METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE. Laura Dioşan Tema 2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE. Laura Dioşan Tema 2"

Transcript

1 METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE Laura Dioşan Tema 2

2 Procesarea imaginilor De ce? Îmbunătăţirea calităţii imaginilor Reducerea zgomotolui şi a altor defecte Evidenţierea anumitor zone Determinarea contururilor Extragerea de informaţii Aplicaţii Recunoaşterea caracterelor Recunoaşterea amprentelor Prelucrarea imaginilor medicale Prelucrarea imaginilor din satelit

3 Procesarea imaginilor Captarea imaginilor şi reprezentarea lor Operaţii asupra imaginilor Operaţii geometrice Operaţii de îmbunătăţire Operaţii de comprimare Extragerea de informaţii relevante din imagini

4 Captarea imaginilor şi reprezentarea lor Captare Foto Video Reprezentare În domeniul spaţial (geometric) Imaginea = un ansamblu de valori plasate dupa o formă spaţială (regulată sau nu) de dimensiune supra-unitară (plan, spaţiu, dar nu dreaptă) Matrice de pixeli (picture elemnt) Reprezentare intuitivă dpdv al ochiului uman În domeniul frecvenţelor (spectral) Imaginea = un ansamblu de frecvenţe care compun imaginea (culoare frecvenţă lungime de undă (IP) amplitudine) Imaginea = semnal bidimensional Grafic, pe OX, OY se află distribuţia frecvenţelor pe cele 2 axe ale imaginii, iar culoarea pixelilor va reprezenta amplitudinea (mai deschis înseamnă amplitudine superioară) Reprezentare f. utilă în procesele de analiză, comprimare şi prelucrare a imaginilor

5 Captarea imaginilor şi reprezentarea lor domeniul spaţial Imaginea = ansamblu de pixeli Tipologia imaginilor în domeniul spaţial (geometric) După valoarea unui pixel Imagini scalare orice valoare este un scalar (intensitatea luminoasă, distanţa, temperatura) imagini monocrome (binare) 0/1 imagini alb-negru (cu nivele de gri) 8 biţi 0 negru 255 alb Imagini vectoriale orice valoare este un vector; imaginea vectorială = sandwich de imagini scalare Imagini color vectori de 3 componente Imagini satelitare vectori de componente Imagini termografice vectori de 2-5 componente în bandă de infraroşu

6 Captarea imaginilor şi reprezentarea lor domeniul spaţial Imagini color vectori de 3 componente Modelul RGB (Red-Green-Blue) (0,0,0) negru (255, 255, 255) alb Modelul HSI (Hue-Saturation-Intensity) Nuanţa unghiul culorii în cercul de culori (0-360 ) Saturaţia puritatea culorii (procentual) Intensitatea Modelul CMY (Cyan-Magenta-Yellow) (0,0,0) alb (255,255,255) negru Conversii între modele

7 Captarea imaginilor şi reprezentarea lor domeniul spaţial Tipologia imaginilor în domeniul spaţial (geometric) După semnificaţia valorilor Imagini de intensitate valori DP cu mărimea fizică măsurată în scenă Imagini indexate valorile sunt indici (adrese) într-un tabel asociat imaginii, în care se găseşte informaţia de intensitate

8 Captarea imaginilor şi reprezentarea lor domeniul spaţial Pp. o imagine de dimensiune MxN f ij valoarea pixelului de pe linia i şi coloana j P mulţimea tuturor pixelilor Vecinătăţi Pt. un pixel p situat la poziţia (i,j) Vecini ortogonali: p 1 (i-1,j), p 2 (i+1,j), p 3 (i,j-1), p 4 (i, j+1) Formează ansamblul N 4 (p) Vecini diagonali p 5 (i-1,j-1), p 6 (i-1,j+1), p 7 (i+1,j-1), p 8 (i+1,j+1) formează ansamblul N D (p) N 8 (p)=n 4 (p) U N D (p) Conectivităţi 2 pixeli p 1 (i 1,j 1 ) şi p 2 (i 2,j 2 ) se află în relaţie de k-conectivitate dacă p 1 єn k (p 2 ) sau p 2 єn k (p 1 ), k є {4,8} Drum de lungime n mulţimea de pixeli D n ={p 1,p 2,...,p n } a.î. p i se află în relaţie de conectivitate cu p i+1, i=1,2,...,n-1 Pixelii p şi q sunt conectaţi dacă există un drum între ei Regiune set de pixeli conectaţi

