Kontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S
1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava
Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu.
Laboratórna práca č.1 Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu. Zapojenie potenciometra Zapojenie reostatu 1 Zapojenie ampémetra a voltmetra
Ohmov zákon pre uzavretý elektrický obvod
Ohmov zákon pre uzavretý elektrický obvod Fyzikálny princíp: Každý reálny zdroj napätia (batéria, akumulátor) môžeme považova za sériovú kombináciu ideálneho zdroja s elektromotorickým napätím U e a vnútorným
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
Priezvisko: Ročník: Katedra chemickej fyziky. Krúžok: Meno: Dátum cvičenia: Dvojica:
Katedra chemickej fyziky Dátum cvičenia: Ročník: Krúžok: Dvojica: Priezvisko: Meno: Úloha č. 7 URČENIE HUSTOTY KVPLÍN Známka: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Meranie 1. Úlohy: a) Určte hustotu
SNÍMAČE TEPLOTY A PREVODNÍKY TEPLOTY. P r v á č a s ť Vymedzenie meradiel a spôsob ich metrologickej kontroly
Príloha č. 37 k vyhláške č. 210/2000 Z. z. SNÍMAČE TEPLOTY A PREVODNÍKY TEPLOTY P r v á č a s ť Vymedzenie meradiel a spôsob ich metrologickej kontroly 1. Táto príloha sa vzťahuje na odporové snímače teploty
11 Základy termiky a termodynamika
171 11 Základy termiky a termodynamika 11.1 Tepelný pohyb v látkach Pohyb častíc v látke sa dá popísať tromi experimentálne overenými poznatkami: Látky ktoréhokoľvek skupenstva sa skladajú z častíc. Častice
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
100626HTS01. 8 kw. 7 kw. 8 kw
alpha intec 100626HTS01 L 8SplitHT 8 7 44 54 8 alpha intec 100626HTS01 L 8SplitHT Souprava (tepelná čerpadla a kombivané ohřívače s tepelným čerpadlem) Sezonní energetická účinst vytápění tepelného čerpadla
Elektrický prúd v kovoch
Elektrický prúd v kovoch 1. Aký náboj prejde prierezom vodiča za 2 h, ak ním tečie stály prúd 20 ma? [144 C] 2. Prierezom vodorovného vodiča prejde za 1 s usmerneným pohybom 1 000 elektrónov smerom doľava.
Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017
Kompilátory Cvičenie 6: LLVM Peter Kostolányi 21. novembra 2017 LLVM V podstate sada nástrojov pre tvorbu kompilátorov LLVM V podstate sada nástrojov pre tvorbu kompilátorov Pôvodne Low Level Virtual Machine
ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM JASNÁ
ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM Teplo na prípravu teplej vody Ing. Zuzana Krippelová doc. Ing.Jana Peráčková, PhD. STN EN 15316-3-1- Vykurovacie systémy v budovách. Metóda
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
Tematický výchovno - vzdelávací plán
Tematický výchovno - vzdelávací plán Stupeň vzdelania: ISCED 2 Vzdelávacia oblasť: Človek a príroda Predmet: Fyzika Školský rok: 2016/2017 Trieda: VI.A, VI.B Spracovala : RNDr. Réka Kosztyuová Učebný materiál:
Termodynamika a molekulová fyzika
Termodynamika a molekulová fyzika 1. Teplota telesa sa zvýšila zo začiatočnej hodnoty 25,8 C na konečnú hodnotu 64,8 C. Aká bude začiatočná a konečná teplota v kelvinoch? Aký je rozdiel konečnej a začiatočnej
DIGITÁLNY MULTIMETER AX-100
DIGITÁLNY MULTIMETER AX-100 NÁVOD NA OBSLUHU 1. Bezpečnostné pokyny 1. Na vstup zariadenia neprivádzajte veličiny presahujúce maximálne prípustné hodnoty. 2. Ak sa chcete vyhnúť úrazom elektrickým prúdom,
PRINCÍPY MERANIA MALÝCH/VEĽKÝCH ODPOROV Z HĽADISKA POTREBY REVÍZNEHO TECHNIKA
XX. Odborný seminár PNCÍPY MEN MLÝCH/EĽKÝCH ODPOO Z HĽDSK POTEBY EÍZNEHO TECHNK 74 ýchova a vzdelávanie elektrotechnikov Doc. ng. Ľubomír NDÁŠ, PhD., Doc. ng. Ľuboš NTOŠK, PhD., katedra Elektroniky/OS
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
1. MERANIE VÝKONOV V STRIEDAVÝCH OBVODOCH
1. MERIE ÝKOO TRIEDÝCH OBODOCH Teoretické poznatky a) inný výkon - P P = I cosϕ [] (3.41) b) Zdanlivý výkon - úinník obvodu - cosϕ = I [] (3.43) P cos ϕ = (3.45) Úinník môže by v tolerancii . ím je
