Άδειες Χρήσης. Ειδικά Θέματα Μαθηματικών. Μαθηματικά στην εκπαίδευση και την έρευνα: Ο ρόλος της γλώσσας. Διδάσκων : Επίκουρος Καθηγητής Κ.
|
|
- Ζώνα Λαγός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Ειδικά Θέματα Μαθηματικών Μαθηματικά στην εκπαίδευση και την έρευνα: Ο ρόλος της γλώσσας Διδάσκων : Επίκουρος Καθηγητής Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.
2 Ειδικϊ θϋματα Μαθηματικών Μϊθημα 6 ο Μαθηματικά και γλώσσα Μαθηματικά ως επιστήμη Μαθηματικϊ και επικοινωνύα Γιατύ κεύμενα που αφορούν την ύδια «εξω-γλωςςικό» οντότητα να ποικύλουν ςε τϋτοιο βαθμό; 1η απϊντηςη: ημαύνον (ερμηνεύα) ςημαινόμενο (γλωςςικό περιγραφό). Σι περιλαμβϊνει η ερμηνεύα; Καταγραφό των εννοιών Αποδόμηςη αντικειμϋνου (ποια εύναι τα βαςικϊ ςυςτατικϊ;) Ιδιότητεσ αντικειμϋνου (ποςοτικϋσ ποιοτικϋσ) Καταγραφό των ςχϋςεων μεταξύ των εννοιών (τομϋσ, κοινϊ ςημεύα, αποςτϊςεισ, μεγϋθη, ομοιότητεσ) Κατηγοριοπούηςη των ςχϋςεων (ποιεσ εύναι πιο ςημαντικϋσ, ποιεσ θεωρούνται δεδομϋνεσ) 10 Απριλύου 2014 Μαθηματικϊ και επικοινωνύα Γιατύ κεύμενα που αφορούν την ύδια «εξω-γλωςςικό» οντότητα να ποικύλουν ςε τϋτοιο βαθμό; 1η απϊντηςη: ημαύνον (ερμηνεύα) ςημαινόμενο (γλωςςικό περιγραφό). Από τι επηρεϊζεται η ερμηνεύα; Τπϊρχουςεσ γνώςεισ (οριςμού) Εμπειρύα Ικανότητα αποδόμηςησ αντικειμϋνου Μαθηματικϊ και επικοινωνύα Γιατύ κεύμενα που αφορούν την ύδια «εξω-γλωςςικό» οντότητα να ποικύλουν ςε μεγϊλο βαθμό; 1η απϊντηςη: ημαύνον (ερμηνεύα) ςημαινόμενο (γλωςςικό περιγραφό). Από τι επηρεϊζεται η γλωςςικό περιγραφό; Ικανότητα επιλογόσ των εννοιών και των ςχϋςεων που επαρκούν για την ακριβό περιγραφό Γνώςη των ικανοτότων του ακροατό και των γλωςςικών περιοριςμών Χρονικού περιοριςμού Διαθϋςιμα μϋςα-εργαλεύα Γλωςςικϋσ ικανότητεσ Περικεύμενο (πλαύςιο) του κειμϋνου (ςε ποιον απευθύνεται και ποιο ςκοπό εξυπηρετεύ) 1
3 Μαθηματικϊ και επικοινωνύα Γιατύ κεύμενα που αφορούν την ύδια «εξω-γλωςςικό» οντότητα να ποικύλουν ςε τϋτοιο βαθμό; 2η απϊντηςη: Η ύδια η γλώςςα μορφοποιεύ τισ οντότητεσ που περιγρϊφει. ο όροσ «εξω-γλωςςικό οντότητα» εύναι παραπλανητικόσ! Επιςτημονικϊ κεύμενα (Πρϋπει να) πληρούν 7 κριτόρια: υνοχό υνεκτικότητα Προθετικότητα Αποδεκτότητα Πληροφορικότητα Καταςταςιακότητα Διακειμενικότητα υνοχό Οι τρόποι με τουσ οπούουσ τα ςτοιχεύα του κειμϋνου ςυνδϋονται αμοιβαύα ςε μια ακολουθύα, εξαρτώμενα μεταξύ τουσ ςύμφωνα με τουσ γραμματικούσ τύπουσ και τισ ςυμβϊςεισ. (π.χ. ςύνταξη) Πώσ εμφανύζεται; Όταν η ερμηνεύα ενόσ ςτοιχεύου προώποθϋτει την ύπαρξη ενόσ ϊλλου. υνοχό Επανϊληψη Αντικαταςτατικϊ ςτοιχεύα Έλλειψη Ρηματικού χρόνοι Σύποι προτϊςεων ύνδεςη 2
4 υνοχό Επανϊληψη Λεξικό επανϊληψη Μερικό επανϊληψη Παραλληλιςμόσ Παρϊφραςη Γενικϊ ονόματα Τπερώνυμα υνοχό Επανϊληψη Α. Επανϊληψη Ακριβόσ επανεμφϊνιςη ςτοιχεύων ό ςχημϊτων. Προςδύδει ϋμφαςη, εύναι χαρακτηριςτικό του προφορικού λόγου. Λεξικό επανϊληψη Αποφυγό ςύγχυςησ Ειςαγωγό νϋων πληροφοριών Διδακτικού ςκοπού Ορθογώνιο ονομϊζεται το παραλληλόγραμμο που ϋχει 4 γωνύεσ ορθϋσ. Οι διαγώνιεσ του ορθογωνύου εύναι ύςεσ. υνοχό Επανϊληψη Μερικό επανϊληψη: (αλλαγό μϋρουσ του λόγου) Χημικόσ αντιδραςτόρασ εύναι ο χώροσ που διεξϊγεται μια χημικό αντύδραςη υνοχό Επανϊληψη Παραλληλιςμόσ (επαναχρηςιμοπούηςη όμοιων επιφανειακών ςχημϊτων) Κατηγοριοπούηςη, ταξινόμηςη, διϊκριςη αντύθετων φαινομϋνων Το ιςόπλευρο τρύγωνο ϋχει όλεσ τισ πλευρϋσ του ύςεσ ενώ το ιςοςκελϋσ τρύγωνο ϋχει τισ δύο πλευρϋσ του ύςεσ. 3
5 υνοχό Επανϊληψη Παρϊφραςη (επανϊληψη περιεχομϋνου με ταυτόχρονη αλλαγό τησ ϋκφραςησ) Αποφυγό λεξικόσ επανϊληψησ Επεξόγηςη υνοχό Επανϊληψη Γενικϊ ονόματα Απρόςωπη χροιϊ Στο Σχ.1 φαύνονται τα βόματα του τρόπου παραςκευόσ τησ κινοξαλύνησ-υδραζόνησ. Η ϋνωςη τόκεται ςτουσ 182 ο C. Ο κύκλοσ με την ευθεύα ϋχουν δύο κοινϊ ςημεύα (ςημεύα τομόσ). υνοχό Επανϊληψη Υπερώνυμα (λεξικϊ ςτοιχεύα που κυριαρχούν ςτα ςτοιχεύα που προηγούνται ό που ακολουθούν) Οι ηλιακϋσ εκλϊμψεισ ϋχουν μεγϊλη επύδραςη ςτη Γη. Οι ακτύνεσ Χ και η υπεριώδησ ακτινοβολύα φτϊνουν ςτη Γη μϋςα ςε 8 λεπτϊ και αυξϊνουν τον ιονιςμό τησ ανώτερησ ατμόςφαιρασ τησ Γησ. υνοχό Αντικαταςτατικϊ ςτοιχεύα Β. Αντικαταςτατικϊ ςτοιχεύα Λϋξεισ Βρύςκουμε χωρύσ λοιπόν δικό τουσ ότι x=0. ςυγκεκριμϋνο Αυτό εύναι και περιεχόμενο, η λύςη οι τησ οπούεσ εξύςωςησ. αντικαθιςτούν ϊλλεσ εκφρϊςεισ. Δεικτικϋσ αντωνυμύεσ Υπολογύζω τη διακρύνουςα Αυτό η διαδικαςύα μασ επιτρϋπει να γνωρύζουμε τον αριθμό των λύςεων τησ εξύςωςησ. Με τη βοόθεια του απ ευθεύασ γινομϋνου μπορεύ να βρεθεύ το κατϊ πόςο ϋνα ολοκλόρωμα γινομϋνου ςυναρτόςεων ϋχει μηδενικό τιμό. Αποδεικνύεται ότι ϋνα τϋτοιο ολοκλόρωμα εύναι μη μηδενικό μόνο αν.. 4
6 υνοχό Αντικαταςτατικϊ ςτοιχεύα Προςωπικϋσ αντωνυμύεσ Αναφορϊ ςτο ςυντϊκτη του κειμϋνου, αλλϊ και ςτουσ αναγνώςτεσ (διδακτικού ςκοπού): Στο μοντϋλο του Sun θεωρεύται για απλότητα ότι το κρύςιμο ρεύμα Ι c εύναι ςταθερό. Στην περύπτωςό μασ όμωσ υνοχό ϋλλειψη Γ. Έλλειψη υναντϊται ςε ςόματα, αγγελύεσ, εςωτερικούσ μονόλογουσ (αλλϊ όχι μόνο!) Τετρϊγωνο Ιδιότητεσ: 4 πλευρϋσ και 4 γωνύεσ ύςεσ Αντικαταςτατικού προςδιοριςμού από τα προηγούμενα, και ςε αυτό την περύπτωςη, ϋτςι, τότε, ωσ εξόσ υνοχό ρηματικού χρόνοι Δ. Ρηματικού χρόνοι Ενεςτώτασ Οριςμού Οι λύςεισ τισ εξύςωςησ βρύςκονται πϊνω ςε μια ευθεύα Ιςτορικόσ ενεςτώτασ Η απόδειξη που ϋδωςε ο Einstein βαςύζεται ςτη υμφωνύα ςυντϊκτη Κϊποιεσ παρατηρόςεισ πριν από 10 χρόνια αποκϊλυψαν τον εξελικτικό παρϊγοντα που απομακρύνει το αϋριο και τη ςκόνη γύρω από τον πρωτοαςτϋρα υνοχό ρηματικού χρόνοι Αόριςτοσ (ςυγκεκριμϋνο ςημεύο του παρελθόντοσ) Η ϋρευνϊ μασ πραγματοποιόθηκε το Μϊρτιο του Παρακεύμενοσ Ενϋργειεσ που ϋχουν προηγηθεύ αλλϊ τα επακόλουθϊ τουσ ϋχουν παροντικό ςημαςύα για τουσ ςυντϊκτεσ: Η ηλιακό κοκκύαςη ϋχει παρατηρηθεύ από πολύ παλιϊ και ϋχει μελετηθεύ με διϊφορεσ μεθόδουσ.. Μϋλλοντασ Θα δεύξουμε ότι.. 5
7 υνοχό τύποι προτϊςεων Αποφαντικϋσ Ερωτηματικϋσ Προςταγόσ παρϊκληςησ Επιφωνηματικϋσ Προςθετικό ςύνδεςη Διϊζευξη Αντιθετικό ςύνδεςη υμπεραςματικό ςύνδεςη υνδετικϊ χρόνου και τόπου Επεξηγηματικό ςύνδεςη Προςθετικό ςύνδεςη και, επιπλϋον, επύςησ, επιπρόςθετα, μϊλιςτα Επιδοτικόσ χαρακτόρασ (τελευταύο επιχεύρημα μιασ επιχειρηματολογύασ): Πολλϋσ φορϋσ μϊλιςτα, η ύπαρξη ϊλλων ουςιών μειώνει τη ςυνεκτικότητα του υλικού. Ακόμα, πρϋπει να τονιςτεύ ότι πολλϋσ φορϋσ ςτην πρϊξη δεν μασ ενδιαφϋρει η πυκνότητα κϊθε ςωματιδύου Διϊζευξη (δεν εύναι ςυνόθησ, λόγω τησ αυξημϋνησ προςπϊθειασ που απαιτεύ από τον αναγνώςτη για τη ςυγκρϊτηςη δύο όρων) Με την πυρόλυςη επιτυγχϊνεται εύτε η δημιουργύα ιςομερούσ εύτε η περαιτϋρω αφαύρεςη υδρογόνου. Για την αποφυγό τησ χρόςησ τησ διϊζευξησ χρηςιμοποιεύται η αρύθμηςη: Υπϊρχουν δύο τρόποι επύλυςησ του προβλόματοσ: α) β) 6
8 Αντιθετικό ςύνδεςη Μπορεύ να δηλώνει: λογικό αντύθεςη, αντύθεςη με τα προλεχθϋντα, εναλλακτικό προοπτικό, οριςτικό προοπτικό αλλϊ, όμωσ, ωςτόςο, αντύθετα, ςε αντύθεςη, πλην όμωσ, από την ϊλλη μεριϊ, εν τούτοισ, παρ όλα αυτϊ, διαφορετικϊ υμπεραςματικό ςύνδεςη λοιπόν, ϊρα, ϋτςι, ςυνεπώσ, κατϊ ςυνϋπεια, οπότε, γι αυτό, ωσ εκ τούτου, ςυμπεραςματικϊ Αςτϋρεσ με μϊζα μικρότερη από 0,08 Μο δεν μπορούν ποτϋ να θερμανθούν αρκετϊ για να κϊψουν υδρογόνο. Έτςι, οι αςτϋρεσ αυτού δεν φτϊνουν ποτϋ ςτην κύρια ακολουθύα.. υνδετικϊ χρόνου και τόπου Εξωτερικό: ςυνδϋει γεγονότα καταςτϊςεισ του κειμενικού κόςμου Εςωτερικό: ςυντελεύ ςτη διϊρθρωςη του ύδιου του κειμϋνου τώρα, μετϊ, αφού, καθώσ, ϋπειτα, τότε, μϋχρι τώρα, ςτη ςυνϋχεια, όδη, αργότερα, ςτη ςυνϋχεια, ακολούθωσ, ςτα επόμενα, ςτο μεταξύ, ςυνόθωσ, τϋλοσ, επιτϋλουσ, Στη τελικϊ.. ςυνϋχεια θα εξετϊςουμε τη ςυμπεριφορϊ τησ ςυνϊρτηςησ για πολύ μεγϊλεσ τιμϋσ του x. Αν Α, Β εύναι δύο μη κενϊ ςύνολα, τότε ονομϊζουμε τομό των Α, Β το ςύνολο Ασ ςημειωθεύ εδώ ότι η εξύςωςη (2.71) για την περύθλαςη κύματοσ (ό ιςοδύναμα για την ανϊκλαςη Bragg όπωσ θα δούμε πιο κϊτω) εύναι Επεξηγηματικό ςύνδεςη δηλαδό, με ϊλλα λόγια, πιο αναλυτικϊ, για παρϊδειγμα, ςαν παρϊδειγμα, π.χ., ςυγκεκριμϋνα, ειδικότερα, γενικϊ, επιγραμματικϊ 7
9 Άλλεσ κατηγορύεσ ςυνδετικών Επιρρόματα και επιρρηματικού προςδιοριςμού που δηλώνουν την προςωπικό ςτϊςη του ςυντϊκτη του κειμϋνου απϋναντι ςτο κεύμενό του. Δυςτυχώσ, οι θεωρητικού υπολογιςμού δεύχνουν ότι όταν το υλικό αυτό φτϊςει ςτην αςτρικό επιφϊνεια Άλλεσ κατηγορύεσ ςυνδετικών Δόλωςη αποδεικτικότητασ, δηλαδό τησ ςτϊςησ του ςυντϊκτη ωσ προσ την αξιοπιςτύα και την εγκυρότητα τησ πληροφορύασ: πϊντωσ (παραχωρητικόσ δεύκτησ που χρηςιμοποιεύται για να «κλεύςει ϋνα θϋμα») προφανώσ (επιβεβαύωςη των προλεχθϋντων προςδύδοντασ μεγϊλο βαθμό αξιοπιςτύασ) ςτην πραγματικότητα (αντιθετικό, επανορθωτικό λειτουργύα) πρϊγματι, βϋβαια, οπωςδόποτε (ενύςχυςη τησ βεβαιότητασ του ςυντϊκτη). Μϋχρι εδώ ϋχουμε εξετϊςει τον Ήλιο ςαν να όταν ϋνα ςτατικό, αμετϊβλητο ςώμα. Στην πραγματικότητα όμωσ, ο Ήλιοσ εύναι ϋνα μεταβλητό αντικεύμενο, του οπούου η επιφϊνεια αλλϊζει ςυνεχώσ. Μαθηματικϊ ωσ επιςτόμη Άλγεβρα Επύλυςη εξιςώςεων. Al-Khwarizmi (825 μ.χ.) Πϋρςησ μαθηματικόσ, αςτρονόμοσ και γεωγρϊφοσ. το βιβλύο του ςχετικϊ με τουσ υπολογιςμούσ Κιταμπ Αλ-γκιαμπρ παρουςύαςε για πρώτη φορϊ την ςυςτηματικό λύςη τησ γραμμικόσ και δευτεροβϊθμιασ εξύςωςησ. Θεωρεύται ο «πατϋρασ» τησ ϊλγεβρασ, τιμό την οπούα μοιρϊζεται με τον Διόφαντο. τον δωδϋκατο αιώνα, οι λατινικϋσ μεταφρϊςεισ του ϋργου του ςτουσ Ινδικούσ αριθμούσ παρουςύαςαν το δεκαδικό θεςιακό ςύςτημα αρύθμηςησ ςτον Δυτικό Κόςμο. Οι ςυνειςφορϋσ του εύχαν μεγϊλο αντύκτυπο, αφού η λϋξη «Άλγεβρα» προϋρχεται από το Αλ-γκιαμπρ μια από τισ δύο πρϊξεισ που χρηςιμοποιούςε για την επύλυςη δευτεροβϊθμιων εξιςώςεων. Ο όροσ Αλγόριθμοσ προϋρχεται από το Algoritmi, το Λατινικό του όνομα. x Επύλυςη εξύςωςησ x x = 39 x x
10 Χρηματοδότηση Τέλος Ενότητας Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Σημείωμα Ιστορικού Εκδόσεων Έργου Σημειώματα Το παρόν έργο αποτελεί την έκδοση 1.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1.0 διαθέσιμη εδώ.
11 Σημείωμα Αναφοράς Σημείωμα Αδειοδότησης Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων : Επίκουρος Καθηγητής Κ. Τάτσης. «Ειδικά Θέματα Μαθηματικών. Μαθηματικά στην εκπαίδευση και την έρευνα: Ο ρόλος της γλώσσαςά». Έκδοση: 1.0. Ιωάννινα Διαθέσιμο από τη δικτυακή διεύθυνση: Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1]
Άδειες Χρήσης. Διδακτική Μαθηματικών I. Επίλυση προβλήματος (συνέχεια) Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Διδακτική Μαθηματικών I Επίλυση προβλήματος (συνέχεια) Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Άδειες Χρήσης. Ειδικά Θέματα Μαθηματικών. Περί δημιουργικότητας (συνέχεια) Διδάσκων : Επίκουρος Καθηγητής Κ. Τάτσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Ειδικά Θέματα Μαθηματικών Περί δημιουργικότητας (συνέχεια) Διδάσκων : Επίκουρος Καθηγητής Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Άδειες Χρήσης. Ειδικά Θέματα Μαθηματικών. Μαθηματικά στην εκπαίδευση: Επίλυση προβλήματος - Ρεαλιστικά Μαθηματικά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Ειδικά Θέματα Μαθηματικών Μαθηματικά στην εκπαίδευση: Επίλυση προβλήματος - Ρεαλιστικά Μαθηματικά Διδάσκων : Επίκουρος Καθηγητής Κ. Τάτσης
Μαθηματικϊ. Β' Ενιαύου Λυκεύου. (μϊθημα κοινού κορμού) Υιλοςοφύα - κοπού
Μαθηματικϊ Β' Ενιαύου Λυκεύου (μϊθημα κοινού κορμού) Υιλοςοφύα - κοπού Η διδαςκαλύα των Μαθηματικών Κοινού Κορμού επιδιώκει να δώςει ςτο μαθητό τα εφόδια για την αντιμετώπιςη καθημερινών αναγκών ςε αριθμητικϋσ
Αρχϋσ του NCTM. Αρχϋσ του NCTM. Αρχϋσ του NCTM. Διδακτικό Μαθηματικών ΙΙ. Μϊθημα 9 ο Αξιολόγηςη
Διδακτικό Μαθηματικών ΙΙ Μϊθημα 9 ο Αξιολόγηςη 1. Μαθηματικϊ: περιεχόμενο ςχολικών Μαθηματικών διϊρθρωςη «ύλησ» η αξιολόγηςη ςυνόθωσ επικεντρώνεται ςε ανϊκληςη αςύνδετων πληροφοριών και λεπτομερειών. Αντύ
Άδειες Χρήσης. Διδακτική Μαθηματικών I. Πρόσθεση-αφαίρεση. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης
ΠΑΝΕΠΙΣΤΗΜΙ ΙΩΑΝΝΙΝΩΝ ΑΝΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Διδακτική Μαθηματικών I Πρόσθεση-αφαίρεση Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ. Β ΓΥΜΝΑΣΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ Σελίδα 1
ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ Β ΓΥΜΝΑΣΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ Σελίδα 1 ΑΠΟ ΣΗΝ ΤΛΗ ΣΗ Α' ΣΑΞΗ ΕΠΑΝΑΛΗΨΗ 3 Διϊγνωςη των γνώςεων και ικανοτότων των παιδιών με ςκοπό τη ςυμπλόρωςη κενών. Ο καθηγητόσ με διαγνωςτικϊ
Άδειες Χρήσης. Διδακτική Μαθηματικών I. Γραμμικότητα Γεωμετρία. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Διδακτική Μαθηματικών I Γραμμικότητα Γεωμετρία Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Βαγγϋλησ Οικονόμου Διϊλεξη 4. Δομ. Προγραμ. - Διϊλεξη 4
Βαγγϋλησ Οικονόμου Διϊλεξη 4 Δομ. Προγραμ. - Διϊλεξη 4 1 Περιεχόμενα Προτϊςεισ επανϊληψησ Προτϊςεισ Διακλϊδωςησ Δομ. Προγραμ. - Διϊλεξη 4 2 Προτάςεισ επανάληψησ Οι προτϊςεισ επανϊληψησ (iterative ό loop
ΜΑΘΗΜΑΤΙΚΑ Α ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ. Β ΓΥΜΝΑΣΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ Σελίδα 1
ΜΑΘΗΜΑΤΙΚΑ Α ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ Β ΓΥΜΝΑΣΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ Σελίδα 1 ΑΠΟ ΣΟ ΔΗΜΟΣΙΚΟ ΣΟ ΓΤΜΝΑΙΟ 4 Διϊγνωςη των γνώςεων και ικανοτότων των παιδιών που ϋρχονται από το Δημοτικό ςτο Γυμνϊςιο. Ο καθηγητόσ με διαγνωςτικϊ
Βαγγϋλησ Οικονόμου Διϊλεξη 6. Δομ. Προγραμ. - Συναρτόςεισ - Διϊλεξη 6
Βαγγϋλησ Οικονόμου Διϊλεξη 6 1 Αφαιρετικότητα ςτισ διεργαςύεσ Συνϊρτηςεισ Δόλωςη, Κλόςη και Οριςμόσ Εμβϋλεια Μεταβλητών Μεταβύβαςη παραμϋτρων ςε ςυναρτόςεισ Μηχανιςμόσ Κλόςησ Συνϊρτηςησ 2 Διεργαςύα : βαςικό
Εγχειρίδιο Χρήσης των Εργαλείων Αναγνώρισης Χαρισματικών Μαθητών στα Μαθηματικά
Εγχειρίδιο Χρήσης των Εργαλείων Αναγνώρισης Χαρισματικών Μαθητών στα Μαθηματικά ΕΓΦΕΙΡΙΔΙΟ ΦΡΗΗ ΕΡΓΑΛΕΙΨΝ ΑΝΑΓΝΨΡΙΗ ΕΙΑΓΨΓΗ Η ύπαρξη ϋγκυρων και αξιόπιςτων εργαλεύων αναγνώριςησ χαριςματικών μαθητών κρύνεται
Άδειες Χρήσης. Διδακτική Μαθηματικών I. Επίλυση προβλήματος (συνέχεια) Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Διδακτική Μαθηματικών I Επίλυση προβλήματος (συνέχεια) Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Βαγγϋλησ Οικονόμου Διϊλεξη 5 ΠΙΝΑΚΕΣ. Δομ. Προγραμ. - Διϊλεξη 5 1
Βαγγϋλησ Οικονόμου Διϊλεξη 5 ΠΙΝΑΚΕΣ Δομ. Προγραμ. - Διϊλεξη 5 1 Περιεχόμενα Πύνακεσ Αλφαριθμητικϊ Σκοπόσ μαθόματοσ: Να αναγνωρίζετε πότε είναι απαραίτητη η χρήςη του τύπου του πίνακα, Να δώςετε παραδείγματα
Μικροβιολογία & Υγιεινή Τροφίμων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μικροβιολογία & Υγιεινή Τροφίμων Μικροοργανισμοί που ελέγχονται ανά είδος τροφίμου Διδάσκοντες: Καθ. Χρυσάνθη Παπαδοπούλου, Λέκτορας Ηρακλής Σακκάς Άδειες
Μαθηματικϊ Γ' Ενιαύου Λυκεύου (μϊθημα κατεύθυνςησ)
Μαθηματικϊ Γ' Ενιαύου Λυκεύου (μϊθημα κατεύθυνςησ) : 1. ΤΝΑΡΣΗΕΙ Ορύζουν και να αναγνωρύζουν μια ςύνθετη ςυνϊρτηςη 2 1.1 Επανϊληψη Εκφρϊζουν μια ςύνθετη ςυνϊρτηςη ωσ ςύνθεςη ϊλλων ςυναρτόςεων Ορύζουν και
Μαύροσ Γιϊννησ Μαθηματικόσ
Μαύροσ Γιϊννησ Μαθηματικόσ Ποιοσ εύναι ο οριςμόσ του ςυνόλου; Γιατύ μαθαύνουμε οριςμούσ; Αν ςκεφτεύ κανεύσ ότι τα μαθηματικϊ εύναι μια γλώςςα, όπωσ τα ελληνικϊ ό τα αγγλικϊ, και ο ςκοπόσ τησ εύναι να διευκολύνει
Επικοινωνύα (1) Επικοινωνύα (2) Επικοινωνύα (3) Ανακοινώςεισ μαθήματοσ: κλειδύ: math2009.
Ειςαγωγό ςτισ βαςικϋσ ϋννοιεσ των Μαθηματικών 1 ο Μάθημα Ειςαγωγή Μαθηματική Λογική Επικοινωνύα (1) ktatsis@uoi.gr twitter: tatsis_kostas Τηλϋφωνο: 2651005870 Ώρεσ ςυνεργαςύασ (3 οσ όροφοσ): Τετϊρτη 17:00-19:00
Παθήςεισ του θυροειδή ςε άτομα με ςύνδρομο Down: Πληροφορίεσ για γονείσ και δαςκάλουσ. Τι είναι ο θυροειδήσ αδένασ;
Παθήςεισ του θυροειδή ςε άτομα με ςύνδρομο Down: Πληροφορίεσ για γονείσ και δαςκάλουσ Τι είναι ο θυροειδήσ αδένασ; Dr. jennifer Dennis, Ιατρική Σύμβουλοσ του Συλλόγου για το Σύνδρομο Down (1993) Ο αδϋνασ
Άδειες Χρήσης. Ειδικά Θέματα Μαθηματικών. Μαθηματικά στην εκπαίδευση και την έρευνα: Ο ρόλος της γλώσσας. Διδάσκων : Επίκουρος Καθηγητής Κ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Ειδικά Θέματα Μαθηματικών Μαθηματικά στην εκπαίδευση και την έρευνα: Ο ρόλος της γλώσσας Διδάσκων : Επίκουρος Καθηγητής Κ. Τάτσης Το παρόν
Επικοινωνύα. twitter: tatsis_kostas Τηλϋφωνο: Ώρεσ ςυνεργαςύασ: κλειδύ: did2009
Διδακτική Μαθηματικών ΙΙ Μάθημα 1 ο Εισαγωγή Περιεχόμενο μαθόματοσ Επανϊληψη Παρϊγοντεσ που επιδρούν ςτο διδακτικό ςχεδιαςμό 2-3 προαιρετικϋσ εργαςύεσ Σχϋδια διδαςκαλύασ Εργαςύα ςε ομϊδεσ 2-4 ατόμων Βαθμόσ:
Επιταχυντϋσ Σωματιδύων
3 ο Λύκειο Γαλατςύου Σχ.Έτοσ 2011-2012 Επιταχυντϋσ Σωματιδύων Συντονιςτϋσ - Υπεύθυνοι Καθηγητϋσ: Μαραγκουδϊκησ Ε. & Φαρϊκου Γ. Επιταχυντήσ ςωματιδίων Eπιταχυντόσ ςωματιδύων ονομϊζεται μια ειδικό
Οδηγόσ πουδών 2014-2015
Οδηγόσ πουδών 2014-2015 ΕΞ ΑΠΟΣΑΕΨ ΕΠΙΜΟΡΥΨΣΙΚΟ ΠΡΟΓΡΑΜΜΑ «Νεοελληνικό Λογοτεχνύα & Χηφιακϋσ Σεχνολογύεσ» ΚΕΝΣΡΟ ΔΙΑ ΒΙΟΤ ΜΑΘΗΗ ΕΡΓΑΣΗΡΙΟ ΝΕΑ ΕΛΛΗΝΙΚΗ ΥΙΛΟΛΟΓΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΙΨΑΝΝΙΝΨΝ Ειςαγωγικϊ τοιχεύα
ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΧΗ ΑΠΟ ΣΗΝ ΤΛΗ ΣΗ Β'ΣΑΞΗ 4 Διϊγνωςη των γνώςεων και δεξιοτότων των παιδιών με ςκοπό τη ςυμπλόρωςη κενών. Ο καθηγητόσ με διαγνωςτικϊ δοκύμια, φύλλα εργαςύασ, αςκόςεισ
19/10/2009. Προηγοφμενη βδομάδα... Σήμερα Γεωγραφικά Συςτήματα Πληροφοριϊν Χωρικά Μοντζλα Δεδομζνων. Δομή του μαθήματοσ
Προηγοφμενη βδομάδα... Σήμερα Γεωγραφικά Συςτήματα Πληροφοριϊν Χωρικά Μοντζλα Δεδομζνων Δημότρησ Μιχελϊκησ Τμόμα Εφαρμοςμϋνησ Πληροφορικόσ και Πολυμϋςων Σχολό Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό
Ο ΟΓΙΚΟΣ ΦΑΡΤΗΣ ΤΟΥ ΣΑΚΦΑΡΩΓΗ ΓΙΑΒΗΤΗ ΣΤΗΝ ΔΛΛΑΓΑ
Ο ΟΓΙΚΟΣ ΦΑΡΤΗΣ ΤΟΥ ΣΑΚΦΑΡΩΓΗ ΓΙΑΒΗΤΗ ΣΤΗΝ ΔΛΛΑΓΑ 1 Ο Σακχαρώδησ Διαβότησ (ΣΔ) εύναι μια μεταβολικό διαταραχό και αποτελεύ ϋνα από τα ςυχνότερα χρόνια νοςόματα και μια από τισ ςημαντικότερεσ αιτύεσ πρόωρησ
Η Διαύρεςη 134:5. Η Διαύρεςη 134:5. Διδακτική Μαθηματικών ΙΙ
Διδακτική Μαθηματικών ΙΙ Μάθημα 4 ο Η διαίρεςη (ςυνέχεια) Είδη ερωτήςεων Η Διαύρεςη 134:5 Μεριςμού Θϋλω να μοιρϊςω 134 ςε 5 Μέτρηςησ Θϋλω να βρω πόςεσ ομϊδεσ των 5 υπϊρχουν ςτο 134 Αντίςτροφη του πολλαπλαςιαςμού
Μαθηματικοπούηςη. Μαθηματικοπούηςη. Μαθηματικϋσ δεξιότητεσ. Κατακόρυφη
Διδακτική Μαθηματικών ΙΙ Μάθημα 10 ο Αξιολόγηςη Είδη ερωτήςεων Μαθηματικϋσ δεξιότητεσ Μαθηματικό ςκϋψη Μαθηματικό δικαιολόγηςη Επύλυςη προβλόματοσ Επικοινωνύα Χρόςη εργαλεύων Αναπαραςτϊςεισ Συμβολικό,
Αιτίεσ - Συνέπειεσ - Τρόποι αντιμετώπιςησ. Χριστίνα Μαυροϊδάκη Κωνσταντίνα Μαρκάκη
Αιτίεσ - Συνέπειεσ - Τρόποι αντιμετώπιςησ Χριστίνα Μαυροϊδάκη Κωνσταντίνα Μαρκάκη Αιτίεσ Η αιτύα δημιουργύασ του φαινομϋνου εύναι η εκπομπό χημικών ενώςεων ςτην ατμόςφαιρα όπωσ για παρϊδειγμα οι χλωροφθοράνθρακες
ERIC DE CORTE & LIEVEN VERSCHAFFEL Katholieke Universiteit Leuven - Belgium
ERIC DE CORTE & LIEVEN VERSCHAFFEL Katholieke Universiteit Leuven - Belgium Ερευνητικό Πρόγραμμα Ανϊπτυξη δεξιοτότων Διαδικαςύεσ ΣΧΗΜΑ ΤΑΞΙΝΟΜΗΣΗΣ Σ.Λ.Π ( +, - ) Σημαςιολογικών Σχζςεων (Heller & Greeno1978,
1. ΕΙΑΓΩΓΗ ~ 1 ~ τυλιανού. 1 Σο ςχϋδιο μαθόματοσ ςυζητόθηκε με το ςύμβουλο του μαθόματοσ τησ Νϋασ Ελληνικόσ Γλώςςασ κ. Μϊριο
ΔΙΚΣΤΟ ΤΝΕΡΓΑΙΑ ΧΟΛΕΙΩΝ ΔΗΜΟΣΙΚΗ ΕΚΠΑΙΔΕΤΗ Οικείοσ επιθεωρητήσ: Δρ Ανδρέασ Κυθραιώτησ Α' ΔΗΜΟΣΙΚΟ ΧΟΛΕΙΟ ΓΕΡΙΟΤ ΕΚΠΑΙΔΕΤΣΙΚΗ ΤΝΑΝΣΗΗ ΔΙΕΤΘΤΝΣΩΝ ΚΑΙ ΕΚΠΑΙΔΕΤΣΙΚΩΝ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΓΛΩΣΣΑ ΚΑΙ ΠΟΛΙΤΙΣΜΟΣ
Η ΦΡΗΗ ΣΗ ΣΕΦΝΟΛΟΓΙΑ ΣΟ ΝΕΟ ΑΝΑΛΤΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΨΝ ΜΑΘΗΜΑΣΙΚΨΝ
Η ΦΡΗΗ ΣΗ ΣΕΦΝΟΛΟΓΙΑ ΣΟ ΝΕΟ ΑΝΑΛΤΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΨΝ ΜΑΘΗΜΑΣΙΚΨΝ Ο κόςμοσ μασ αλλϊζει Οι τϊξεισ μασ αλλϊζουν Η τεχνολογύα ϋχει αλλϊξει Ο υπολογιςτόσ ςτο κινητό μασ ςόμερα εύναι ϋνα εκατομμύριο πιο φτηνόs,
Δίκτυα Η/Υ ςτην Επιχείρηςη
Δίκτυα Η/Υ ςτην Επιχείρηςη Βαςικϊ θϋματα δικτύων Γκϊμασ Βαςύλειοσ, Εργαςτηριακόσ υνεργϊτησ Δίκτυο Υπολογιςτών Δύκτυο: ςύςτημα επικοινωνύασ δεδομϋνων που ςυνδϋει δύο ό περιςςότερουσ αυτόνομουσ και ανεξϊρτητουσ
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ελαστικότητα και εφαρμογές Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΚΟΙΛΑ-ΚΤΡΣΑ-ΗΜΕΙΑ ΚΑΜΠΗ
Πληκτρολογόςτε την εξύςωςη εδώ. ΚΤΡΣΟΣΗΣΑ ΗΜΕΙΑ ΚΑΜΠΗ ΟΡΙΣΜΟΣ Έςτω ςυνϊρτηςη f ςυνεχόσ ςε ϋνα διϊςτημα Δ και παραγωγύςιμη ςτο εςωτερικό του Δ. Θα λϋμε ότι : Η ςυνϊρτηςη f εύναι κυρτό ό ςτρϋφει τα κούλα
Περιεκτικότητα ςε θρεπτικϊ ςτοιχεύα Ικανότητα ανταλλαγόσ κατιόντων Οξύτητα εδϊφουσ (ph)
Το έδαφοσ εύναι το ανώτατο ςτρώμα του φλοιού τησ γησ, δηλαδό το καλλιεργόςιμο επιφανειακό ςτρώμα ςε πϊχοσ 35 ωσ 50 εκατοςτϊ. Κϊποιεσ από τισ ιδιότητεσ του εδϊφουσ εύναι: Περιεκτικότητα ςε θρεπτικϊ ςτοιχεύα
ΑΡΧΗ 1Η ΕΛΙΔΑ ΘΕΜΑ A Α. Μονάδεσ 10 Μονάδεσ 5 Μονάδεσ 4 4 Ε. 1 Μονάδεσ 2 Ε. 2 Μονάδεσ 5 ΣΕΛΟ 1Η ΕΛΙΔA
ΑΡΧΗ 1Η ΕΛΙΔΑ ΕΠΑΝΑΛΗΠΣΙΚΑ ΔΙΑΓΨΝΙΜΑΣΑ Β ΛΤΚΕΙΟΤ ΚΤΡΙΑΚΗ 17 ΑΠΡΙΛΙΟΤ 2016 ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΣΤΞΗ ΕΥΑΡΜΟΓΨΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΠΟΤΔΨΝ ΟΙΚΟΝΟΜΙΑ & ΠΛΗΡΟΥΟΡΙΚΗ ΤΝΟΛΟ ΕΛΙΔΨΝ:
A1. Να γρϊψετε την περύληψη του κειμϋνου που ςασ δόθηκε (100-120 λϋξεισ). Μονάδεσ 25
ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΚΑΙ Δ ΣΑΞΗ ΕΠΕΡΙΝΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΤΣΕΡΑ 18 ΜΑΪΟΤ 2015 ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΑ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΚΕΙΜΕΝΟ: Εμείσ και οι αρχαίοι χώροι
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 10η: Απεσταλμένοι του Ρωμαίου Ποντίφικα και Ρωμαϊκή Κουρία Κυριάκος Κυριαζόπουλος
Υπεριώδεισ ακτίνεσ: ωφέλεια και βλάβη από αυτέσ
Υπεριώδεισ ακτίνεσ: ωφέλεια και βλάβη από αυτέσ από την μαθήτρια Κοττέ Αγγελική Εργαςία ςτη Φυςική Γενικήσ Παιδείασ Γ Λυκείου Υπεύθυνοσ Καθηγητήσ: Αλέξανδροσ Κατέρησ Η ηλιακό υπεριώδησ ακτινοβολύα (UV)
Βασικοί άξονες Μαθηματικά στην εκπαίδευση:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Ειδικά Θέματα Μαθηματικών Εισαγωγή - Περί δημιουργικότητας Διδάσκων : Επίκουρος Καθηγητής Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Σχεδιαςμόσ & Εκπόνηςη Εκπαιδευτικήσ Ζρευνασ
Σχεδιαςμόσ & Εκπόνηςη Εκπαιδευτικήσ Ζρευνασ Μάθημα 1 ο : Ειςαγωγή ςτην Εκπαιδευτική Ζρευνα Νύκη ιςςαμπϋρη- Δημότρησ Κολιόπουλοσ χολό Ανθρωπιςτικών & Κοινωνικών Επιςτημών Σμόμα Επιςτημών τησ Εκπαύδευςησ
Η διδασκαλία του μαθήματος της Γλώσσας στο Γυμνάσιο
Τπουργείο Παιδείασ και Πολιτιςμού Διεύθυνςη Μέςησ Εκπαίδευςησ Η διδασκαλία του μαθήματος της Γλώσσας στο Γυμνάσιο εμινάρια Υιλολόγων επτέμβριοσ 2014 Η Ομάδα Γλώςςασ: Γεωργία Κούμα, ΕΜΕ, Ειρήνη Ροδοςθένουσ,
ΣΤΟΧΟΙ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ
[1] ΣΤΟΧΟΙ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Η διδαςκαλύα των Μαθηματικών, ενταγμϋνη ςτουσ γενικότερουσ ςκοπούσ τησ Εκπαύδευςησ, ςτοχεύει ςτην ολοκλόρωςη του μαθητό ςε επύπεδο προςωπικότητασ και κοινωνικόσ του ϋνταξησ.
ΑΡΦΙΣΕΚΣΟΝΙΚΟ ΔΙΑΓΩΝΙΜΟ ELITH
ΑΡΦΙΣΕΚΣΟΝΙΚΟ ΔΙΑΓΩΝΙΜΟ ELITH Η Κριτικό Επιτροπό του ΑΡΦΙΣΕΚΣΟΝΙΚΟΤ ΔΙΑΓΩΝΙΜΟΤ ΙΔΕΩΝ ΓΙΑ ΣΟΝ ΦΕΔΙΑΜΟ ΩΜΑΣΟ ΕΠΙΣΟΙΦΙΑ ΘΕΡΜΑΝΗ ΜΑΡΜΑΡΟΤ αποτελούμενη από τουσ: 1. ΛΑΖΑΡΗ ΑΝΔΡΕΑ, Αρχιτϋκτων, Πρόεδροσ.Α.Ν.Α.
ΗΛΕΚΣΡΟΝΙΚΗ ΕΠΙΚΟΙΝΩΝΙΑ ΣΟΤ ΦΟΛΕΙΟΤ ΠΡΟ ΣΟΤ ΓΟΝΕΙ. - Θέςη υπεύθυνου προςώπου για την ςυμπλήρωςη του ερωτηματολογίου: Ερωτηματολόγιο
ΗΛΕΚΣΡΟΝΙΚΗ ΕΠΙΚΟΙΝΩΝΙΑ ΣΟΤ ΦΟΛΕΙΟΤ ΠΡΟ ΣΟΤ ΓΟΝΕΙ Γενικέσ Πληροφορίεσ για το ςχολείο/τον οργανιςμό - Όνομα του ςχολείου: - Διεύθυνςη: - Είδοσ Σχολείου: - Δημοτικό Σχολεύο - Δημοτικό Σχολεύο Ειδικόσ Εκπαύδευςησ
EETT Δημόςια Διαβούλευςη ςχετικά με την εκχώρηςη δικαιώματων χρήςησ ραδιοςυχνοτήτων ςτη Ζώνη 27,5 29,5 GHz
EETT Δημόςια Διαβούλευςη ςχετικά με την εκχώρηςη δικαιώματων χρήςησ ραδιοςυχνοτήτων ςτη Ζώνη 27,5 29,5 GHz 1. Περί των Τύπων των Υπηρεςιών και των Δικτύων Η οικονομικώσ αποτελεςματικό χρόςη του φϊςματοσ
ΑΝΑΛΤΕΙ / 12. Οικονομικό κρύςη και μϋθοδοι αναζότηςησ εργαςύασ
ΑΠΡΙΛΙΟ 2012 ΑΝΑΛΤΕΙ / 12 Οικονομικό κρύςη και μϋθοδοι αναζότηςησ εργαςύασ ΑΓΓΕΛΟ ΕΤΣΡΑΣΟΓΛΟΤ ΕΡΕΤΝΗΣΙΚΗ ΜΟΝΑΔΑ ΑΠΑΧΟΛΗΗ ΚΑΙ ΕΡΓΑΙΑΚΩΝ ΧΕΕΩΝ Περιεχόμενα 1. Ειςαγωγό... 2 2. Η θεωρητικό τεκμηρύωςη των μεθόδων
Υπολογιστές Ι. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Δομή του προγράμματος Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Παράγωγοι και ολοκληρώματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Ολοκληρώματα με το πρόγραμμα Maima Αθανάσιος
ΠΡΟΓΡΑΜΜΑ ΠΟΤΔΩΝ ΝΗΠΙΑΓΩΓΕΙΟΤ
2011 ΠΡΟΓΡΑΜΜΑ ΠΟΤΔΩΝ ΝΗΠΙΑΓΩΓΕΙΟΤ Σο παρόν ϋργο ϋχει παραχθεύ από το Παιδαγωγικό Ινςτιτούτο ςτο πλαύςιο υλοπούηςησ τησ Πρϊξησ «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολεύο 21ου αιώνα) Νϋο πρόγραμμα ςπουδών, ςτουσ Άξονεσ Προτεραιότητασ
Φυσική Περιβάλλοντος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Φυσική Περιβάλλοντος Φαινόμενο του θερμοκηπίου Διδάσκοντες: Καθηγητής Π. Κασσωμένος, Λέκτορας Ν. Μπάκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Θεωρύεσ Μϊθηςησ και ΤΠΕ Εποικοδομιςμόσ
Θεωρύεσ Μϊθηςησ και ΤΠΕ Εποικοδομιςμόσ 3 ο Κεφϊλαιο - 4 ο Κεφϊλαιο Κόμησ, Β. (2004), Ειςαγωγό ςτισ Εφαρμογϋσ των ΤΠΕ ςτην Εκπαύδευςη, Αθόνα, Εκδόςεισ Νϋων Τεχνολογιών Σκοπόσ Η ςυνοπτικό παρουςύαςη των
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Η ςημαςία τησ εννοιολογικήσ κατανόηςησ κατϊ τη μετϊβαςη από το Λύκειο ςτο Πανεπιςτήμιο
Η ςημαςία τησ εννοιολογικήσ κατανόηςησ κατϊ τη μετϊβαςη από το Λύκειο ςτο Πανεπιςτήμιο Περίληψη Θεοδόςιοσ Ζαχαριϊδησ Τμόμα Μαθηματικϐν ΕΚΠΑ Οι πρωτοετεύσ φοιτητϋσ αντιμετωπύζουν ςημαντικϊ προβλόματα κατϊ
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μεθοδολογύα & Λυμϋνεσ Αςκόςεισ
Τρίγωνα -Κφρια και δευτερεφοντα στοιχεία τριγώνου Μεθοδολογύα & Λυμϋνεσ Αςκόςεισ τόχοσ 1 : Κύρια ςτοιχεύα τριγώνου Αςκόςεισ 1. Να ςχεδιϊςετε ϋνα τρύγωνο ΑΒΓ. Να ορύςετε τα κύρια ςτοιχεύα του. Να βρεύτε
ΤΕΙ ΑΜΘ-Σχολό Διούκηςησ και Οικονομύασ-Τμόμα Λογιςτικόσ και Χρηματοοικονομικόσ
ΤΕΙ ΑΜΘ-Σχολό Διούκηςησ και Οικονομύασ-Τμόμα Λογιςτικόσ και Χρηματοοικονομικόσ Διδϊςκων : Αγγελϊκησ Γιώργοσ Εργαςτηριακόσ ςυνεργϊτησ : Σιώπη Ευαγγελύα Καβϊλα Οκτώβριοσ 2018 Θεωρία χαρτοφυλακίου Η θεωρύα
Στο λογιςμικό (software) περιλαμβϊνονται όλα τα προγράμματα του υπολογιςτό. Το Λογιςμικό χωρύζετε ςε δύο μεγϊλεσ κατηγορύεσ:
ΚΕΦΑΛΑΙΟ 2Ο Στο λογιςμικό (software) περιλαμβϊνονται όλα τα προγράμματα του υπολογιςτό. Το Λογιςμικό χωρύζετε ςε δύο μεγϊλεσ κατηγορύεσ: ςτο Λογιςμικό Συςτήματοσ (System Software), ςτο Λογιςμικό Εφαρμογών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α Α1 Μονάδες 10 Μονάδες 4 ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΣΙΚΑ ΔΙΑΓΨΝΙΜΑΣΑ Γ ΛΤΚΕΙΟΤ ΚΤΡΙΑΚΗ 17 ΑΠΡΙΛΙΟΤ 2016 ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΣΤΞΗ ΕΥΑΡΜ. Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΠΟΤΔΨΝ OIKONOMIA ΚΑΙ ΠΛΗΡΟΥΟΡΙΚΗ ΤΝΟΛΟ ΕΛΙΔΨΝ:
ΠΡΑΚΣΙΚΟ ΟΔΗΓΟ ΓΙΑ ΣΟ STORYJUMPER
Εργαςτόριο Προηγμϋνων Μαθηςιακών Τεχνολογιών ςτη Δια Βύου και Εξ Αποςτϊςεωσ Εκπαύδευςη (Ε.ΔΙ.Β.Ε.Α.) ΠΡΑΚΣΙΚΟ ΟΔΗΓΟ ΓΙΑ ΣΟ STORYJUMPER Υπ. Διδϊκτορασ, MSc ΠΕΡΙΕΦΟΜΕΝΑ 1. Τι εύναι το StoryJumper... 3 2.
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΣΑΣΙΣΙΚΗ ΣΩΝ ΕΠΙΧΕΙΡΗΕΩΝ
ΣΑΣΙΣΙΚΗ ΣΩΝ ΕΠΙΧΕΙΡΗΕΩΝ ΣΤΕΦΑΝΟΣ Γ. ΓΙΑΚΟΥΜΑΤΟΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ Ορισμός και εφαρμογζς Στατιςτική εύναι η επιςτόμη που αςχολεύται με τη ςυλλογό, επεξεργαςύα, παρουςύαςη και ανϊλυςη δεδομϋνων
υμπεριφορϊ Προςεκτικόσ Παρακολούθηςησ Μαρύα Ιωϊννα Αργυροπούλου Έλενα Παππϊ
υμπεριφορϊ Προςεκτικόσ Παρακολούθηςησ Μαρύα Ιωϊννα Αργυροπούλου Έλενα Παππϊ Δεξιότητεσ προςεκτικόσ παρακολούθηςησ & Ενςυναύςθηςη Ενςυναύςθηςη: η ικανότητα να ακούει κανείσ με ακρίβεια και να αιςθάνεται
22/11/2009. Προηγοφμενη βδομάδα... Δεδομζνα απο Δευτερεφουςεσ πηγζσ. Αυτή την βδομάδα...
Προηγοφμενη βδομάδα... Δεδομζνα απο Δευτερεφουςεσ πηγζσ Πρωτογενό δεδομϋνα Αρχϋσ και τεχνικϋσ που χρηςιμοποιούνται ςτην ςυλλογό γεωγραφικών δεδομϋνων Πωσ χρηςιμοποιούμε το GPS και την Τηλεπιςκόπηςη ςαν
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Αυτεπαγωγή Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Περίληψη. Μαρία Ιωϊννα Αργυροπούλου Έλενα Παππϊ
Περίληψη Μαρία Ιωϊννα Αργυροπούλου Έλενα Παππϊ Περύληψη O Η προςπϊθεια για ανακεφαλαύωςη, ςύμπτυξη και αποκρυςτϊλλωςη τησ ουςύασ των όςων ελϋχθηςαν O Η πεπίληψη ενώνει ένα μεγάλο απιθμό δηλώζεων ηος πελάηη,
Πωσ αλλάζει τη Μεςόγειο το ενεργειακό παζλ
Πωσ αλλάζει τη Μεςόγειο το ενεργειακό παζλ Τουσ τελευταύουσ μόνεσ κυοφορούνται εξελύξεισ προσ την κατεύθυνςη επύλυςησ διαφόρων ζητημϊτων που ταλανύζουν την ανατολικό Μεςόγειο και τη Μϋςη Ανατολό. Η παρατεταμϋνη
Θεςμική Αναμόρφωςη τησ Προ-πτωχευτικήσ Διαδικαςίασ Εξυγίανςησ Επιχειρήςεων
Ενημερωτικό ημείωμα Θεςμική Αναμόρφωςη τησ Προ-πτωχευτικήσ Διαδικαςίασ Εξυγίανςησ Επιχειρήςεων -Σι προβλέπει η νομοθετική ρύθμιςη για την προ-πτωχευτική διαδικαςία εξυγίανςησ επιχειρήςεων; Με την προτεινόμενη
ΠΟΛΤΩΝΤΜΑ. ΠΑΡΑΜΕΣΡΟ λϋγεται το ςύμβολο, ςυνόθωσ γρϊμμα, του οπούου το πεδύο οριςμού ορύζεται ϋτςι ώςτε να ιςχύει κϊποια προώπόθεςη.
ΠΟΛΤΩΝΤΜΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΜΕΣΑΒΛΗΣΗ λϋγεται ϋνα ςύμβολο, ςυνόθωσ γρϊμμα, το οπούο παύρνει τιμϋσ μϋςα από ϋνα ςύνολο Α. Σο Α λϋγεται πεδύο οριςμού. Αν το πεδύο οριςμού εύναι υποςύνολο του ςυνόλου των πραγματικών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
α = 2q + r με 0 r < 2 Πιθανϊ υπόλοιπα: r = ο: α = 2q r = 1: α = 2q + 1 Ευκλεύδεια διαύρεςη Ειςαγωγό ςτισ βαςικϋσ ϋννοιεσ των Μαθηματικών Διαιρετότητα
Ειςαγωγό ςτισ βαςικϋσ ϋννοιεσ των Μαθηματικών 8 ο Μάθημα Διαιρετότητα Ευκλεύδεια διαύρεςη Για κϊθε ζεύγοσ ακεραύων αριθμών α, β με β 0, υπϊρχει μοναδικό ζεύγοσ ακεραύων q, r ϋτςι ώςτε: α = βq + r με 0
Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΒΑΙΛΙΚΗ ΑΓΑΘΑΓΓΕΛΟΤ. Επιβλϋπων: Γιώργοσ Γιαννόσ, Καθηγητόσ ΕΜΠ Αθόνα, Ιούλιοσ 2016
Εθνικό Μετςόβιο Πολυτεχνεύο χολό Πολιτικών Μηχανικών Σομϋασ Μεταφορών και υγκοινωνιακόσ Τποδομόσ ΒΑΙΛΙΚΗ ΑΓΑΘΑΓΓΕΛΟΤ Επιβλϋπων: Γιώργοσ Γιαννόσ, Καθηγητόσ ΕΜΠ Αθόνα, Ιούλιοσ 2016 Καθοριςμόσ τόχου Βιβλιογραφικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Επιμέλεια Εκθέσεων. Εκθέτοντας την τέχνη Διδάσκουσα: Επίκουρη Καθηγήτρια Εσθήρ Σ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Επιμέλεια Εκθέσεων Εκθέτοντας την τέχνη Διδάσκουσα: Επίκουρη Καθηγήτρια Εσθήρ Σ. Σολομών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
NetMasterII ςύςτημα μόνιμησ εγκατϊςταςησ επιτόρηςη και καταγραφό ςημϊτων από αιςθητόρια και μετατροπεύσ κϊθε εύδουσ ςύςτημα ειδοπούηςησ βλϊβη
NetMasterII Το NetMasterII εύναι ϋνα ςύςτημα μόνιμησ εγκατϊςταςησ (μό φορητό) για την επιτόρηςη και καταγραφό ςημϊτων από αιςθητόρια και μετατροπεύσ φυςικών μεγεθών κϊθε εύδουσ, καθώσ και γεγονότων που
Άδειες Χρήσης. Διδακτική Μαθηματικών I. Ρεαλιστικά Μαθηματικά. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Διδακτική Μαθηματικών I Ρεαλιστικά Μαθηματικά Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Μαθηματικά. Β' Ενιαίου Λυκείου (μάθημα κατεύθυνςησ)
Μαθηματικά Β' Ενιαίου Λυκείου (μάθημα κατεύθυνςησ) Α. ΑΛΓΕΒΡΑ 1. Επανϊληψη ύλησ τησ Α' Λυκεύου (5 περύοδοι). Απόλυτη τιμό πραγματικού αριθμού (5 περύοδοι) 3. υναρτόςεισ, πεδύο οριςμού, πεδύο τιμών, ιςότητα,
Μεθοδολογύα & Λυμϋνεσ Αςκόςεισ
Ρητοί Αριθμοί Πρόσθεση και αφαίρεση Μεθοδολογύα & Λυμϋνεσ Αςκόςεισ Στόχοσ : Αθρούςμα δύο ρητών αριθμών Αςκόςεισ 1. Να βρεύτε τα αθρούςματα : α. (+ 5 ) + (+ 19) β. 2) + ( 12) γ. ( ) ( ) δ. ( ) ε. ( ) Βαςικό
«Δυνατότητεσ και προοπτικϋσ του επαγγϋλματοσ που θϋλω να ακολουθόςω μϋςα από το Διαδύκτυο».
«Δυνατότητεσ και προοπτικϋσ του επαγγϋλματοσ που θϋλω να ακολουθόςω μϋςα από το Διαδύκτυο». Επαγγελματικόσ Τομϋασ: Ιατρικό Συμμετϋχοντεσ: Χαώκϊλησ Δημότρησ Κεραμιδϊσ Δημότρησ Κατςικονούρησ Θανϊςησ Λαμπρόπουλοσ
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11η: Οργανισμοί της Εκκλησίας της Ελλάδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 9: Μέτρηση Αγωγιμότητας Διαλυμάτων Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
19/10/2009. Γεωγραφικά Συςτήματα Πληροφοριϊν Spatial Operations. Σήμερα... Τφποι ερωτήςεων (Queries)
Γεωγραφικά Συςτήματα Πληροφοριϊν Spatial Operations Δημότρησ Μιχελϊκησ Τμόμα Εφαρμοςμϋνησ Πληροφορικόσ και Πολυμϋςων Σχολό Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρότησ dimmihel@epp.teicrete.gr
Νέο Πρόγραμμα Σπουδών του Νηπιαγωγείου. Δρ Ζωή Καραμπατζάκη, Σχολική Σύμβουλος 21 ης Περιφέρειας Π.Α.
Νέο Πρόγραμμα Σπουδών του Νηπιαγωγείου Δρ Ζωή Καραμπατζάκη, Σχολική Σύμβουλος 21 ης Περιφέρειας Π.Α. Γιατύ νϋο Πρόγραμμα; Επειδό η λογικό πορεύα των προγραμμϊτων ςπουδών εύναι η επικαιροπούηςη και η βελτύωςη,
ΕΚΠΑΙΔΕΤΣΙΚΟ ΕΝΑΡΙΟ ΓΙΑ ΣΗΝ ΑΞΙΟΠΟΙΗΗ ΚΑΙ ΕΥΑΡΜΟΓΗ ΣΩΝ ΣΠΕ ΣΗ ΔΙΔΑΚΣΙΚΗ ΠΡΑΞΗ
1 ΕΚΠΑΙΔΕΤΣΙΚΟ ΕΝΑΡΙΟ ΓΙΑ ΣΗΝ ΑΞΙΟΠΟΙΗΗ ΚΑΙ ΕΥΑΡΜΟΓΗ ΣΩΝ ΣΠΕ ΣΗ ΔΙΔΑΚΣΙΚΗ ΠΡΑΞΗ Νηπιαγωγόσ ςτο 2/ι Νηπιαγωγείο Ν.Ποτίδαιασ Χαλκιδικθσ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΕΝΑΡΙΟ Τίτλος: «Βιβλίο, ένασ παντοτινόσ φίλοσ» ΓΝΩΣΙΚΟ
Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Εφαρµογές της Κανονικής Μορφής Jordan Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 46 8 Εφαρµογές της Κανονικής
ΔΙΑΣΡΟΦΗ ΚΑΣΑ ΣΗ ΔΙΑΡΚΕΙΑ ΣΟΤ ΘΗΛΑΜΟΤ ΣΖΕΛΑΛΗ ΑΝΑΣΑΙΑ ΜΑΙΑ ΙΠΠΟΚΡΑΣΕΙΟ Γ.Π.Ν.Θ.
ΔΙΑΣΡΟΦΗ ΚΑΣΑ ΣΗ ΔΙΑΡΚΕΙΑ ΣΟΤ ΘΗΛΑΜΟΤ ΣΖΕΛΑΛΗ ΑΝΑΣΑΙΑ ΜΑΙΑ ΙΠΠΟΚΡΑΣΕΙΟ Γ.Π.Ν.Θ. Σϐςο κατϊ τη διϊρκεια τησ εγκυμοςϑνησ ϐςο και κατϊ τη διϊρκεια του θηλαςμοϑ οι γυναύκεσ δϋχονται πολλϋσ ςυμβουλϋσ για τη
Πανελλήνιεσ Εξετάςεισ 2011 Φυςική Θετικήσ & Τεχνολογικήσ Κατεύθυνςησ. 20 Μαΐου 2011 Πρόχειρεσ Απαντήςεισ
Θέμα Α Α.1 γ Α.2 β Α.3 γ Α.4 γ Πανελλήνιεσ Εξετάςεισ 2011 Φυςική Θετικήσ & Τεχνολογικήσ Κατεύθυνςησ Α.5 α Σ, β Λ, γ Σ, δ Λ, ε Λ Θέμα Β Β.1 20 Μαΐου 2011 Πρόχειρεσ Απαντήςεισ Στην θϋςη ιςορροπύασ τησ m1
Οριςμόσ προβλήματοσ. Θεωρία Γράφων 2
Θεωρία Γράφων 1 Οριςμόσ προβλήματοσ Οποιοδόποτε επιφϊνεια που χωρύζεται ςε περιοχϋσ, όπωσ ϋνασ πολιτικόσ χϊρτησ των νομών ενόσ κρϊτουσ, μπορούν να χρωματιςτούν χρηςιμοποιώντασ λιγότερα από τϋςςερα χρώματα
ΕΠΠΑΙΚ Θεςςαλονύκησ, /02/2011
1 ΕΠΠΑΙΚ Θεςςαλονύκησ, 2010-2011 21/02/2011 Εξετϊςεισ ςτη Γενικό και Εξελικτικό Ψυχολογύα Διδϊςκων: Οικονόμου Ανδρϋασ Όνομα φοιτητό / φοιτότριασ:... Τμόμα: E1 E2 E3 E4 E5 Βαθμόσ:. Προςοχό: ϊριςτα οι 100
Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8η: Ο νέος αντιρατσιστικός νόμος και ο ν.4301/2014 Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται