ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΒΑΘΜΙΔΑΣ.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΒΑΘΜΙΔΑΣ."

Transcript

1 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΒΑΘΜΙΔΑΣ. Η ΠΕΡΙΠΤΩΣΗ ΤΟΥ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΥ. James Clerk Maxwell

2 Ξεκινάμε με τις γνωστές μας εξισώσεις του Maxwell:.E (1.a). B (1.b) B (1.c) E t E B J t (1.d) Στην περίπτωση της ηλεκτροστατικς, η εξίσωση (1.c) απλουστεύεται: Με δεδομένο το γεγονός ότι: E (.1) Vr ( ) (.) (Ο στροβιλισμός του gradient οποιασδποτε βαθμωτς συνάρτησης είναι ίσος με το μηδέν), μπορούμε να βρούμε μια βαθμωτ συνάρτηση (το γνωστό μας δυναμικό), της οποίας το αντίθετο του gradient μας δίνει το ηλεκτρικό πεδίο. Δηλαδ: E V ( r) (.3) Αν δεν περιορισθούμε στην ηλεκτροστατικ, δηλαδ στη γενικ περίπτωση, το V είναι συνάρτηση της θέσης και του χρόνου, δηλαδ: V V ( r, t).

3 Επίσης από την εξίσωση (1.b)(νόμος του Gauss για το μαγνητισμό, ο οποίος μας λέει ότι δεν υπάρχουν «μαγνητικά μονόπολα» ισοδύναμα ότι οι μαγνητικές δυναμικές γραμμές είναι πάντα κλειστές) και με δεδομένο ότι για κάθε διανυσματικ συνάρτηση ισχύει: μπορούμε να γράψουμε: Johann Carl Friedrich Gauss.( A) (3.1) B A (3.) (όπου A, το γνωστό μας ανυσματικό δυναμικό, το οποίο στη γενικ περίπτωση είναι διανυσματικ συνάρτηση της θέσης και του χρόνου, δηλαδ A A( r, t) ). Ίσως να αναρωτηθεί κάποιος: ποια είναι η χρησιμότητα των δύο αυτών δυναμικών (του βαθμωτού V και του ανυματικού A ); Οι σχέσεις που συνδέουν τα V και A με τις «πηγές» (πυκνότητα φορτίου και πυκνότητα ρεύματος) είναι (γενικά) απλούστερες από τις αντίστοιχες που συνδέουν τα πεδία E και B με τις πηγές. Επίσης τα πεδία E και B έχουν συνολικά 6 συνιστώσες ενώ τα δυναμικά V και A μόνον 4 συνιστώσες. Έτσι λοιπόν η λύση του προβλματός μας (που είναι η εύρεση των πεδίων E και B με δεδομένες τις «πηγές» και τις συνοριακές συνθκες), διευκολύνεται με την εύρεση (αρχικά)

4 των δυναμικών V και A και στη συνέχεια των πεδίων, μέσω των εξισώσεων (.3) και (3.). Στη συνέχεια ας εισάγουμε τη σχέση: B A, στην εξίσωση (1.c) (νόμος της ηλεκτρομαγνητικς επαγωγς του Faraday). Θα έχουμε: B E t E ( A) t Michael Faraday A E ( ) (κάνοντας χρση του γεγονότος ότι οι τελεστές t (χωρικός) και t (χρονικός), μετατίθενται) A E ( ) t A (4) ( E ) t Από τη σχέση (4), μπορούμε (όπως περιγράψαμε και προηγουμένως) να γράψουμε: A E t V

5 A (5) E V t (Η παραπάνω σχέση (5) αποτελεί τη γενίκευση της σχέσης (.3) της ηλεκτροστατικς. Στη σχέση (5) το δυναμικό V είναι εν γένει συνάρτηση του r και του t). Ακολούθως εισάγουμε τη σχέση (5) στην εξίσωση (1.a) (νόμος του Gauss για τον ηλεκτρισμό) και έχουμε:.e A.( V ) t t V (. A) (οι τελεστές και t μετατίθενται) t V (. A) (6) André-Marie Ampère B Στη συνέχεια, βάζοντας τις σχέσεις: A και στην τέταρτη εξίσωση του Maxwell (σχέση (1.d), νόμος των Ampere- Maxwell), βρίσκουμε διαδοχικά:

6 E B J t ( A) J ( V A ) t t V A ( A) J ( ) t t Όμως, όπως είναι γνωστό από τη διανυσματικ ανάλυση: (7) Από τις (7) και (8) έχουμε: ( A) (. A) A (8) V t A t (. A) A J ( ) A V A A J t t ( ) (. ) Οι σχέσεις λοιπόν: t V (. A) (9) (6) A V A A J t t ( ) (. ) μας δίνουν την εξάρτηση των δυναμικών από τις «πηγές» και βέβαια (εκτός του ότι είναι και πεπλεγμένες») δείχνουν αρκετά δύσκολες για να λυθούν. Θα δούμε λοιπόν στη συνέχεια ότι οι εξισώσεις του ηλεκτρομαγνητισμού παραμένουν αναλλοίωτες κάτω από κατάλληλους μετασχηματισμούς, τους λεγόμενους μετασχηματισμούς βαθμίδας (gauge transformations) και θα χρησιμοποισουμε (9)

7 το γεγονός αυτό, ώστε (επιλέγοντας την κατάλληλη βαθμίδα ανάλογα με την περίπτωση) να «απλοποισουμε» τις εξισώσεις (6) και (9). Στο σημείο αυτό να πούμε ότι τα πεδία E και B είναι που μας ενδιαφέρουν, ενώ τα δυναμικά V και Aτα χρησιμοποιούμε για να διευκολυνθούμε στην εύρεση των πεδίων. Και θα δούμε παρακάτω ότι τα δυναμικά V και A δεν είναι «μονοσμαντα» ορισμένα, με την έννοια ότι (κατάλληλα) διαφορετικά δυναμικά, οδηγούν τελικά στα ίδια πεδία. Ας θεωρσουμε λοιπόν τα δυναμικά: A A a (1.1) V V b (1.) Το ερώτημά μας είναι: ποια σχέση πρέπει να ικανοποιούν τα a και b, ώστε τελικά τα πεδία που παράγονται από τα A και V να είναι τα ίδια με τα πεδία που παράγουν τα δυναμικά A και V (δηλαδ να είναι: E E και B B). Ξεκινάμε λοιπόν. Θέλουμε να είναι: B B. Αυτό σημαίνει ότι: A A ( A a) A Aa A Έτσι λοιπόν αρκεί να είναι: a (11)

8 a (1) (Με το να είναι τυχούσα βαθμωτ συνάρτηση, μιας και ως γνωστό ισχύει πάντα: ). Επίσης θέλουμε να είναι: E E. Αυτό σημαίνει ότι: A A V V t t A a A V b V t t t a b t b ( ) t ( b ) t Στην παραπάνω σχέση (13), ο όρος: b t (13) έχοντας μηδενικό gradient, είναι ανεξάρτητος της θέσης, μπορεί ωστόσο εν γένει να εξαρτάται από το χρόνο, δηλαδ να είναι: b k() t t, οπότε έχουμε: b k() t. Μπορούμε όμως να «απορροφσουμε» το t kt () ορίζοντας ένα νέο, που προκύπτει με την προσθκη του όρου: t k( t ) dt στο «παλιό» μας. Αυτ η αλλαγ δεν πρόκειται να επηρεάσει το gradient. Απλά θα προσθέσει τον όρο kt () στο

9 t. Έτσι λοιπόν, θέτοντας b, το δυναμικό:v V b, μας t δίνει το ίδιο ηλεκτρικό πεδίο E με το δυναμικό V. δυναμικά: Έτσι λοιπόν η αντικατάσταση των δυναμικών A και V, με τα αφνει «ανεπηρέαστα» τα πεδία E και B. A A (14.1) (14.) V V t Αν λοιπόν θεωρσουμε μια βαθμωτ συνάρτηση και προσθέσουμε το gradient της στο A (σχέση 14.1), αφαιρώντας ταυτόχρονα τη μερικ παράγωγό της ως προς το χρόνο από το V (σχέση 14.) θα δούμε τα πεδία E και B να παραμένουν αμετάβλητα. Τέτοιου είδους μετασχηματισμοί, όπως οι σχέσεις (14.1) και (14.) ονομάζονται μετασχηματισμοί βαθμίδας. (Λέμε επίσης ότι ο ηλεκτρομαγνητισμός είναι θεωρία που παραμένει αναλλοίωτη σε μετασχηματισμούς βαθμίδας). Μας παρέχουν τη δυνατότητα, επιλέγοντας κάθε φορά τον κατάλληλο μετασχηματισμό, όπως αλλιώς λέμε δουλεύοντας στην κατάλληλη βαθμίδα, να απλοποιούμε τις εξισώσεις που πρέπει να επιλύσουμε. Υπάρχουν δε πολλοί μετασχηματισμοί βαθμίδας που χρησιμοποιούνται στον ηλεκτρομαγνητισμό. Ανάμεσά τους, δύο είναι οι πιο «διάσημοι»: Η βαθμίδα Coulomb και η βαθμίδα Lorenz. Στα επόμενα θα δούμε λίγα για τις δύο αυτές βαθμίδες.

10 1. ΒΑΘΜΙΔΑ COULOMB Στη λεγόμενη βαθμίδα Coulomb (χρησιμοποιείται συνθως στη μαγνητοστατικ), θέτουμε: γράφεται:. A (15) Με τη συγκεκριμένη επιλογ, η σχέση (6) απλοποιείται και V (16) Στην σχέση (16) λοιπόν για το βαθμωτό δυναμικό V, αναγνωρίζουμε τη γνωστ μας εξίσωση Poisson. Αντίστοιχα, η σχέση (9), στη μαγνητοστατικ γράφεται: A(. A) J, σχέση η οποία στη βαθμίδα Coulomb γίνεται: A J (17) Καταλγουμε δηλαδ και πάλι στην εξίσωση Poisson, αυτ τη φορά για το ανυσματικό δυναμικό (Στην πραγματικότητα, όπως θα δούμε παρακάτω στο παράρτημα, πρόκειται για τρεις εξισώσεις Poisson, μία για κάθε συνιστώσα). Φυσικά, αν δεν περιορισθούμε στη μαγνητοστατικ, η εξίσωση (9), στη βαθμίδα Coulomb, γίνεται: A V ( ) t t A J (18) Μπορούμε τότε μέσω της (16) να βρούμε το V και να το εισάγουμε στην (18), όμως η εξίσωση εξακολουθεί να δείχνει «άκομψη» και να είναι δύσκολο να λυθεί. Συμπερασματικά λοιπόν η

11 βαθμίδα Coulomb είναι μια καλ επιλογ για την περίπτωση της μαγνητοστατικς. Στο παράρτημα θα δούμε ένα «πρόβλημα» που παρουσιάζει η συγκεκριμένη βαθμίδα και θα απαντσουμε στο ερώτημα: Έχουμε το δικαίωμα να θεωρσουμε εκ των προτέρων ότι το A έχει μηδενικ απόκλιση; ( ισοδύναμα μπορούμε να αντικαταστσουμε ένα ανυσματικό δυναμικό που παρουσιάζει απόκλιση με κάποιο άλλο μηδενικς απόκλισης, χωρίς τελικά να αλλάξουμε τα πεδία;) Στο σημείο αυτό απλά να αναφέρουμε (σε ελεύθερη απόδοση) τι γράφει (μεταξύ των άλλων) για το ερώτημα αυτό ο Griffiths: Η σχέση B A, μας δίνει το μαγνητικό πεδίο μέσω του στροβιλισμού του ανυσματικού δυναμικού, δεν μας λέει όμως τίποτα για την απόκλιση του εν λόγω δυναμικού. Έχουμε λοιπόν το δικαίωμα (μιλσαμε προηγούμενα για αυτ την «ελευθερία» μας) να κάνουμε την απλούστερη δυνατ επιλογ για την απόκλιση του A που είναι το να τη θεωρσουμε μηδενικ. Charles Augustin de Coulomb

12 . ΒΑΘΜΙΔΑ LORENZ Στη συγκεκριμένη βαθμίδα (βαθμίδα Lorenz Lorentz, περισσότερα στο παράρτημα), επιλέγουμε: V. A (19) t Με τη συγκεκριμένη λοιπόν επιλογ, η εξίσωση (6) γράφεται: V t V () Έχουμε λοιπόν τη διαφορικ που μας δίνει το βαθμωτό δυναμικό. Αν στο δεύτερο μέρος της (), αντί του όρου: είχαμε το μηδέν, η εξίσωση θα γραφόταν:, V t V Θα είχαμε δηλαδ τη γνωστ μας κυματικ εξίσωση, που μάλιστα θέτοντας: c 1 (c η γνωστ μας ταχύτητα του φωτός), θα έπαιρνε τη μορφ: 1 V V c t Έτσι λοιπόν η εξίσωση () είναι μια «μη ομογενς» κυματικ εξίσωση, αφού στο δεξί μέλος της αντί του μηδενός έχει τον όρο

13 Συνεχίζοντας λοιπόν να δουλεύουμε στη βαθμίδα Lorenz, στην οποία:. A V t η εξίσωση (9) μπορεί να γραφεί: A t A (Στην ουσία έχουμε 3 εξισώσεις, μια για κάθε συνιστώσα). J (1) Έτσι λοιπόν στη βαθμίδα Lorenz και τα δύο δυναμικά δίνονται από μια «μη ομογεν» κυματικ εξίσωση, στο δεξί μέλος της οποίας βρίσκονται οι «πηγές» : V t V A t A J (.1) (.) Στις εξισώσεις (.1) και (.) φαίνεται αμέσως η «κοιν αντιμετώπιση» που έχουν τα δύο δυναμικά, όταν δουλεύουμε στη βαθμίδα Lorenz. Μπορούμε μάλιστα να απλοποισουμε ακόμα περισσότερο τη γραφ των δύο παραπάνω σχέσεων αν θέσουμε: t οπότε οι εξισώσεις μας απλοποιούνται στη μορφ: (3) V (4.1) A j (4.)

14 Η γραφ στη μορφ (4.1) και (4.) των εξισώσεων για τα δυναμικά, εκτός της «απλότητάς» της, είναι επί πλέον ιδιαίτερα χρσιμη και χρηστικ όταν δουλεύουμε στη σχετικότητα, λόγω της εμφανούς «συναλλοιώτητάς» τους (αναλλοίωτες κάτω από τους μετασχηματισμούς Lorentz). Ο τελεστς που είδαμε στη σχέση (3), ονομάζεται Νταλαμπερσιαν (D Alembertian) και αποτελεί τη γενίκευση στις 4 διαστάσεις της γνωστς μας τρισδιάστατης Λαπλασιανς. (Ο τελεστς αυτός επίσης αναφέρεται και ως χωρίς δηλαδ το τετράγωνο). Pierre-Simon Laplace Jean le Rond d'alembert

15 1. Λαπλασιαν διανύσματος: τη σχέση: ΠΑΡΑΡΤΗΜΑ A Η Λαπλασιαν μιας βαθμωτς συνάρτησης ( rt, ) δίνεται από x y z Η δράση όμως του τελεστ μεγάλη προσοχ. συνιστώσες: (5) πάνω σε ένα διάνυσμα, απαιτεί Στις Καρτεσιανές (και μόνο) συντεταγμένες, ισχύει: A ( A ) xˆ ( A ) yˆ ( A ) zˆ (6) x y z Έτσι λοιπόν η εξίσωση (17) αναλύεται στις 3 επί μέρους Το ίδιο ισχύει για την εξίσωση (1). Ax J (7.1) x Ay J (7.) y Az J (7.3) z Η παραπάνω «ανάλυση» ισχύει μόνο για τις Καρτεσιανές συντεταγμένες. Στις καμπυλόγραμμες συντεταγμένες τα μοναδιαία διανύσματα είναι συναρτσεις της θέσης, οπότε ο τελεστς θα «δράσει» και πάνω σ αυτά. Έτσι λοιπόν δεν είναι σωστό πχ. να γράψουμε: Ar J r Στην περίπτωση λοιπόν των καμπυλόγραμμων συντεταγμένων, προκειμένου να υπολογίσουμε τη Λαπλασιαν ενός διανύσματος, χρησιμοποιούμε την ταυτότητα:

16 A (. A) ( A) (8) Έχει ενδιαφέρον να προσπαθσει κανείς να δείξει ότι πράγματι στις Καρτεσιανές συντεταγμένες, η σχέση (8) μας δίνει την (6). Η απόδειξη γίνεται σχετικά εύκολα, κάνοντας πράξεις στο δεύτερο μέλος της (8). Περισσότερα για τη Λαπλασιαν ενός διανυσματικού πεδίου (και σε καμπυλόγραμμες συντεταγμένες): ΕΔΩ και επίσης για τον υπολογισμό της: WolframAlpha Vector Laplacian. Είπαμε ότι στη βαθμίδα Coulomb, επιλέγουμε να είναι (σχέση 15):. A Θα δείξουμε στη συνέχεια ότι έχουμε αυτό το «δικαίωμα». Ας υποθέσουμε λοιπόν ότι έχουμε ένα (αρχικό) ανυσματικό δυναμικό A, του οποίου η απόκλιση δεν είναι μηδενικ. Είδαμε (σχέσεις (11) και (1)) ότι μπορούμε να προσθέσουμε στο δυναμικό αυτό το gradient μιας (βαθμωτς) συνάρτησης λ, (μετασχηματισμός βαθμίδας). Το νέο ανυσματικό δυναμικό (από το οποίο θα «παράγεται» το ίδιο μαγνητικό πεδίο) είναι: A A Για την απόκλιση λοιπόν του νέου μας δυναμικού, θα έχουμε: A A (9).. (3) Έτσι λοιπόν μπορούμε να μηδενίσουμε την απόκλιση του A, αν μπορέσουμε να βρούμε μια συνάρτηση λ, για την οποία να ισχύει: (31).A

17 Παρατηρώντας την εξίσωση (31), βλέπουμε ότι είναι ίδια με τη γνωστ μας εξίσωση Poisson της ηλεκτροστατικς: V (με το λ στη θέση του V και.a το στη θέση της «πηγς» (3) Έτσι λοιπόν το αρχικό πρόβλημά μας, δηλαδ του μηδενισμού της απόκλισης του ανυσματικού δυναμικού, ανάγεται τελικά στη λύση της εξίσωσης Poisson. (Για περισσότερα στη σελίδα 35 του βιβλίου: Introduction to Electrodynamics, Third Edition, David J. Griffiths, Prentice Hall, 1999). 3. Υπάρχει ένα σημείο που θέλει προσοχ, σχετικά με τον προσδιορισμό του βαθμωτού δυναμικού V, στην βαθμίδα Coulomb. Με βάση τη σχέση: A ) V το V υπολογίζεται από την κατανομ φορτίου, την ίδια ακριβώς χρονικ στιγμ. Δηλαδ αν για παράδειγμα κινηθεί ένα φορτίο στο εργαστριο (πχ ένα ηλεκτρόνιο), το βαθμωτό δυναμικό σε μια μεγάλη απόσταση (ας πούμε για παράδειγμα στο Φεγγάρι) «καταγράφει» ακαριαία αυτ την αλλαγ. Και εδώ ακριβώς είναι το πρόβλημα, αφού σύμφωνα με την ειδικ θεωρία της σχετικότητας, κανένα «σμα» δεν μπορεί να ταξιδέψει με ταχύτητα μεγαλύτερη της ταχύτητας του φωτός (πόσο μάλλον να φθάσει ακαριαία)! Αυτό λοιπόν που συμβαίνει είναι ότι το βαθμωτό δυναμικό από μόνο του δεν περιγράφει (παρά μόνο στην περίπτωση της ηλεκτροστατικς,

18 που προφανώς δεν είναι η περίπτωσ μας αφού υποθέσαμε ότι το ηλεκτρόνιο κινθηκε) το ηλεκτρικό πεδίο E. Ο υπολογισμός του ηλεκτρικού πεδίου πρέπει να συμπεριλαμβάνει και το ανυσματικό δυναμικό A, μέσω της σχέσεως: E V A t Και είναι κατά κάποιο τρόπο «ενσωματωμένο» στο ανυσματικό δυναμικό το γεγονός ότι ενώ η κίνηση του φορτίου «ακαριαία» αντανακλά στο V, ο συνδυασμός: A V t που μας δίνει το ηλεκτρικό πεδίο, εμπεριέχει την απαιτούμενη χρονικ καθυστέρηση που απαιτείται για τη διάδοση του «σματος» μέχρι τον παρατηρητ που μετράει το E Βλέπε πχ. Introduction to Electrodynamics, Third Edition, David J. Griffiths, Prentice Hall, 1999 σελίδα 41. Μάλιστα ο Griffiths σε υποσημείωσ του σχετικά με το εν λόγω θέμα παραπέμπει στο paper των O. L. Brill and B. Goodman, American Journal of Physics 35, 83 (1967). Ο ενδιαφερόμενος λοιπόν αναγνώστης παραπέμπεται στο: Causality in the Coulomb Gauge 4. Υπάρχει μια διχογνωμία για το κατά πόσο η βαθμίδα στη σχέση (19) πρέπει να ονομάζεται «βαθμίδα Lorentz» προς τιμν του (γνωστού μας από τους διάσημους μετασχηματισμούς του) H. A. Lorentz, «βαθμίδα Lorenz» προς τιμν του L. V. Lorenz.

19 Έτσι λοιπόν ο Griffiths (Introduction to Electrodynamics, Third Edition, David J. Griffiths, Prentice Hall, 1999) σε υποσημείωση στη σελίδα 41, αναφέρεται στο συγκεκριμένο θέμα και υιοθετεί την ονομασία «Lorentz gauge», που όπως γράφει είναι αυτ που υπάρχει στα (περισσότερα) καθιερωμένα βιβλία ηλεκτρομαγνητισμού. Οι Pollack και Stump (Electromagnetism, G. L. Pollack and D. R. Stump, Addison-Wesley, 1 πράγματι αναφέρουν τη βαθμίδα με την ονομασία «Lorentz gauge». Σε κάποια υποσημείωσ τους όμως (page 49) αναφέρουν ότι η πρώτη αναφορά και χρση της συγκεκριμένης βαθμίδας ίσως έγινε από τον L. V. Lorenz και όχι από τον H. A. Lorentz. H. A. Lorentz

20 Από την άλλη πάλι ο Bo Thide (Electromagnetic Field Theory, Second Edition, Bo Thide) στη σελίδα 37 αναφέρεται στη βαθμίδα με τη (διπλ) ονομασία «Lorenz-Lorentz gauge» επισημαίνοντας ότι κακώς έχει επικρατσει στη βιβλιογραφία ο όρος «Lorentz gauge», αφού όπως αναφέρει, ο Δανός φυσικός και μαθηματικός L. V. Lorenz ταν ο πρώτος που την εισγαγε το Τέλος η Wikipedia στο αντίστοιχο λμμα για τον L. V. Lorenz, αναφέρεται στη βαθμίδα με την ονομασία «βαθμίδα Lorenz». L. V. Lorenz

21 5. Μια βαθμίδα που επίσης αναγράφεται σε «εισαγωγικά» εγχειρίδια ηλεκτρομαγνητισμού, είναι και η λεγόμενη «temporal gauge». Ονομάζεται επίσης και βαθμίδα Weyl βαθμίδα Hamilton. Στη βαθμίδα αυτ θέτουμε το βαθμωτό δυναμικό ίσο με μηδέν. Έτσι λοιπόν οι σχέσεις: t V (. A) (6) A V A A J t t ( ) (. ) με τη συνθκη V απλουστεύονται και παίρνουν τη μορφ: (9) και: (. A) t (33) A A (. A) J t 1 c A (. ) t A A J 1 c A ( A) J t (34) Παρατηρούμε λοιπόν ότι στη συγκεκριμένη βαθμίδα και το ηλεκτρικό πεδίο και το μαγνητικό πεδίο προσδιορίζονται από το ανυσματικό δυναμικό (σχέσεις 33 και 34). Πράγματι σύμφωνα με τη σχέση (5):

22 A E V, οπότε στη συγκεκριμένη βαθμίδα ( V ) θα t έχουμε: E A t (Η σχέση (33) είναι η μορφ που παίρνει ο νόμος του Gauss στη συγκεκριμένη βαθμίδα. Πράγματι αν E A, τότε παίρνοντας την t A απόκλιση και στα δύο μέλη, έχουμε:. E. (. A) t t οπότε ο νόμος του Gauss: έχουμε δηλαδ τη σχέση (33))..E γράφεται: (. A), t Μια ακόμα βαθμίδα σε χρση είναι η λεγόμενη «αξονικ βαθμίδα» (axial gauge), στην οποία επιλέγουμε να είναι: A3 (Η τρίτη συνιστώσα του ανυσματικού δυναμικού να είναι μηδέν). Αξίζει να σημειωθεί ότι η διαδικασία επιλογς της κατάλληλης βαθμίδας, αναφέρεται στη διεθν βιβλιογραφία ως «gauge fixing».

23 ΒΙΒΛΙΟΓΡΑΦΙΑ 1). Introduction to Electrodynamics, Third Edition, David J. Griffiths, Prentice Hall, ). Classical Electrodynamics, Walter Greiner, Springer, ). Electromagnetism, G. L. Pollack and D. R. Stump, Addison- Wesley, 1. 4) Gauge Theories in Particles Physics, Third Edition, volume 1: From Relativistic Quantum Mechanics to QED I. J. A. Aitchison and A. J. G. Hey. 5). Electromagnetic Field Theory, Second Edition, Bo Thide. 6). Causality in the Coulomb Gauge 7). Div, Grad, Curl and all that, Fourth Edition, H. M. Schey, W. W. Norton & Company 4. ΑΥΓΟΥΣΤΟΣ 13 ΦΙΟΡΕΝΤΙΝΟΣ ΓΙΑΝΝΗΣ

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΕΙΣΑΓΩΓΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 18: Νόμοι Maxwell Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσίασει τις εξισώσεις Maxwell. 2 Περιεχόμενα ενότητας

Διαβάστε περισσότερα

Νόμος Ampere- Διανυσματικό Δυναμικό

Νόμος Ampere- Διανυσματικό Δυναμικό Νόμος Ampere- Διανυσματικό Δυναμικό Δομή Διάλεξης Μαγνητικό πεδίο ευθύγραμμων αγωγών Ο στροβιλισμός και η κλίση μαγνητικού πεδίου: ο νόμος του Ampere Εφαρμογές του Νόμου του Ampere To διανυσματικό δυναμικό

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

Δομή Διάλεξης. Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο

Δομή Διάλεξης. Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο Ηλεκτρικό Δυναμικό Δομή Διάλεξης Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο Ιδιότητες ηλεκτρικού δυναμικού (χρησιμότητα σε υπολογισμούς, σημείο αναφοράς, αρχή υπέρθεσης) Διαφορικές

Διαβάστε περισσότερα

Experiments are the only means of knowledge. Anyother is poetry and imagination. M.Plank 2 ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWELL

Experiments are the only means of knowledge. Anyother is poetry and imagination. M.Plank 2 ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWELL ΚΥΜΑΤΙΚΗ-ΟΠΤΙΚΗ 7 xpeiments ae the only means o knowledge. Anyothe is poety and imagination. M.Plank 2 ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWLL Σε µια πρώτη παρουσίαση του θέµατος δίνονται οι εξισώσεις του Maxwell στο

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Εισαγωγή Ο νόµος του Gauss: Μπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού της έντασης του ηλεκτρικού πεδίου. Βασίζεται

Διαβάστε περισσότερα

h Καλώς Ορίσατε στο μάθημα «Ηλεκτρομαγνητισμός Ι, Φ-301»!!! Τα Γενικά

h Καλώς Ορίσατε στο μάθημα «Ηλεκτρομαγνητισμός Ι, Φ-301»!!! Τα Γενικά h Καλώς Ορίσατε στο μάθημα «Ηλεκτρομαγνητισμός Ι, Φ-301»!!! Τα Γενικά Διδάσκων: Ηλίας Περάκης, Καθηγητής Φυσικής Τηλέφωνο: (2810-39)4259 Γραφείο: 2.Γ27 2ος όροφος, Κτίριο Φυσικής Email : ilias@physics.uoc.gr

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΜΑΓΝΗΤΟΣΤΑΤΙΚΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εξίσωση Laplace Θεωρήματα Μοναδικότητας

Εξίσωση Laplace Θεωρήματα Μοναδικότητας Εξίσωση Laplace Θεωρήματα Μοναδικότητας Δομή Διάλεξης Εξίσωση Laplace πλεονεκτήματα μεθόδου επίλυσης της για εύρεση ηλεκτρικού δυναμικού Ιδιότητες λύσεων εξίσωσης Laplace σε 1, 2 και 3 διαστάσεις Θεώρημα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,

Διαβάστε περισσότερα

Είναι πλεονάζων ο Νόµος του Gauss στον Ηλεκτροµαγνητισµό;

Είναι πλεονάζων ο Νόµος του Gauss στον Ηλεκτροµαγνητισµό; Είναι πλεονάζων ο Νόµος του Gauss στον Ηλεκτροµαγνητισµό; Κώστας Παπαχρήστου Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων Όπως γνωρίζουµε, οι εξισώσεις του Maxwell περιγράφουν τη συµπεριφορά (δηλαδή,

Διαβάστε περισσότερα

AΠΟΦΑΣΗ της από 3/4/2012 Συνεδρίασης του Δ.Σ. του Τμήματος Φυσικής. ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΦΥΣΙΚΗΣ ΙΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ) Για το 5ο εξάμηνο

AΠΟΦΑΣΗ της από 3/4/2012 Συνεδρίασης του Δ.Σ. του Τμήματος Φυσικής. ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΦΥΣΙΚΗΣ ΙΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ) Για το 5ο εξάμηνο ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΦΥΣΙΚΗΣ ΙΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ) Ι. Ηλεκτρικό φορτίο-διατήρηση φορτίου-κβάντωση φορτίου-νόμος Coulomb-Ενέργεια συστήματος φορτίων-ηλεκτρικό πεδίο-κατανομές φορτίου-ροή, Νόμος Gauss. ΙΙ. Ηλεκτρικό

Διαβάστε περισσότερα

8. 1 Βαθμωτά και διανυσματικά πεδία

8. 1 Βαθμωτά και διανυσματικά πεδία 8. 1 Βαθμωτά και διανυσματικά πεδία Ας θεωρήσουμε τη συνάρτηση f : 2 Ø που έχει ως πεδίο ορισμού ολόκληρο το επίπεδο 2 και τύπο f Hx, yl = 2 xy. Επειδή τα στοιχεία του ονομάζονται και βαθμωτά, η παραπάνω

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΜΑΓΝΗΤΟΣΤΑΤΙΚΑ ΠΕΔΙΑ ΣΤΗΝ ΥΛΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ηλεκτρική Μετατόπιση- Γραμμικά Διηλεκτρικά

Ηλεκτρική Μετατόπιση- Γραμμικά Διηλεκτρικά Ηλεκτρική Μετατόπιση- Γραμμικά Διηλεκτρικά Δομή Διάλεξης Ηλεκτρική Μετατόπιση: Ορισμός-Χρησιμότητα-Οριακές συνθήκες Γραμμικά Διηλεκτρικά: Ορισμός - Εφαρμογές Ενέργεια σε Διηλεκτρικά Δυνάμεις σε Διηλεκτρικά

Διαβάστε περισσότερα

(ΚΕΦ 32) f( x x f( x) x z y

(ΚΕΦ 32) f( x x f( x) x z y (ΚΕΦ 3) f( x x f( x) x z y ΣΥΝΟΨΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΥ J. C. Maxwell (~1860) συνόψισε τη δουλειά ως τότε για το ηλεκτρικό και μαγνητικό πεδίο σε 4 εξισώσεις. Όμως, κατανόησε ότι οι εξισώσεις αυτές (όπως

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23)

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) Υπενθύμιση/Εισαγωγή: Λέμε ότι ένα πεδίο δυνάμεων είναι συντηρητικό (ή διατηρητικό) όταν το έργο που παράγεται από το πεδίο δυνάμεων κατά τη μετατόπιση ενός σώματος από μία

Διαβάστε περισσότερα

Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1

Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Μη- Σχετικιστική Κβαντομηχανική Η μη- σχετικιστική έκφραση για την ενέργεια: Στην QM αντιστοιχούμε την ενέργεια και την ορμή με Τελεστές:

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 19: Η συνάρτηση Green για την κυματική εξίσωση και θεώρημα Poynting Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει

Διαβάστε περισσότερα

Κλασική Hλεκτροδυναμική

Κλασική Hλεκτροδυναμική Κλασική Hλεκτροδυναμική Ενότητα 1: Εισαγωγή Ανδρέας Τερζής Σχολή Θετικών επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια σύντομη επανάληψη στις βασικές έννοιες της ηλεκτροστατικής.

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Φυσικά µεγέθη... 1 1.2 ιανυσµατική άλγεβρα... 2 1.3 Μετατροπές συντεταγµένων... 6 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες...

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Χρήσιμες μαθηματικές έννοιες Νίκος Ν. Αρπατζάνης Παράγωγος ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ y y = f(x) x φ y y y = f(x) x φ y y y = f(x) φ x 1 x 1 + х x x 1 x 1 + х x x 1 x tanϕ = y x tanϕ = dy dx

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά πεδία

1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά πεδία 1η ΠΑΡΟΥΣΙΑΣΗ Ηλεκτρικά πεδία Ηλεκτρισμός και μαγνητισμός Κλάδος της Φυσικής που μελετάει τα ηλεκτρικά και τα μαγνητικά φαινόμενα. (Σχεδόν) όλα τα φαινομενα που αντιλαμβανόμαστε με τις αισθήσεις μας οφείλονται

Διαβάστε περισσότερα

1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά φορτία, ηλεκτρικές δυνάμεις και πεδία

1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά φορτία, ηλεκτρικές δυνάμεις και πεδία 1η ΠΑΡΟΥΣΙΑΣΗ Ηλεκτρικά φορτία, ηλεκτρικές δυνάμεις και πεδία Ηλεκτρισμός και μαγνητισμός Κλάδος της Φυσικής που μελετάει τα ηλεκτρικά και τα μαγνητικά φαινόμενα. (Σχεδόν) όλα τα φαινομενα που αντιλαμβανόμαστε

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ. Διανυσματικός χώρος

ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ. Διανυσματικός χώρος Διανυσματικός χώρος ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ Ορισμός Διανυσματικός χώρος V πάνω στο σύνολο πραγματικός διανυσματικός χώρος V λέγεται κάθε σύνολο εφοδιασμένο με τις πράξεις της πρόσθεσης μεταξύ των στοιχείων

Διαβάστε περισσότερα

Τμήμα Φυσικής, Παν/μιο Ιωαννίνων, Ειδική Σχετικότητα, Διάλεξη 5 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους

Τμήμα Φυσικής, Παν/μιο Ιωαννίνων, Ειδική Σχετικότητα, Διάλεξη 5 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους 1 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους Σκοποί της πέμπτης διάλεξης: 10.11.2011 Εξοικείωση με τους μετασχηματισμούς του Lorentz και τις διάφορες μορφές που μπορούν να πάρουν για την επίλυση

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.

Διαβάστε περισσότερα

Λύσεις των θεμάτων του Διαγωνίσματος Μηχανικης ΙΙ (29/8/2001) (3), (4), όπου, (5),, (6), (9), όπου,

Λύσεις των θεμάτων του Διαγωνίσματος Μηχανικης ΙΙ (29/8/2001) (3), (4), όπου, (5),, (6), (9), όπου, Λύσεις των θεμάτων του Διαγωνίσματος Μηχανικης ΙΙ (9/8/1) Θέμα 1: (1), (), (3), (4), όπου, (5),, (6), (7), (8), (9), όπου, (1), (11) ενέργεια [ ], όλες οι συνιστώσες της στροφορμής [ ], (1), (13), (κυματ

Διαβάστε περισσότερα

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή ) εξίσωση Helmholtz σε D χωρικές διαστάσεις :

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή ) εξίσωση Helmholtz σε D χωρικές διαστάσεις : Η Εξίσωση Helmholtz Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή εξίσωση Helmholtz σε χωρικές διαστάσεις : ( + k Ψ ( r f( r ( k (6 Η εξίσωση αυτή συνοδεύεται (συνήθως από συνοριακές συνθήκες

Διαβάστε περισσότερα

Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα

Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα Μέρος α : Εξισώσεις κίνησης και συμπεράσματα) Α. Τι βλέπει ένας αδρανειακός παρατηρητής

Διαβάστε περισσότερα

Δομή Διάλεξης. Εύρεση επαγόμενων επιφανειακών φορτίων. Εύρεση δύναμης που ασκείται στο πραγματικό φορτίο και αποθηκευμένης ηλεκτροστατικής ενέργειας.

Δομή Διάλεξης. Εύρεση επαγόμενων επιφανειακών φορτίων. Εύρεση δύναμης που ασκείται στο πραγματικό φορτίο και αποθηκευμένης ηλεκτροστατικής ενέργειας. Μέθοδος Ειδώλων Δομή Διάλεξης 1 ο παράδειγμα εφαρμογής μεθόδου ειδώλων για εύρεση δυναμικού με δεδομένες οριακές συνθήκες και ύπαρξη συμμετρίας: Φορτίο πάνω από άπειρο επίπεδο αγωγό. Εύρεση επαγόμενων

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΜΙΚΡΟΚΥΜΑΤΑ

ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΜΙΚΡΟΚΥΜΑΤΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΜΙΚΡΟΚΥΜΑΤΑ.. Α.Μ.. ΛΑΜΙΑ 2015 Παράδοση και προφορική εξέταση της εργασίας Για να ληφθεί

Διαβάστε περισσότερα

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α. Τριγωνομετρικές Ταυτότητες Β. Αναπτύγματα σε σειρές Για

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Μαγνητισμός μαγνητικό πεδίο

Μαγνητισμός μαγνητικό πεδίο ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ Μαγνητισμός μαγνητικό πεδίο Ο μαγνητισμός είναι κάτι τελείως διαφορετικό από τον ηλεκτρισμό; Πριν 200 χρόνια ο μαγνητισμός αποτελούσε ένα τελείως ξεχωριστό κεφάλαιο

Διαβάστε περισσότερα

( ) ( ) ( )z. HMY Φωτονική. Διάλεξη 08 Οι εξισώσεις του Maxwell. r = A r. B r. ˆ det = Βαθμωτά και διανυσματικά μεγέθη

( ) ( ) ( )z. HMY Φωτονική. Διάλεξη 08 Οι εξισώσεις του Maxwell. r = A r. B r. ˆ det = Βαθμωτά και διανυσματικά μεγέθη HMY - Φωτονική Διάλεξη 8 Οι εξισώσεις του Mawell Βαθμωτά και διανυσματικά μεγέθη Πολλαπλασιασμός Πρόσθεση διανυσμάτων Βαθμωτό: το μέγεθος που για τον προσδιορισμό του χρειάζεται μόνο το μέτρο του και η

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών

3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών 3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών Στην ενότητα αυτή παρουσιάζονται τα συνοπτικά περιγράμματα των μαθημάτων που διδάσκονται στο Πρόγραμμα Σπουδών, είτε αυτά προσφέρονται από το τμήμα που είναι

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ 1 1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ Αρχικά ας δούμε ορισμένα σημεία που αναφέρονται στο έργο, στη δυναμική ενέργεια και στη διατήρηση της ενέργειας. Πρώτον, όταν μια

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ 1 1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ Αρχικά ας δούμε ορισμένα σημεία που αναφέρονται στο έργο, στη δυναμική ενέργεια και στη διατήρηση της ενέργειας. Πρώτον, όταν

Διαβάστε περισσότερα

z=± Η εξίσωση αυτή μας λέει αμέσως ότι η συνάρτηση Green σε δύο διαστάσεις είναι

z=± Η εξίσωση αυτή μας λέει αμέσως ότι η συνάρτηση Green σε δύο διαστάσεις είναι στο άπειρο το αποτέλεσμα απειρίζεται λογαριθμικά. Αυτή η συμπεριφορά του δυναμικού Coulomb σε δύο διαστάσεις δεν μπορεί να εξαλειφθεί με τον ίδιο τρόπο όπως η απόκλιση (86 διότι έχει φυσική αφετηρία :

Διαβάστε περισσότερα

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ETION 1 13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 13.1 Ορισµοί Μεγέθη Μια ποσότητα που εκφράζεται από ένα µόνο πραγµατικό αριθµό καλείται βαθµωτό µέγεθος. Μια ποσότητα που εκφράζεται από περισσότερους από έναν πραγµατικούς

Διαβάστε περισσότερα

Μονάδα μέτρησης του ηλεκτρικού φορτίου στο Διεθνές Σύστημα (S.I.) είναι το προς τιμήν του Γάλλου φυσικού Charles Augustin de Coulomb.

Μονάδα μέτρησης του ηλεκτρικού φορτίου στο Διεθνές Σύστημα (S.I.) είναι το προς τιμήν του Γάλλου φυσικού Charles Augustin de Coulomb. Βασικές έννοιες Τα σώματα μπορούν να αλληλεπιδράσουν ηλεκτρικά. Ο Θαλής ο Μιλήσιος παρατήρησε πρώτος την έλξη μικρών αντικειμένων από ήλεκτρο, αφού πρώτα τριφτεί σε ξηρό ύφασμα. Το φαινόμενο αυτό ονομάστηκε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1. ΕΙΣΑΓΩΓΗ Γράφημα μιας πραγματικής συνάρτησης : ή ( )/ σύνολο: f Οι θέσεις του κινητού σημείου G ( x, y)/ y f( x), xa. f A y f x A είναι το M x, y, ώστε

Διαβάστε περισσότερα

HMY331 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ

HMY331 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ HMY331 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Διδάσκων Δρ Γ. Η. Γεωργίου Μαθήματα Δευτέρα και Πέμπτη 10.30-12.00 π.μ. Σύστημα Αξιολόγησης 1. Τελική Εξέταση 60% 2. Ενδιάμεση Εξέταση 40% Κατοίκον εργασία 5 κατοίκον εργασίες

Διαβάστε περισσότερα

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Δομή Διάλεξης Χαμιλτονιανή και Ρεύμα Πιθανότητας για Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Μετασχηματισμοί Βαθμίδας Αρμονικός Ταλαντωτής σε Ηλεκτρικό Πεδίο Σωμάτιο

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ. Κ. Γ. Ευθυμιάδης Αικ. Σιακαβάρα Ε. Παπαδημητράκη-Χλίχλια Ι. Α. Τσουκαλάς

ΘΕΩΡΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ. Κ. Γ. Ευθυμιάδης Αικ. Σιακαβάρα Ε. Παπαδημητράκη-Χλίχλια Ι. Α. Τσουκαλάς ΘΕΩΡΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ Κ. Γ. Ευθυμιάδης Αικ. Σιακαβάρα Ε. Παπαδημητράκη-Χλίχλια Ι. Α. Τσουκαλάς ΘΕΩΡΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ Α Έκδοση Συγγραφείς Κ. Γ. Ευθυμιάδης Αικ. Σιακαβάρα Ε. Παπαδημητράκη-Χλίχλια

Διαβάστε περισσότερα

Ηλεκτρομαγνητικά Κύματα Κεραίες

Ηλεκτρομαγνητικά Κύματα Κεραίες Ηλεκτρομαγνητικά Κύματα Κεραίες Τρόπος βαθμολόγησης Ασκήσεις που θα δίδονται κατά την διάρκεια του μαθήματος (+1 μονάδα) 1 η Πρόοδος 50% του βαθμού η Πρόοδος 50% του βαθμού Τελική εξέταση 100% του βαθμού

Διαβάστε περισσότερα

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014 Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού Ιωάννης Γκιάλας 14 Μαρτίου 2014 Έργο ηλεκτροστατικής δύναμης W F Δl W N i i1 F Δl i Η μετατόπιση Δl περιγράφεται από ένα διάνυσμα που

Διαβάστε περισσότερα

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες ΦΥΣ 211 - Διαλ.06 1 Ανακεφαλαίωση Τι είδαμε μέχρι τώρα: q Συζητήσαμε συστήματα πολλών σωμάτων Ø Εσωτερικές και εξωτερικές δυνάμεις Ø Νόμους δράσης-αντίδρασης Ø Ορμές, νόμους διατήρησης (γραμμική ορμή,

Διαβάστε περισσότερα

7η ιεθνής Μαθηµατική Εβδοµάδα Θεσσαλονίκη Μαρτίου 2015 Ολοκληρωτικές εξισώσεις: τριτοβάθµια και δευτεροβάθµια εκπαίδευση

7η ιεθνής Μαθηµατική Εβδοµάδα Θεσσαλονίκη Μαρτίου 2015 Ολοκληρωτικές εξισώσεις: τριτοβάθµια και δευτεροβάθµια εκπαίδευση 7η ιεθνής Μαθηµατική Εβδοµάδα Θεσσαλονίκη 18 22 Μαρτίου 215 Ολοκληρωτικές εξισώσεις: τριτοβάθµια και δευτεροβάθµια εκπαίδευση Κυριαζής Χρήστος Πρωτοπαπάς Ελευθέριος 1 Ενότητες παρουσίασης Εισαγωγικές έννοιες

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα ΠΑΡΑΡΤΗΜΑ Γ Επικαμπύλια και Επιφανειακά Ολοκληρώματα Η αναγκαιότητα για τον ορισμό και την περιγραφή των ολοκληρωμάτων που θα περιγράψουμε στο Παράρτημα αυτό προκύπτει από το γεγονός ότι τα μεγέθη που

Διαβάστε περισσότερα

ΜΔΕ: Αναλυτικό πρόγραμμα - Ύλη Μαθήματος 2018

ΜΔΕ: Αναλυτικό πρόγραμμα - Ύλη Μαθήματος 2018 1 ΚΕΦΑΛΑΙΟ 1 ΜΔΕ: Αναλυτικό πρόγραμμα - Ύλη Μαθήματος 2018 Αντικείμενο του μαθήματος είναι η μελέτη Μερικών Διαφορικών Εξισώσεων. Τον όρο Μερική Διαφορική Εξίσωση θα συμβολίζουμε με (ΜΔΕ). Η ιστοσελίδα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα του φωτός είναι c. Να λύσετε

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ Ενότητα 1: Στοιχεία Διανυσματικού Λογισμού Σκορδύλης Εμμανουήλ Καθηγητής Σεισμολογίας,

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες

Διαβάστε περισσότερα

ΚΥΜΑΤΙΚΗ-ΟΠΤΙΚΗ 1. Σχήµα 1 Σχήµα 2

ΚΥΜΑΤΙΚΗ-ΟΠΤΙΚΗ 1. Σχήµα 1 Σχήµα 2 ΚΥΜΑΤΙΚΗ-ΟΠΤΙΚΗ The law of natue ae witten in the language of mathematic G.Galileo God ued beautiful mathematic in ceating the wold P.Diac ΣΥΝΤΟΜΗ ΜΑΘΗΜΑΤΙΚΗ ΕΙΣΑΓΩΓΗ Α. ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ.Ροή

Διαβάστε περισσότερα

Μεταβαλλόμενα μαγνητικά πεδία

Μεταβαλλόμενα μαγνητικά πεδία Μεταβαλλόμενα μαγνητικά πεδία Ιστορική εισαγωγή Νόμος Faraday Πειράματα Faraday V e = dφ dt 12/11/2018 Φυσική ΙΙΙ Γ. Βούλγαρης 1 Νόμος του Lentz (1834) Πειράματα Lentz Παράδειγμα Διατήρηση Ενέργειας Helmhotz

Διαβάστε περισσότερα

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού:

Διαβάστε περισσότερα

k = j + x 3 j + i + + f 2

k = j + x 3 j + i + + f 2 1 ΑΝΑΛΥΣΗ ΙΙ Διανυσματική Ανάλυση Κλίση-Απόκλιση-Στροβιλισμός Εστω f : D R 3 R μία βαθμωτή συνάρτηση και f : D R 3 R 3 μία διανυσματική συνάρτηση. Εισάγουμε τον διαφορικό τελεστή : = x 1 i + x 2 j + x

Διαβάστε περισσότερα

Τανυστές στην Κβαντομηχανική Κβαντική Πληροφορική

Τανυστές στην Κβαντομηχανική Κβαντική Πληροφορική Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσική Τανυστές στην Κβαντομηχανική Κβαντική Πληροφορική Το ζήτημα των τανυστών είναι πολύ σημαντικό τόσο για την Κβαντομηχανική, όσο και για τη Σχετικότητα. Οι δύο

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Νόμος Gauss Ο νόµος του Gauss εκφράζει τη σχέση μεταξύ της συνολικής ηλεκτρικής ροής που διέρχεται από μια κλειστή επιφάνεια και του φορτίου

Διαβάστε περισσότερα

Η αριστερή μεριά εξαρτάται μόνο από το z και η δεξιά μόνο από το t, έτσι και οι δυο πρέπει να είναι σταθερές. Καλούμε την σταθερά

Η αριστερή μεριά εξαρτάται μόνο από το z και η δεξιά μόνο από το t, έτσι και οι δυο πρέπει να είναι σταθερές. Καλούμε την σταθερά Πρόβλημα 8.3 Πρόβλημα 8.4 Η κυματικ εξίσωση δίνει Ψάχνουμε για λύσεις του τύπου Το τοποθετούμε αυτό και: Διαιρούμε με ZT: Η αριστερ μεριά εξαρτάται μόνο από το z και η δεξιά μόνο από το t, έτσι και οι

Διαβάστε περισσότερα

Φυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β.

Φυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β. ΕΙΣΑΓΩΓΗ Φυσικά μεγέθη Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα Β. τα διανυσματικά Μονόμετρα ονομάζουμε τα μεγέθη εκείνα τα οποία για να τα γνωρίζουμε χρειάζεται να ξέρουμε

Διαβάστε περισσότερα

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ) ΕΙΣΑΓΩΓΗ- ΦΥΣΙΚΑ ΜΕΓΕΘΗ Στα φυσικά φαινόμενα εμφανίζονται κάποιες ιδιότητες της ύλης. Για να περιγράψουμε αυτές τις ιδιότητες χρησιμοποιούμε τα φυσικά μεγέθη. Τέτοια είναι η μάζα, ο χρόνος, το ηλεκτρικό

Διαβάστε περισσότερα

Η «ΠΡΟΣΘΕΤΙΚΗ ΙΔΙΟΤΗΤΑ» ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Η «ΠΡΟΣΘΕΤΙΚΗ ΙΔΙΟΤΗΤΑ» ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Η «ΠΡΟΣΘΕΤΙΚΗ ΙΔΙΟΤΗΤΑ» ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΘΗΝΑ,ΜΑΡΤΗΣ 2011 ΑΝΤΙ ΠΡΟΛΟΓΟΥ Αφορμή για την παρακάτω εργασία αποτέλεσε μια παρατήρηση του συνάδελφου (και φίλου) Διονύση Μητρόπουλου, για την «προσθετική

Διαβάστε περισσότερα

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ]. 4. Φυλλάδιο Ασκήσεων IV σύντομες λύσεις, ενδεικτικές απαντήσεις πολλαπλής επιλογής 4.. Άσκηση. Χρησιμοποιήστε τη διαδικασία Gauss-Jordan γιά να βρείτε τους αντιστρόφους των παρακάτω πινάκων, αν υπάρχουν.

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 (περίοδος Σεπτεμβρίου 2013-14)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 (περίοδος Σεπτεμβρίου 2013-14) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 περίοδος Σεπτεμβρίου 2013-14 Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου

Διαβάστε περισσότερα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης ύναµη σε ρευµατοφόρους αγωγούς (β) Ο αγωγός δεν διαρρέεται από ρεύμα, οπότε δεν ασκείται δύναμη σε αυτόν. Έτσι παραμένει κατακόρυφος. (γ) Το µαγνητικό

Διαβάστε περισσότερα

11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ

11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ xx ΤΟΜΟΣ ΙI 11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ 741 11.1 Διαφορική και ολοκληρωτική μορφή των εξισώσεων Maxwell Ρεύμα μετατόπισης...................................... 741 11.2 Οι εξισώσεις Maxwell σε μιγαδική

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Νίκος Ν. Αρπατζάνης Εισαγωγή Το άτομο αποτελείται από ένα θετικά φορτισμένο πυρήνα, που περιβάλλεται από αρνητικά φορτισμένα ηλεκτρόνια Άτομο Li πυρήνας με 3 πρωτόνια (+) και 3 ηλεκτρόνια

Διαβάστε περισσότερα

Μ8 Η µερική παράγωγος

Μ8 Η µερική παράγωγος Μ8 Η µερική παράγωγος Βιβλιογραφία Ι S Sokolnikoff και R M Redheffer, Μαθηµατικά για Φυσικούς και Μηχανικούς (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, Αθήνα, 1 Κεφ 5 M R Spiegel, Ανώτερα Μαθηµατικά (ΕΣΠΙ, Αθήνα 198

Διαβάστε περισσότερα

Μαγνητικά φαινόµενα: Σύντοµη ιστορική αναδροµή

Μαγνητικά φαινόµενα: Σύντοµη ιστορική αναδροµή Μαγνητικά φαινόµενα: Σύντοµη ιστορική αναδροµή 13ος αιώνας π.χ.: Οι Κινέζοι χρησιµοποιούσαν την πυξίδα. Η πυξίδα διαθέτει µαγνητική βελόνα (πιθανότατα επινόηση των Αράβων ή των Ινδών). 800 π.χ.: Έλληνες

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να

Διαβάστε περισσότερα

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ α) Η παράγωγος μιας συνάρτησης = f() σε ένα σημείο 0 εκφράζει το ρυθμό μεταβολής της συνάρτησης (ή τον παράγωγο αριθμό) στο σημείο 0. β) Γραφικά, η παράγωγος της συνάρτησης στο σημείο

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών

3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών 3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών Στην ενότητα αυτή παρουσιάζονται τα συνοπτικά περιγράμματα των μαθημάτων που διδάσκονται στο Πρόγραμμα Σπουδών, είτε αυτά προσφέρονται από το τμήμα που είναι

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Ο Πυρήνας του Ατόμου

Ο Πυρήνας του Ατόμου 1 Σκοποί: Ο Πυρήνας του Ατόμου 15/06/12 I. Να δώσει μία εισαγωγική περιγραφή του πυρήνα του ατόμου, και της ενέργειας που μπορεί να έχει ένα σωματίδιο για να παραμείνει δέσμιο μέσα στον πυρήνα. II. III.

Διαβάστε περισσότερα

και A = 1 Το πρόβλημα των μη ομογενών συνοριακών συνθηκών.

και A = 1 Το πρόβλημα των μη ομογενών συνοριακών συνθηκών. Στις δύο διαστάσεις αφετηρία είναι η σχέση r + r r r A r + q r q Grr (, = ln ln L L (6 από την οποία μπορούμε να προσδιορίσουμε ότι και επομένως R R q = r, L r = L και A = r (7 r + r r r Grr (, = ln rr

Διαβάστε περισσότερα

Ορισμοί (Σημείο ισορροπίας - Ευστάθεια κατά Lyapunov)

Ορισμοί (Σημείο ισορροπίας - Ευστάθεια κατά Lyapunov) Ορισμοί (ημείο ισορροπίας - Ευστάθεια κατά Lyapuo) Έστω ότι στη γενική περίπτωση το σύστημα περιγράφεται στο χώρο κατάστασης με το μαθηματικό πρότυπο: = f(, t), (t 0 ) = 0 () όπου είναι ένα διάστατο διάνυσμα

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Κλίση συνάρτησης f Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Αν σε κάθε σημείο Px, y,z ενός τμήματος Δ του χώρου μία τιμή, ορίζεται μια συνάρτηση. f x, y,z : Δ, Δ αντιστοιχίσουμε την οποία ονομάζουμε σημειακή

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 1.1 Εισαγωγή... 1 1.2 Λύση ΔΕ, αντίστροφο πρόβλημα αυτής... 3 Ασκήσεις... 10 1.3 ΔΕ πρώτης τάξης χωριζομένων μεταβλητών... 12 Ασκήσεις... 15 1.4 Ομογενείς

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ 1 1. ΜΑΓΝΗΤΙΣΜΟΣ Μαγνητικά φαινόμενα παρατηρήθηκαν για πρώτη φορά πριν από τουλάχιστον 2500 χρόνια σε κομμάτια μαγνητισμένου σιδηρομεταλλεύματος,

Διαβάστε περισσότερα