Základy metodológie vedy I. 9. prednáška
Základy metodológie vedy I. 9. prednáška Triedenie dát: Triedny znak - x i Absolútna početnosť n i (súčet všetkých absolútnych početností sa rovná rozsahu súboru n) ni fi = Relatívna početnosť fi n (relatívna
Meranie pre potreby riadenia. Snímače a prevodníky
Meranie pre potreby riadenia Snímače a prevodníky Meranie teploty Uskutočňuje sa nepriamo cez zmenu vlastností teplomernej látky Snímač je umiestnený v ochrannom puzdre oneskorenie prechodu tepla 2 Meranie
9 MERANIE TEPELNEJ VODIVOSTI MATERIÁLU
9 MERANIE TEPELNEJ VODIVOSTI MATERIÁLU CIEĽ LABORATÓRNEHO CVIČENIA Cieľom laboratórneho cvičenia je skúmať stacionárne a nestacionárne vedenie tepla vedením pozdĺž valcovej vzorky daného materiálu a určenie
Modul pružnosti betónu
f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
1 Meranie dĺžky posuvným meradlom a mikrometrom Meranie hustoty tuhej látky Meranie veľkosti zrýchlenia priamočiareho pohybu 23
Obsah 1 Laboratórny poriadok 5 2 Meranie fyzikálnych veličín 7 2.1 Metódy merania.............................. 8 2.2 Chyby merania.............................. 9 2.3 Spracovanie nameraných hodnôt.....................
Technická univerzita v Košiciach. ROČNÍKOVÁ PRÁCA č. 3 PRIBLIŽNÝ VÝPOČET TEPELNÉHO OBEHU LTKM
Technická univerzita Letecká fakulta Katedra leteckého inžinierstva ROČNÍKOVÁ PRÁCA č. 3 PRIBLIŽNÝ VÝPOČET TEPELNÉHO OBEHU LTKM Študent: Cvičiaci učiteľ: Peter Majoroš Ing. Marián HOCKO, PhD. Košice 6
Digitálny multimeter AX-572. Návod na obsluhu
Digitálny multimeter AX-572 Návod na obsluhu 1 ÚVOD Model AX-572 je stabilný multimeter so 40 mm LCD displejom a možnosťou napájania z batérie. Umožňuje meranie AC/DC napätia, AC/DC prúdu, odporu, kapacity,
UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť. Vzdelávacia oblasť:
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Vzdelávacia oblasť: Predmet:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF K PRAKTIKM III Úloha č.: 07 Název: Overenie Frenelových vzorcov Vypracoval: Viktor Babjak...tud. k. F 11...dne: 11. 04. 006 Odevzdal dne:...
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP
Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP 7 Obsah Analýza poruchových stavov pri skrate na sekundárnej strane transformátora... Nastavenie parametrov prvkov
ÚLOHA Č.4 CHYBY A NEISTOTY MERANIA DĹŽKOMERY MERANIE DĹŽKOVÝCH ROZMEROV SO STANOVENÍM NEISTÔT MERANIA Chyby merania Všeobecne je možné povedať, že chyba = nesprávna hodnota správna hodnota (4.1) pričom
STRIEDAVÝ PRÚD - PRÍKLADY
STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =
Rozdiely vo vnútornej štruktúre údajov = tvarové charakteristiky
Veľkosť Varablta Rozdelene 0 00 80 n 60 40 0 0 0 4 6 8 Tredy 0 Rozdely vo vnútornej štruktúre údajov = tvarové charakterstky I CHARAKTERISTIKY PREMELIVOSTI Artmetcký premer Vzťahy pre výpočet artmetckého
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory
www.eurofluid.sk 20-1 Membránové akumulátory... -3 Vakové akumulátory... -4 Piestové akumulátory... -5 Bezpečnostné a uzatváracie bloky, príslušenstvo... -7 Hydromotory 20 www.eurofluid.sk -2 www.eurofluid.sk
KLP-100 / KLP-104 / KLP-108 / KLP-112 KLP-P100 / KLP-P104 / KLP-P108 / KLP-P112 KHU-102P / KVM-520 / KIP-603 / KVS-104P
Inštalačný manuál KLP-100 / KLP-104 / KLP-108 / KLP-112 KLP-P100 / KLP-P104 / KLP-P108 / KLP-P112 KHU-102P / KVM-520 / KIP-603 / KVS-104P EXIM Alarm s.r.o. Solivarská 50 080 01 Prešov Tel/Fax: 051 77 21
MPO-02 prístroj na meranie a kontrolu ochranných obvodov. Návod na obsluhu
MPO-02 prístroj na meranie a kontrolu ochranných obvodov Návod na obsluhu MPO-02 je merací prístroj, ktorý slúži na meranie malých odporov a úbytku napätia na ochrannom obvode striedavým prúdom vyšším
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Úloha č.:...viii... Název: Meranie momentu zotrvačnosti kolesa Vypracoval:... Viktor Babjak... stud. sk... F 11.. dne...
MPO-01A prístroj na meranie priechodových odporov Návod na obsluhu
MPO-01A prístroj na meranie priechodových odporov Návod na obsluhu (Rev1.0, 01/2017) MPO-01A je špeciálny merací prístroj, ktorý slúži na meranie priechodového odporu medzi ochrannou svorkou a príslušnými
Meranie na trojfázovom asynchrónnom motore Návod na cvičenia z predmetu Elektrotechnika
Faulta eletrotechniy a informatiy T v Košiciach Katedra eletrotechniy a mechatroniy Meranie na trojfázovom asynchrónnom motore Návod na cvičenia z predmetu Eletrotechnia Meno a priezviso :..........................
Meno: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Graf Meranie
Katedra chemickej fyziky Dátum cvičenia: Ročník: Krúžok: Dvojica: Priezvisko: Meno: Úloha č. 5 MERANIE POMERNÉHO KOEFICIENTU ROZPÍNAVOSTI VZDUCHU Známka: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Graf
Učebné osnovy FYZIKA. FYZIKA Vzdelávacia oblasť. Názov predmetu
Učebné osnovy FYZIKA Názov predmetu FYZIKA Vzdelávacia oblasť Človek a príroda Stupeň vzdelania ISCED 2 Dátum poslednej zmeny 4. 9. 2017 UO vypracovala RNDr. Janka Schreiberová Časová dotácia Ročník piaty
URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA
54 URČENE MOMENTU ZOTRVAČNOST FYZKÁLNEHO KYVADLA Teoretický úvod: Fyzikálnym kyvadlom rozumieme teleso (napr. dosku, tyč), ktoré vykonáva periodický kmitavý pohyb okolo osi, ktorá neprechádza ťažiskom.
TESTER FOTOVOLTAICKÝCH A ELEKTRICKÝCH INŠTALÁCIÍ. Sprievodca výberom testerov fotovoltaických a elektrických inštalácií
Sprievodca výberom testerov fotovoltaických a elektrických inštalácií Model MI 3108 MI 3109 EurotestPV EurotestPV Lite Meranie Popis Izolačný odpor do 1000 V Spojitosť 200 ma BEZPEČNOSŤ Impedancia siete
Termodynamika v biologických systémoch
Termodynamika v biologických systémoch A. Einstein: Klasická termodynamika je jediná univerzálna fyzikálna teória, v ktorej aplikovateľnosť jej základných konceptov nebude nikdy narušená. A.S. Eddington
Príklady z entalpických bilancií (Steltenpohl, OCHBI) Zadanie 1
Príklady z entalpických bilancií (Steltenpohl, OCHBI) Zadanie Zadanie: Porovnajte množstvo tepelnej energie, ktoré musíte dodať jednotkovému množstvu (hmotnosti) amoniaku a vody pri ich zohriatí z teploty
DIGITÁLNY MULTIMETER AX-178. Návod na obsluhu
DIGITÁLNY MULTIMETER AX-178 Návod na obsluhu Obsah Kapitola 1: Informácie o bezpečnosti... 4 Bezpečnostné štandardy multimetra... 4 Upozornenia... 4 Záruka... 5 Kapitola 2: Popis prístroja... 5 Parametre