9 Captarea imaginilor şi reprezentarea lor domeniul spaţial Metrici între 2 pixeli p 1 (i 1,j 1 ) şi p 2 (i 2,j 2 ) Distanţa Euclideană d(p 1,p 2 )=[(i 1 -i 2 ) 2 +(j 1 -j 2 ) 2 ] 1/2 Distanţa Manhattan d 4 (p 1,p 2 )= i 1 -i 2 + j 1 -j 2 N 4 (p)={qєp a.î. d 4 (p,q) 1} Distanţa jocului de şah d 8 (p 1,p 2 )=max( i 1 -i 2, j 1 -j 2 ) N 8 (p)={qєp a.î. d 8 (p,q) 1}

10 Captarea imaginilor şi reprezentarea lor domeniul frecvenţelor Imaginea = ansamblu de frecvenţe Transformarea unei imagini din domeniul spaţial în domeniul spectral Serii Fourier Matrice de pixeli matrice de frecvenţe (lungimi de undă) Orice undă (sinusoidală) poate fi descompusă într-o sumă de mai multe sinusoidale

11 Captarea imaginilor şi reprezentarea lor Operaţii asupra imaginilor Operaţii geometrice Operaţii de îmbunătăţire Operaţii de comprimare Operaţii de segmentare Operaţii de restaurare Extragerea de informaţii relevante din imagini

12 Operaţii geometrice Pentru reprezentarea spaţială a imaginilor Nu modifică valorile pixelilor (compoziţia) Modifică aşezarea lor spaţială (structura) Translaţie Modificarea după o traiectorie dreaptă a coordonatelor unui pixel Rotaţie x =x+tx y =y+ty Modificarea după o traiectorie circulară a coordonatelor unui pixel Coordonate carteziene coordonate polare x=r cos(ө) y=r sin(ө) x = r cos(ө+φ) y = r sin(ө+φ) Oglindire Faţă de o axă de simetrie

13 Operaţii de îmbunătăţire Îmbunătăţirea calităţii imaginilor Originale sau nu Prin accentuarea unor caracteristici Muchii Contururi Contrast Nu modifică cantitatea de informaţie din imagine Modificarea valorii unor pixeli Reducerea degradărilor perceptuale sau aleatoare: Contrast scăzut Imagine supra- sau sub-expusă Zgomot suprapus peste semnalul util

14 Restaurare Reducerea degradărilor deterministe Mişcare Lipsa focalizării Defecte optice

15 Segmentare Descompunerea imaginii în elementele componente

16 Compresie Reducerea volumului de date necesare reprezentării informaţiei dintr-o imagine

17 Operaţii de îmbunătăţire Pentru reprezentarea spaţială În funcţie de numărul de pixeli din imaginea iniţială folosiţi pentru calculul valorii unui pixel în imaginea prelucrată Operaţii punctuale 1 1 Operaţii de vecinătate (locale) k 1 Operaţii integrale (unitare) nxm 1

18 Operaţii de îmbunătăţire Operaţii punctuale 1 1 g(x,y)=ø(f(x,y)) Negativarea imaginilor Modificarea contrastului Decuparea

19 Operaţii de îmbunătăţire Operaţii punctuale 1 1 Negativarea imaginilor Ø(x)=(L-1)-x, de obicei L = 256 Ø((R,G,B))=((L-1)-R,(L-1)-G,(L-1)-B)) Utilitate Imagini negative (de tip peliculă)

20 Operaţii de îmbunătăţire Operaţii punctuale 1 1 Modificarea contrastului Accentuarea contrastului Pantă subunitară apropierea nivelelor de gri Pantă supraunitară depărtarea nivelelor de gri Caz particular: întinderea maximă a contrastului Nivelele de gri din [a,b] vor fi distanţate Restul nivelelor de gri vor fi înlocuite cu alb, respectiv negru Caz particular: binarizarea (a = b)

21 Operaţii de îmbunătăţire Operaţii punctuale 1 1 Decuparea Cu păstrarea fundalului Fără păstrarea fundalului Utilitate decuparea regiunilor de temperatură joasă reprezentate de nori din imaginile obţinute de un satelit meteo

22 Operaţii de îmbunătăţire Operaţii de vecinătate (locale) k 1 În funcţie de scop: op. care vizează reducerea zgomotului sau a altor defecte (filtrare) filtre trece-jos op. care vizează accentuarea detaliilor (evidenţierea muchiilor, a contururilor, etc) filtre trece-sus În funcţie de tip op. liniare combinaţii liniare între pixeli vecini op. neliniare combinaţii complexe între pixeli

23 Operaţii de îmbunătăţire Operaţii de vecinătate (locale) k 1 operaţii de filtrare Tehnici de filtrare Filtrare prin tehnica ferestrei glisante convoluţie bidimensională Filtru = mască de filtrare (convoluţie) = formă + coeficienţi + origine = kernel Convoluţie = schimbarea intensităţii unui pixel a.î. să reflecte intensitatea pixelilor vecini Filtrare prin estimare statistică Filtrare prin clustering Filtre liniare noua valoare a pixelui = combinaţie liniară a mai multor pixeli din imaginea originală (principiul superpoziţiei) g(m,n) = (k,l)єw w kl *f(m-k,n-l), unde W o structură de puncte vecinătate w kl coeficienţii filtrului (tehnica ferestri glisante) Tipologie Filtre de netezire Suma coeficienţilor = 1 Filtru de mediere Toţi coeficienţii sunt egali (=1/k 2 ) Filtre de detectare a contururilor filtre trece-sus Suma coeficienţilor = 0 Filtre de accentuare a contrastelor Filtre derivative

24 Operaţii de îmbunătăţire Operaţii de vecinătate (locale) k 1 operaţii de filtrare Filtre neliniare Tehnica ferestrei glisante ordonarea pixelilor Tipologie Filtre de ordine Filtru median eliminarea zgomotului sare şi piper Filtru de minim Filtru de maxim Filtre adaptive modificarea formei şi a coeficienţilor ferestrei de filtrare Filtre bazate pe distanţă (relativă) coeficienţii se calculează în funcţie de distanţa dintre punctul respectiv şi un punct fix Filtre bazate pe orientare fereastra are formă liniară, orientată după o anumită direcţie Filtre distanţă-direcţie combinaţia celor 2 filtre precedente

25 Operaţii de îmbunătăţire Operaţii integrale (unitare) nxm 1 Egalizarea histogramei Scop: manipularea contrastului Transformarea Fourier discretă Transformarea cosinus discretă Transformarea sinus discretă Transformarea Walsh-Hadamard Transformarea Karhaunen-Loeve

26 Operaţii integrale (unitare) nxm 1 Egalizarea histogramei Histograma nivelurilor de gri O funcţie care asociază fiecărui nivel de gri prezent în imagine frecvenţa sa (relativă) de apariţie Estimarea densităţii de probabilitate Utilitate Îmbunătăţirea constrastului Îmbunătăţirea luminozităţii segmentarea imaginii Ne-ajunsuri Lipsa informaţiilor privind locaţia pixelilor poziţia relativă a pixelilor

27 Operaţii integrale (unitare) nxm 1 Egalizarea histogramei Egalizarea histogramei reprezintă o operaţie de accentuare a contrastului şi are ca scop obţinerea unei histograme uniforme Algoritm Se calculează histograma h(x) imaginii Se calculează histograma cumulativă h c (x) Se calculează noile nivele de gri x =(h c (x)-h cmin )/(h cmax -h cmin )*(L-1)+0.5

28 Extragerea atributelor Metodă de captare a conţinutului vizual al imaginilor în vederea indexării lor Atribute vizuale - tipologie În funcţie de domeniu: Generale Ex. Culoare, textură, formă Pot fi considerate la nivelul unui pixel unei regiuni de pixeli întregii imagini Specifice Amprente Feţe umane În funcţie de modul de extragere De nivel primar Extrase direct din imagine De nivel înalt Determinate pe baza atributelor de nivel primar Exemple de atribute Contururi (margini ale unor regiuni) Intersecţii (puncte de interes, colţuri) Regiuni de interes Creste

29 Extragerea atributelor Atribute vizuale Generale Culoare reprezentată prin diferite modele atribute Histograma culorii pixelilor Histograma gradienţilor orientaţi (Histogram of oriented gradients)

30 Extragerea atributelor Atribute vizuale Generale Culoare Histograma culorii pixelilor Procentul fiecărei culori care apare în imagine (h k, k=1,2,...,k, K nr. de culori) nu ţine cont de poziţia culorilor (se pierde informaţia regională) partiţionarea imaginii în regiuni şi determinarea histogramelor regionale

31 Extragerea atributelor Atribute vizuale Generale Culoare Histograma gradienţilor orientaţi (Histogram of oriented gradients HOG) Determinare Nivele de calcul Îmbunătăţiri Parametri Instrumente

32 Extragerea atributelor Atribute vizuale Generale Culoare HOG determinare Gradientul unei imagini O schimbare direcţională a intensităţii sau culorii întro imagine Este orientat în direcţia în care apare cea mai rapidă schimbare de culaore Magnitudinea gradientului

33 Extragerea atributelor Atribute vizuale Generale Culoare HOG determinare Gradientul unei imagini Se poate aproxima magnitudinea gradientului în cazul discret (domeniul spaţial al imaginii) De ordin I operatori Sobel algoritmul Cany Schar Roeberts Cross Prewitt Costella De ordin II: Operatori Laplacieni ai Gaussianului

34 Extragerea atributelor Atribute vizuale Generale Culoare HOG determinare Gradient = vectori orientaţi în direcţia celor mai semnificative schimbări de culoare Paşi Se calculează magnitudinea fiecărui piexel Se calculează gradientul orientat pentru fiecare pixel Se calculează histograma gradienţilor orientaţi

35 Extragerea atributelor Atribute vizuale Generale Culoare HOG determinare Pas1: se calculează magnitudinea gradientului fiecărui piexel De ce? Magnitudinea = cât de abruptă este schimbarea Cum? Pentru o imagine I de dimensiune nxm, se efectuează o convoluţie pe Ox cu un anumit filtru-mască Dx Ex. Dx = [-1,0,1], Ix = Dx*I o convoluţie pe Oy cu un anumit filtr-mască Dy Ex. Dy = [-1,0,1] T, Iy = Dy*I

36 Extragerea atributelor Atribute vizuale Generale Culoare HOG determinare Pas2: Se calculează orientarea gradientului pentru fiecare pixel De ce? Orientarea direcţia modificărilor Cum? =arctan(iy/ix) radians se transformă unghiul din radiani în grade =*180/ [-180,180] se determină gradientul: cu semn - se translatează unghiul din [-180,180] în [0,360] fără semn - se translatează unghiul din [-180,180] în [0,180] se obţine o matrice O cu nxm valori

37 Extragerea atributelor Atribute vizuale Generale Culoare HOG - determinare Pas3: se calculează histograma gradienţilor orientaţi folosind matricea O Se împarte domeniul unghiului orientării D în k sectoare egale D = [0.360] sau D = [0,180] Primul sector va cuprinde unghiuri între 0 şi D /k, Al doilea sector va cuprinde unghiuri între D /k şi 2* D /k ş.a.m.d. k=4,8,9,16,18,36,... Pentru fiecare sector se numără pixelii a căror orientare a gradientului cade în sectorul respectiv Numărul de pixeli din fiecare sector se poate pondera cu Voturi binare aparţine (1) sau nu (0) acelui sector Voturi bazate pe magnitudinea gradientului Voturi bazate pe pătratul magnitudinii Voturi bazate pe rădăcina pătrată a magnitudinii Se reprezintă grafic valorile obţinute Pe axa Ox se trec sectoarele domeniului Pe axa Oy se trece numărul de pixeli (ponderat) din fiecare sector

38 Extragerea atributelor Atribute vizuale Generale Culoare HOG Nivele de calcul La nivelul întregii imagini La nivelul unei celule a imaginii Câte imagini, atâtea histograme concatenarea histogramelor Îmbunătăţiri Considerarea unor blocuri de celule R-HOG C-HOG Normalizarea la nivel de bloc pentru a ţine cont de culorile vecine L2-norm L1-Norm

39 Extragerea atributelor Atribute vizuale Generale Culoare HOG Parametri Scara gradientului Dimensiunea unei celule/unui bloc Numărul de sectoare Procentul suprapunerii blocurilor Instrumente OpenCV PMT Altele

40 Extragerea atributelor Atribute vizuale Generale Textură Caracteristica tactilă sau vizuală a unei suprafeţe Elementele componente = texteli Forme geometrice care se repetă pe o suprafaţă Tipologie Texturi slabe interacţii slabe între texteli Texturi puternice > interacţii puternice între texteli Cuantifică Diferenţele între nivelurile de gri (contrastul) Mărimea regiunii unde apar modificări (fereastră) Direcţia sau lipsa ei

41 Extragerea atributelor Atribute vizuale Generale Textură Poate fi analizată prin metode Sintactice (structurale) relaţiile spaţiale din textură ~ gramatică (texteli simboluri terminale, relaţiile reguli de transformare) Statistice De ordin I calculate la nivel de pixel: Media µ= k=1,2,...,k k*p k Varianţa σ 2 = k=1,2,...,k (k-µ) 2 *p k Turtirea (skewness) γ 3 =1/ σ 3 k=1,2,...,k (k-µ) 3 *p k Excesul (kurtosis) γ 4 =1/ σ 4 k=1,2,...,k (k-µ) 4 *p k -3, unde p k =h k / k=1,2,...,k h k procentul fiecărei culori care apare în imagine (h k, k=1,2,...,k, K nr. de culori)

42 Extragerea atributelor Atribute vizuale Generale Textură Poate fi analizată prin metode Sintactice Statistice De ordin II calculate la nivelul unei vecinătăţi de 2 pixeli Matricea de co-ocurenţă a nivelurilor de gri C(i,j)=cardinal{((x 1,y 1 ), (x 2,y 2 )) pentru care f(x 1,y 1 )=i şi f(x 2,y 2 )=j, (x 2,y 2 ) = (x!,y 1 )+(d*cosө,d*sinө)}, i,j=1,2,...,k Energia i=1,2,...,k j=1,2,...,k C(i,j) 2 Inerţia i=1,2,...,k j=1,2,...,k (i-j) 2 C(i,j) Corelaţia i=1,2,...,k j=1,2,...,k (ij)c(i,j)-µ i µ j /σ i σ j Momentul diferenţei i=1,2,...,k j=1,2,...,k C(i,j)/(1+(i-j) 2 ) Entropia i=1,2,...,k j=1,2,...,k C(i,j)logC(i,j) Filtre Gabor Atribute de tip Markov unde: µ i = i=1,2,...,k i j=1,2,...,k C(i,j) µ j = j=1,2,...,k j i=1,2,...,k C(i,j) σ i = i=1,2,...,k (i-µ i ) 2 j=1,2,...,k C(i,j) σ j = i=1,2,...,k (j-µ J ) 2 j=1,2,...,k C(i,j)

43 Extragerea atributelor Atribute vizuale Generale Formă Metode bazate pe Regiuni Contur

44 Extragerea atributelor Atribute vizuale Generale Formă Metode bazate pe Regiuni Momentele geometrice Momentele centrale şi momentele centrale normalizate Invarianţii momentului Momentele Zernike şi Legendre Momentele complexe

45 Extragerea atributelor Atribute vizuale Generale Formă Metode bazate pe Contur Circularitatea cir=4pa/p 2 Rata aspectului ar=(p1+p2)/c Iregularitatea unghiului de discontinuitate ( Ө i - Ө i+1 /2π(n-2)) 1/2 Iregularitatea lungimii lir= L i -L i+1 /K, unde K=2P pt n>3 şi K=P pt n=3 Complexitatea com=10-3/n

46 Extragerea atributelor Detecţia contururilor Contururile sunt acolo unde apar schimbări de culoare Schimbările de direcţie ale unei funcţii pot fi detectate cu ajutorul derivatei I cele mai mari schimbări apar acolo unde derivata I are magnitudine (normă, mărime, dimensiune) maximă derivata II = 0

47 Extragerea atributelor Algoritmi pentru extragerea atributelor Scale-invariant feature transform (SIFT) Biblioteca OpenCV Speeded Up Robust Features (SURF) opencv Gradient Location and Orientation Histogram (GLOH) Local Energy based Shape Histogram (LESH)

48 Extragerea atributelor Trebuie ghidată cf. următoarelor principii Atributele trebuie să conţină suficientă informaţie despre imagine şi nu trebuie folosite informaţii specifice în procesul de extracţie Atributele trebuie să fie uşor calculabile imagini mari şi numeroase

49 Compresia imaginilor Compresie la nivel de pixel Compresie predictivă (bazată pe o vecinătate) Compresie cu transformate Compresie cu fractali, etc Segmentarea imaginilor

50 VC_Workshop/presentations/pdf/daniela_t utorial2.pdf

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

prin operaţii punctuale

prin operaţii punctuale Lucrarea 3 Îmbunătăţirea imaginilor prin operaţii punctuale BREVIAR TEORETIC Termenul general de îmbunătăţire a imaginilor se referă la o clasă largă de operaţii, ce au ca scop mărirea detectabilităţii

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

OPERATII DE PRELUCRARE A IMAGINILOR C. VERTAN

OPERATII DE PRELUCRARE A IMAGINILOR C. VERTAN OPERATII DE PRELUCRARE A IMAGINILOR Prelucrare = Black Box Image In, Image Out Analiza imaginilor este Image In, Description Out Tipuri de operatii de prelucrare Clasificare dupa numarul de pixeli din

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Sisteme de Recunoastere a Formelor Laborator 3-4 Histograma Orientarilor Gradientilor

Sisteme de Recunoastere a Formelor Laborator 3-4 Histograma Orientarilor Gradientilor Sisteme de Recunoastere a Formelor Laborator 3-4 Histograma Orientarilor Gradientilor 1. Obiectie Descriptorii de tip histograma a orientarii gratientilor, sau descriptori HOG, sunt descriptori de trasatori

Διαβάστε περισσότερα

Sisteme de Recunoastere a Formelor Laborator 5 Histograma Orientarilor Gradientilor

Sisteme de Recunoastere a Formelor Laborator 5 Histograma Orientarilor Gradientilor Sisteme de Recunoastere a Formelor Laborator 5 Histograma Orientarilor Gradientilor 1. Obiectie Descriptorii de tip histograma a orientarii gratientilor, sau descriptori HOG, sunt descriptori de trasatori

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

LIMITARILE FILTRARII LINIARE A IMAGINILOR

LIMITARILE FILTRARII LINIARE A IMAGINILOR La ce folosea filtrarea liniara de netezire? LIMITARILE FILTRARII LINIARE A IMAGINILOR Reducerea efectelor zgomotului aditiv, de tip Gaussian suprapus imaginii. ZAGA : f ( l, = f0( l, + z( l, z( l, N(

Διαβάστε περισσότερα

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2)

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2) Lucrarea 6 Zgomotul în imagini BREVIAR TEORETIC Zgomotul este un semnal aleator, care afectează informaţia utilă conţinută într-o imagine. El poate apare de-alungul unui lanţ de transmisiune, sau prin

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Captura imaginilor. este necesară o sursă de lumină (λ: lungimea de undă a sursei)

Captura imaginilor. este necesară o sursă de lumină (λ: lungimea de undă a sursei) Captura imaginilor este necesară o sursă de lumină (λ: lungimea de undă a sursei) E(x, y, z, λ): lumina incidentă într-un punct (x, y, z coordonatele spațiale) fiecare punct din scenă are o funcție de

Διαβάστε περισσότερα

LIMITARILE FILTRARII LINIARE A IMAGINILOR C. VERTAN

LIMITARILE FILTRARII LINIARE A IMAGINILOR C. VERTAN LIMITARILE FILTRARII LINIARE A IMAGINILOR La ce folosea filtrarea liniara de netezire? Reducerea efectelor zgomotului aditiv, de tip Gaussian suprapus imaginii. ZAGA : f ( l, c) = f0( l, c) + z( l, c)

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Tehnici de imbunatatire si restaurare a imaginilor

Tehnici de imbunatatire si restaurare a imaginilor Tehnici de imbunatatire si restaurare a imaginilor Tehnici de imbunatatire si restaurare a imaginilor... 1 I. Tehnici de imbunatatire si restaurare in domeniul spatial... 3 1. Conversia nivelelor de gri...

Διαβάστε περισσότερα

Procesarea Imaginilor

Procesarea Imaginilor Procesarea Imaginilor SEGMENTAREA IMAGINILOR Mihai Ivanovici Universitatea Transilvania din Braşov Page 1 of 29 1 Segmentarea reprezintă împărţirea imaginii în zone de interes, după anumite criterii Fiecărui

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Transformate pentru semnale multidimensionale

Transformate pentru semnale multidimensionale Transformate pentru semnale multidimensionale Semnale 1D: s(t) Unele caracteristici ale semnalului pot fi ușor descrise în domeniul frecvență Transformata Fourier: s(t) S(ω) (sau s(t) S(f t )) unde t este

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Analiza și Prelucrarea Digitală a Semnalelor Video

Analiza și Prelucrarea Digitală a Semnalelor Video Analiza și Prelucrarea Digitală a Semnalelor Video Conf. dr. ing. Radu Ovidiu Preda radu@comm.pub.ro Ș.l. dr. ing. Ionuţ Pirnog ionut@comm.pub.ro Site disciplină: www.comm.pub.ro/preda/apdsv Analiza și

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Segmentarea imaginilor

Segmentarea imaginilor Lucrarea 0 Segmentarea imaginilor BREVIAR TEORETIC Segmentarea reprezintă împărţirea imaginii în zone de interes, după anumite criterii. Fiecărui pixel i se va atribui o valoare, 0 sau, reprezentând apartenenţa

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Lab06: Extragerea trăsăturilor şi selecţia trăsăturilor. Aplicaţie pentru recunoaşterea obiectelor bazată pe formă.

Lab06: Extragerea trăsăturilor şi selecţia trăsăturilor. Aplicaţie pentru recunoaşterea obiectelor bazată pe formă. Lab06: Extragerea trăsăturilor şi selecţia trăsăturilor Aplicaţie pentru recunoaşterea obiectelor bazată pe formă. Aplicație practică a extragerii şi selecţiei trăsăturilor Recunoaşterea celor 4 forme

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Tratarea numerică a semnalelor

Tratarea numerică a semnalelor LUCRAREA 5 Tratarea numerică a semnalelor Filtre numerice cu răspuns finit la impuls (filtre RFI) Filtrele numerice sunt sisteme discrete liniare invariante în timp care au rolul de a modifica spectrul

Διαβάστε περισσότερα

ANALIZA IMAGINILOR C. VERTAN

ANALIZA IMAGINILOR C. VERTAN ANALIZA IMAGINILOR ANALIZA IMAGINILOR Titular curs : Prof. Dr. Ing. Constantin VERTAN cvertan@alpha.imag.pub.ro B141 Laborator : As. Dr. Ing. Laura FLOREA lflorea@alpha.imag.pub.ro B141/ B135A Chestiuni

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Seria Balmer. Determinarea constantei lui Rydberg

Seria Balmer. Determinarea constantei lui Rydberg Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

Scoruri standard Curba normală (Gauss) M. Popa

Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard cunoaştere evaluare, măsurare evaluare comparare (Gh. Zapan) comparare raportare la un sistem de referință Povestea Scufiței Roşii... 70

Διαβάστε περισσότερα

Compresia de imagini. Standardul JPEG

Compresia de imagini. Standardul JPEG Tehnici de Compresie a Semnalelor Multimedia Lucrare de laborator Compresia de imagini. Standardul JPEG I. Obiectivul lucrării Lucrarea îşi propune familiarizarea cu metodele şi algoritmii utilizaţi în

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

CURS MECANICA CONSTRUCŢIILOR

CURS MECANICA CONSTRUCŢIILOR CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

ECO-STATISTICA-NOTITZZE DE LABORATOR

ECO-STATISTICA-NOTITZZE DE LABORATOR ECO-STATISTICA: OBIECTIVE: A. EVALUAREA CELEI MAI PROBABILE VALORI A UNEI CARACTERISTICI A MEDIULUI IN ZONA INVESTIGATA si a ERORII DE ESTIMARE In zona investigata cu o probabilitate de 90% (riscul asumat

Διαβάστε περισσότερα

Seminar 3. Problema 1. a) Reprezentaţi spectrul de amplitudini şi faze pentru semnalul din figură.

Seminar 3. Problema 1. a) Reprezentaţi spectrul de amplitudini şi faze pentru semnalul din figură. Seminar 3 Problema 1. a) Reprezentaţi spectrul de amplitudini şi faze pentru semnalul din figură. b) Folosind X ( ω ), determinaţi coeficienţii dezvoltării SFE pentru semnalul () = ( ) xt t x t kt şi reprezentaţi

Διαβάστε περισσότερα

Segmentarea imaginilor APIM8-1

Segmentarea imaginilor APIM8-1 Segmentarea imaginilor APIM8-1 Ce este segmentarea? segmentarea = impartirea unei imagini in regiuni cu o anumita semnificatie regiuni cu o anumita semnificatie = obiecte sau zone de interes cel mai simplu

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Procesarea Imaginilor

Procesarea Imaginilor UNIVERSITATEA TRANSILVANIA DIN BRAŞOV Laurenţiu-Mihail IVANOVICI Procesarea Imaginilor Îndrumar de laborator 2006 c 2003 EDITURA UNIVERSITĂŢII TRANSILVANIA BRAŞOV Adresa: 500030 Brasov, B-dul Eroilor,

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα

Ce sunt imaginile digitale şi cum sunt ele memorate?

Ce sunt imaginile digitale şi cum sunt ele memorate? Procesarea imaginilor medicale Ce sunt imaginile digitale şi cum sunt ele memorate? Ca fiinţe, analizăm curent orice imagine vedem, până la a recunoaşte obiecte sau fiinţe chiar dacă imaginea este incompletă.

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,

Διαβάστε περισσότερα

Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21

Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21 Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21! 21.1. Generalităţi.! 21.2. Elementele cotării.! 21.3. Aplicaţii.! 21.1. Generalităţi! Dimensiunea este o caracteristică geometrică liniară sau unghiulară,care

Διαβάστε περισσότερα

Sisteme liniare - metode directe

Sisteme liniare - metode directe Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα