ΚΕΦΑΛΑΙΟ 12ο. œ œ œ œ œ œ œ œ ΙΑΣΤΗΜΑΤΑ. ιάστηµα λέγεται η απόσταση µεταξύ δύο φθόγγων. Η 1η νότα λέγεται ΒΑΣΗ και η 2η ΚΟΡΥΦΗ.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 12ο. œ œ œ œ œ œ œ œ ΙΑΣΤΗΜΑΤΑ. ιάστηµα λέγεται η απόσταση µεταξύ δύο φθόγγων. Η 1η νότα λέγεται ΒΑΣΗ και η 2η ΚΟΡΥΦΗ."

Transcript

1 ΚΕΦΑΛΑΙΟ 12ο 1 ΙΑΣΤΗΜΑΤΑ ιάστηµα λέγεται η απόσταση µεταξύ δύο φθόγγων Η 1η νότα λέγεται ΒΑΣΗ και η 2η ΚΟΡΥΦΗ διάστηµα 1ης 1 1 διάστηµα 2ας 1 2 διάστηµα 3ης διάστηµα 4ης διάστηµα 5ης διάστηµα 6ης διάστηµα 7ης διάστηµα 8ης

2 2 Παρατηρούµε ότι υπάρχουν διαστήµατα ίσα ως προς την απόσταση των φθόγγων αλλά όχι ίσα ως προς την απόσταση τόνων και ηµιτονίων 1ης χωρίς καµία απόσταση των φθόγγων (ταυτοφωνία) Ονοµάζεται ΚΑΘΑΡΗ 2ας το α) έχει απόσταση 1ηµιτόνιο και τη λέµε ΜΙΚΡΗ το β) έχει 1 τόνο και τη λέµε ΜΕΓΑΛΗ α 1/2 του τόνου (ένα ηµιτόνιο) 0 τόνοι και ηµιτόνια β 1 τόνο 3ης α) έχει απόσταση 1Τ και 1Η και τη λέµε ΜΙΚΡΗ το β) έχει 2Τ και τη λέµε ΜΕΓΑΛΗ α β 1ηµ. 1τ 1τ 1τ 4ης έχει απόσταση 2Τ και 1Η και τη λέµε ΚΑΘΑΡΗ 1τ 1τ 1ηµ. 5ης έχει απόσταση 3Τ και 1Η και τη λέµε ΚΑΘΑΡΗ 1τ 1ηµ. 1τ 1τ 6ης α) έχει απόσταση 3Τ και 2Η και τη λέµε ΜΙΚΡΗ το β) έχει 4Τ και 1Η και τη λέµε ΜΕΓΑΛΗ 1ηµ. 1τ 1τ 1τ 1ηµ. 1τ 1τ 1τ 1ηµ. 1τ 7ης α) έχει απόσταση 4Τ και 2Η και τη λέµε ΜΙΚΡΗ το β) έχει 5Τ και 1Η και τη λέµε ΜΕΓΑΛΗ 1τ 1τ 1ηµ. 1τ 1τ 1ηµ. 1τ 1τ 1τ 1ηµ. 1τ 1τ 8ης έχει απόσταση 5Τ και 2Η και τη λέµε ΚΑΘΑΡΗ 1τ 1τ 1ηµ. 1τ 1τ 1τ 1ηµ.

3 ΕΧΟΥΜΕ: 3 1ης ΚΑΘΑΡΟ = Ο απόσταση 2ας ΜΙΚΡΟ = 1ηµ. 2ας ΜΕΓΑΛΟ = 2τ. 3ης ΜΙΚΡΟ = 1τ.1ηµ. 3ης ΜΕΓΑΛΟ = 2τ. 4ης ΚΑΘΑΡΟ = 2τ. 1ηµ. 5ης ΚΑΘΑΡΟ = 3τ. 1ηµ. 6ης ΜΙΚΡΟ = 3τ. 2ηµ. 6ης ΜΕΓΑΛΟ = 4τ. 1ηµ. 7ης ΜΙΚΡΟ = 4τ. 2ηµ. 7ης ΜΕΓΑΛΟ = 5τ. 1ηµ. 8ης ΚΑΘΑΡΟ = 5τ. 2ηµ. Μπορούµε να παρατηρήσουµε ότι: 1ο: Αν αντιστρέψουµε (δηλ. αν την 1η νότα -ΒΑΣΗ- την κάνουµε 2η -ΚΟΡΥΦΗ-) θα µας δώσει: α) Το ΜΙΚΡΟ θα γίνει ΜΕΓΑΛΟ β) Το ΚΑΘΑΡΟ παραµένει ΚΑΘΑΡΟ δ) Το άθροισµα των τόνων και ηµιτονίων µας δίνει 5τ. 2ηµ. (το σύνολο των διαστηµάτων µιας µείζονας κλίµακας, γιατί η πρόσθεση των διαστηµάτων µας δίνει την απόσταση µιας 8ης καθαρής) γ) Το άθροισµά τους µας δίνει τον αριθµό 9 (αυτό συµβαίνει γιατί έναν φθόγγο τον µετράµε την πρώτη φορά σαν ΚΟΡΥΦΗ και την 2η φορά σαν ΒΑΣΗ) 1ης ΚΑΘΑΡΟ 0 απόσταση 8ης ΚΑΘΑΡΟ 5τ.2ηµ. 2ας ΜΙΚΡΟ 1ηµ. 7ης ΜΕΓΑΛΟ 5τ.1ηµ. 2ας ΜΕΓΑΛΟ 1τ. 7ης ΜΙΚΡΟ 4τ.2ηµ ης ΚΑΘΑΡΟ ==> 8ης ΚΑΘΑΡΟ 2ας ΜΙΚΡΟ ==> 7ης ΜΕΓΑΛΟ 2ας ΜΕΓΑΛΟ ==> 7ης ΜΙΚΡΟ = = = 9 0ηµ. + 5τ.2ηµ. = 5τ.2ηµ. 1ηµ. + 5τ.1ηµ. = 5τ.2ηµ. 1τ. + 4τ.2ηµ. = 5τ.2ηµ. 3ης ΜΙΚΡΟ 1τ.1ηµ. 6ης ΜΕΓΑΛΟ 4τ.1ηµ. 3ης ΜΕΓΑΛΟ 2τ. 6ης ΜΙΚΡΟ 3τ.2ηµ. 4ης ΚΑΘΑΡΟ 2τ.1ηµ. 5ης ΚΑΘΑΡΟ 3τ.1ηµ ης ΜΙΚΡΟ ==> 6ης ΜΕΓΑΛΟ 3ης ΜΕΓΑΛΟ ==> 6ης ΜΙΚΡΟ 4ης ΚΑΘΑΡΟ ==> 5ης ΚΑΘΑΡΟ = = = 9 1τ.1ηµ. + 4τ.1ηµ. = 5τ.2ηµ. 2τ. + 3τ.2ηµ. = 5τ.2ηµ. 2τ.1ηµ. + 3τ.1ηµ. = 5τ.2ηµ.

4 4 Πώς αναγνωρίζουµε ένα διάστηµα: λ.χ. 1ο: Ψάχνουµε Ή αντιστρέφουµε και µετράµε την απόσταση σε τόνους και ηµιτόνια 2ο: Ψάχνουµε σε τόνους και ηµιτόνια ηµ. τ. τ. τ. είναι 5ης Έχει 3τ.1ηµ. άρα είναι 5ης Κ. ηµ. τ. τ. Έχει 2τ.1ηµ. άρα είναι 4ης Κ. και η αντιστροφή του 5ης Κ. # 1ο: Ψάχνουµε χωρίς την δίεση είναι 6ης 2ο: Ψάχνουµε σε τόνους και ηµιτόνια 3ο: Βάζουµε την δίεση # τ. τ. τ. ηµ. τ. ηµ. τ. τ. ηµ. τ. είναι 6ης µ. b Ή αντιστρέφουµε και µετράµε την απόσταση σε τόνους και ηµιτόνια b 1ο: Ψάχνουµε χωρίς τον οπλισµό # Έχει 2τ.άρα είναι 3ης Μ. και η αντιστροφή του 6ης µ. 2ο: Ψάχνουµε σε τόνους και ηµιτόνια τ. τ τ. ηµ. τ. τ. ηµ. τ. είναι 7ης είναι 7ης µ. 3ο: Αν προσθέσουµε τον οπλισµό ΕΝ ΑΛΛΑΖΕΙ το διάστηµα γιατί και οι δύο φθόγγοι έχουν το ίδιο οπλισµό b b είναι 7ης µ. Ή αντιστρέφουµε και µετράµε την απόσταση σε τόνους και ηµιτόνια τ. Έχει 1τ.άρα είναι 2ας Μ. και η αντιστροφή του 7ης µ.

5 ΑΥΞΗΜΕΝΑ ΙΑΣΤΗΜΑΤΑ 5 λ.χ. Είναι αυτά που είναι κατά ένα ηµιτόνιο µεγαλύτερα από τα µεγάλα και τα καθαρά # b 1ης καθαρό 1ης αυξηµένο 1ης αυξηµένο # b 2ας µεγάλο 2ας αυξηµένο 2ας αυξηµένο # b 3ης µεγάλο 3ης αυξηµένο 3ης αυξηµένο # b # 4ης καθαρό 4ης αυξηµένο 4ης αυξηµένο # b # 5ης καθαρό 5ης αυξηµένο 5ης αυξηµένο # b 6ης µεγάλο 6ης αυξηµένο 6ης αυξηµένο # b 7ης µεγάλο 7ης αυξηµένο 7ης αυξηµένο # b 8ης καθαρό 8ης αυξηµένο 8ης αυξηµένο

6 6 ΕΛΑΤΤΩΜΕΝΑ ΙΑΣΤΗΜΑΤΑ λ.χ. Είναι αυτά που είναι κατά ένα ηµιτόνιο µικρότερα από τα µικρά και τα καθαρά # b 1ης καθαρό 1ης ελαττωµένο 1ης ελαττωµένο b # b 2ας µικρό 2ας ελαττωµένο 2ας ελαττωµένο b # b b 3ης µικρό 3ης ελαττωµένο 3ης ελαττωµένο # b 4ης καθαρό 4ης ελαττωµένο 4ης ελαττωµένο # b 5ης καθαρό 5ης ελαττωµένο 5ης ελαττωµένο b # b 6ης µικρό 6ης ελαττωµένο 6ης ελαττωµένο b # b 7ης µικρό 7ης ελαττωµένο 7ης ελαττωµένο b # 8ης καθαρό 8ης ελαττωµένο 8ης ελαττωµένο

7 Υπάρχουν και τα διαστήµατα που είναι δύο φορές ελαττωµένα () ή δύο φορές αυξηµένα () 7 2αµ. # b 2αΜ. # b 3ηµ.. # b 3ηΜ. b # 4ηΚ. 5ηΚ. 6ηµ. # b 6ηΜ. b # 7ηµ. # b 7ηΜ. b #

8 8 ΣΥΝΘΕΤΑ ΙΑΣΤΗΜΑΤΑ Είναι αυτά που ξεπερνούν την απόσταση της 8ης 9ηµ. b σύνθετη 2αµ. b 9ηΜ. σύνθετη 2αΜ. 10ηµ. σύνθετη 3ηµ. 10ηΜ. σύνθετη 3ηΜ. 11ηΚ. σύνθετη 4ηΚ. 12ηΚ. σύνθετη 5ηΚ. 13ηµ. b σύνθετη 6ηµ. b 13ηΜ. σύνθετη 6ηΜ. 14ηµ. σύνθετη 7ηµ. 14ηΜ. σύνθετη 7ηΜ.

ΚΕΦΑΛΑΙΟ 9ο. Ενώ µεταξύ του ΜΙ και του ΦΑ. Η διαφορά αυτή υπάρχει γιατί η απόσταση µερικών φθόγγων από άλλων είναι διαφορετική.

ΚΕΦΑΛΑΙΟ 9ο. Ενώ µεταξύ του ΜΙ και του ΦΑ. Η διαφορά αυτή υπάρχει γιατί η απόσταση µερικών φθόγγων από άλλων είναι διαφορετική. ΚΕΦΑΛΑΙΟ 9ο 7 α) τόνοι - ηµιτόνια Αν παρατηρήσουµε τις νότες στο πιάνο θα προσέξουµε ότι µεταξύ µερικών ΙΑ ΟΧΙΚΩΝ (συνεχόµενων) φθόγγων έχουµε µαύρα πλήκτρα και άλλων όχι. λ.χ. Μεταξύ του ΝΤΟ και του ΡΕ,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 19ο. œ œ bœ. œ œ œ. œ œ œ œ œ œ œ œ. œ nœ. & œ. # œ œ # œ œ # œ œ. υπάρχουν όπως είπαµε διαστήµατα:

ΚΕΦΑΛΑΙΟ 19ο. œ œ bœ. œ œ œ. œ œ œ œ œ œ œ œ. œ nœ. & œ. # œ œ # œ œ # œ œ. υπάρχουν όπως είπαµε διαστήµατα: 4 ΚΕΦΑΛΑΙΟ 19ο υπάρχουν όπως είπαµε διαστήµατα: ΧΡΩΜΑΤΙΚΑ ΙΑΤΟΝΙΚΑ ΜΙΚΡΑ ΜΕΓΑΛΑ ΚΑΘΑΡΑ ΕΛΑΤΤΩΜΕΝΑ ΙΣ ΕΛΑΤΤΩΜΕΝΑ ΑΥΞΗΜΕΝΑ ΙΣ ΑΥΞΗΜΕΝΑ ΜΕΛΩ ΙΚΑ ΑΡΜΟΝΙΚΑ ΧΡΩΜΑΤΙΚΑ δηµιουργούνται από ίδιες νότες. # # ΙΑΤΟΝΙΚΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 13ο. µείζονες κλίµακες

ΚΕΦΑΛΑΙΟ 13ο. µείζονες κλίµακες ΚΕΦΑΛΑΙΟ 13ο 9 µείζονες κλίµακες Kλίµακα ή σκάλα ονοµάζεται µία σειρά από τους επτά φθόγγους της µουσικής που σαν 1ο και τελευταίο φθόγγο έχει την ίδια νότα αλλά σε διαφορετικό ύψος. Τοποθετούµε τους φθόγγους

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΜΟΥΣΙΚΟ ΣΧΟΛΕΙΟ ΚΑΤΕΡΙΝΗΣ ΣΚΑΡΠΑΣ ΑΡΙΣΤΕΙΔΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΜΟΥΣΙΚΟ ΣΧΟΛΕΙΟ ΚΑΤΕΡΙΝΗΣ ΣΚΑΡΠΑΣ ΑΡΙΣΤΕΙΔΗΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΜΟΥΣΙΚΟ ΣΧΟΛΕΙΟ ΚΑΤΕΡΙΝΗΣ ΣΚΑΡΠΑΣ ΑΡΙΣΤΕΙΔΗΣ 1 ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ Μουσική κλίμακα ή σκάλα,ονομάζουμε μια σειρά από μουσικούς ήχους /νότες την οποία χρησιμοποιούν

Διαβάστε περισσότερα

Τετράδια κιθάρας Θεωρία της μουσικής. Τετράδια κιθάρας. Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις

Τετράδια κιθάρας Θεωρία της μουσικής. Τετράδια κιθάρας. Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις Τετράδια κιθάρας Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις Επικοινωνία : evgeniosasteris@pathfinder.gr 1 Περιεχόμενα Κλίμακες... 3 Μείζονες κλίμακες... 3 Η κλίμακα Ντο μείζονα...

Διαβάστε περισσότερα

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο) Φροντιστήριο 17/03/2010 (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/2010 1 / 27

Διαβάστε περισσότερα

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Εισαγωγή στη Θεωρία Μουσικής (Μέρος 1ο) Φροντιστήριο 03/03/2010 (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 1ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 03/03/2010 1 / 32

Διαβάστε περισσότερα

1 η ΤΑΞΗ. Κ Ε Φ Α Λ Α Ι Ο 1 ο. 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες.

1 η ΤΑΞΗ. Κ Ε Φ Α Λ Α Ι Ο 1 ο. 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Θ Ε Ω Ρ Ι Α Α Ρ Μ Ο Ν Ι Α Σ 1 η ΤΑΞΗ Κ Ε Φ Α Λ Α Ι Ο 1 ο 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Μία σαν ΒΑΣΗ, µία σαν ΜΕΣΗ και µία σαν ΚΟΡΥΦΗ Έχουµε τρία

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ 1 Οι ήχοι που χρησιμοποιούμε στη μουσική λέγονται νότες ή φθόγγοι και έχουν επτά ονόματα : ντο - ρε - μι - φα - σολ - λα - σι. Η σειρά αυτή επαναλαμβάνεται πολλές φορές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 14ο ΕΛΑΣΣΟΝΕΣ ΚΛΙΜΑΚΕΣ. Η ελάσσονα κλίµακα ανήκει στην ίδια οικογένεια µε τις µείζονες γιατί έχει τον ίδιο οπλισµό µε αυτές.

ΚΕΦΑΛΑΙΟ 14ο ΕΛΑΣΣΟΝΕΣ ΚΛΙΜΑΚΕΣ. Η ελάσσονα κλίµακα ανήκει στην ίδια οικογένεια µε τις µείζονες γιατί έχει τον ίδιο οπλισµό µε αυτές. 22 ΚΕΦΑΛΑΙΟ 14ο ΕΛΑΣΣΟΝΕΣ ΚΛΙΜΑΚΕΣ Η ελάσσονα κλίµακα ανήκει στην ίδια οικογένεια µε τις µείζονες γιατί έχει τον ίδιο οπλισµό µε αυτές. Για να βρούµε µια ελάσσονα κλίµακα κάνουµε τα εξής: (απαιτείται καλή

Διαβάστε περισσότερα

Α Ρ Μ Ο Ν Ι Α. Κ Ε Φ Α Λ Α Ι Ο 1ο

Α Ρ Μ Ο Ν Ι Α. Κ Ε Φ Α Λ Α Ι Ο 1ο Α Ρ Μ Ο Ν Α Κ Ε Φ Α Λ Α Ο 1ο 1ο ΣΧΗΜΑΤΣΜΟΣ ΣΥΓΧΟΡ ΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Μία σαν ΒΑΣΗ, µία σαν ΜΕΣΗ και µία σαν ΚΟΡΥΦΗ Έχουµε τρία είδη συγχορδιών : α) Ελαττωµένη

Διαβάστε περισσότερα

2. ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ SYNTHESIS ΣΤΗΝ ΑΠΟ ΟΣΗ ΤΩΝ ΙΑΣΤΗΜΑΤΩΝ ΚΑΙ Η ΑΙΤΙΟΛΟΓΗΣΗ ΤΟΥ

2. ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ SYNTHESIS ΣΤΗΝ ΑΠΟ ΟΣΗ ΤΩΝ ΙΑΣΤΗΜΑΤΩΝ ΚΑΙ Η ΑΙΤΙΟΛΟΓΗΣΗ ΤΟΥ 2. ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ SYNTHESIS ΣΤΗΝ ΑΠΟ ΟΣΗ ΤΩΝ ΙΑΣΤΗΜΑΤΩΝ ΚΑΙ Η ΑΙΤΙΟΛΟΓΗΣΗ ΤΟΥ Tο σύστηµα γραφής που χρησιµοποιεί ο χρήστης στο πρόγραµµα Synthesis προσφέρει αρκετές από τις δυνατότητες

Διαβάστε περισσότερα

Πώς λύνουµε ένα θέµα ΜΠΑΣΟ

Πώς λύνουµε ένα θέµα ΜΠΑΣΟ Πώς λύνουµε ένα θέµα ΜΠΑΣΟ 1ο) Ένα θέµα αρχίζει ΠΑΝΤΑ µε βαθµίδα. και τελειώνει µε βαθµίδα. 2ο) Αν είναι ελλιπές µέτρο µπορεί να αρχίσει µε και µετά 6 6 6 6 6 5 2 6 13 13 (7) 6 6 6 6 6 5 3ο) Το τέλος είναι

Διαβάστε περισσότερα

ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο:

ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο: 1 ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο: 1) Να διαβάσετε προσεκτικά και τις δύο σελίδες της θεωρίας. 2) Να μάθετε απέξω τα εξής: α) Την

Διαβάστε περισσότερα

Ενότητα εικοστή τέταρτη

Ενότητα εικοστή τέταρτη Ενότητα εικοστή τέταρτη Απάντηση στην άσκηση της εικοστής τρίτης ενότητας 1. Τ 2. Η 3. Τ 4. Η 5. Τ 6. Η 7. Η 8. Τ 9. Τ 10. Τ 11. Η 12. Τ 13. Τ Σημεία αλλοίωσης (ά μέρος) Τα σημεία αλλοίωσης είναι σημεία

Διαβάστε περισσότερα

ΑΝΟΙΚΤΗ ΘΕΣΗ συγχορδίας έχουµε όταν η απόσταση των φωνών µεταξύ ΤΕΝΟΡΟΥ και ΣΟΠΡΑΝΟ είναι

ΑΝΟΙΚΤΗ ΘΕΣΗ συγχορδίας έχουµε όταν η απόσταση των φωνών µεταξύ ΤΕΝΟΡΟΥ και ΣΟΠΡΑΝΟ είναι Θ Ε Ω Ρ Ι Α Α Ρ Μ Ο Ν Ι Α Σ Κ Ε Φ Α Λ Α Ι Ο 1 ο 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Μία σαν ΒΑΣΗ, µία σαν ΜΕΣΗ και µία σαν ΚΟΡΥΦΗ Έχουµε τρία είδη συγχορδιών

Διαβάστε περισσότερα

Α Ρ Μ Ο Ν Ι Α Κ Ε Φ Α Λ Α Ι Ο

Α Ρ Μ Ο Ν Ι Α Κ Ε Φ Α Λ Α Ι Ο Α Ρ Μ Ο Ν Α Κ Ε Φ Α Λ Α Ο 12ο Η η µιας συγχορδίας έρχεται: 1ο: Το διάστηµα της ης να έρχεται µε πλάγια κίνηση (µία από τις δύο φωνές να είναι προετοιµασµένη ). 2 2ο: Tο διάστηµα της ης να έρχεται µε αντίθετη

Διαβάστε περισσότερα

Κουρδίσµατα (περίληψη)

Κουρδίσµατα (περίληψη) Κουρδίσµατα (περίληψη) Ι. Αρµονική στήλη Κάθε νότα που παράγεται µε φυσικά µέσα είναι ένα πολύ σύνθετο φαινόµενο. Ως προς το τονικό ύψος, συνιστώσες του ("αρµονικοί") είναι η συχνότητα που ακούµε ("θεµελιώδης")

Διαβάστε περισσότερα

Γυµ.Ν.Λαµψάκου Α Γυµνασίου Γεωµ.Β2.6 γωνίες από 2 παράλληλες + τέµνουσα 19/3/10 Φύλλο εργασίας

Γυµ.Ν.Λαµψάκου Α Γυµνασίου Γεωµ.Β2.6 γωνίες από 2 παράλληλες + τέµνουσα 19/3/10 Φύλλο εργασίας Φύλλο εργασίας Mπορείτε να βρείτε τη γωνία κάβων; ραστηριότητα Ένα δεξαµενόπλοιο που στο σχήµα είναι στο σηµείο Β, πλέει προς την είσοδο µιας διώρυγας µε την βοήθεια δύο ρυµουλκών που απεικονίζονται µε

Διαβάστε περισσότερα

ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ

ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ Α. ΟΡΙΣΜΟΙ Θετικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο το + (πολλές φορές το + παραλείπεται) π.χ. +3, +105, +, + 0,7, 326. Αρνητικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο

Διαβάστε περισσότερα

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ . A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q

Διαβάστε περισσότερα

α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες

α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες εξελίσσονται γύρω από την ίδια δέση ισορροπίας Έστω ότι ένα σώμα εκτελεί ταυτόχρονα δύο απλές

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΝΗΠΙΑΓΩΓΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι ΓΕΩΡΓΙΑ ΠΑΡΠΑΡΟΥΣΗ 1. ΜΕΤΡΑ ΕΙ Η ΜΕΤΡΩΝ απλά µέτρα: 2/4, 2/8, 3/4, 3/8 2/4 q q \ e e e e \ x x x x x x x x \ εµβατήριο 2/8

Διαβάστε περισσότερα

ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΑΜΒΑΚΗΣ ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΜΟΥΣΙΚΗΣ ΒΙΒΛΙΟ ΑΣΚΗΣΕΩΝ

ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΑΜΒΑΚΗΣ ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΜΟΥΣΙΚΗΣ ΒΙΒΛΙΟ ΑΣΚΗΣΕΩΝ ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΑΜΒΑΚΗΣ ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΜΟΥΣΙΚΗΣ ΒΙΒΛΙΟ ΑΣΚΗΣΕΩΝ ΚΑΣΤΟΡΙΑ 2000 ΠΕΡΙΕΧΟΜΕΝΑ ΑΥΤΗ ΤΗ ΧΡΟΝΙΚΗ ΠΕΡΙΟΔΟ ΓΙΝΕΤΑΙ ΕΝΗΜΕΡΩΣΗ ΚΑΙ ΣΥΜΠΛΗΡΩΣΗ ΤΟΥ ΠΑΡΟΝΤΟΣ ΒΙΒΛΙΟΥ ΚΑΙ ΓΙ ΑΥΤΟ ΔΕΝ ΥΠΑΡΧΟΥΝ ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Φυλλάδιο 1 - Σημεία Προσοχής στις Παραγράφους 1.1, 1.2 και 1.3

Φυλλάδιο 1 - Σημεία Προσοχής στις Παραγράφους 1.1, 1.2 και 1.3 Φυλλάδιο 1 - Σημεία Προσοχής στις Παραγράφους 1.1, 1.2 και 1.3 1. Σπάμε ένα Διάνυσμα Έστω ότι έχουμε ένα διάνυσμα. Τότε αυτό μπορούμε να το σπάσουμε σε δύο (ή περισσότερα), παρεμβάλλοντας ανάμεσα στα γράμματα

Διαβάστε περισσότερα

2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο. φθόγοι - νότες Φθόγγος ή νότα ονοµάζεται ο ήχος που παράγει είτε η φωνή του ανθρώπου είτε ένα µουσικό όργανο. œ œ œ œ.

ΚΕΦΑΛΑΙΟ 4ο. φθόγοι - νότες Φθόγγος ή νότα ονοµάζεται ο ήχος που παράγει είτε η φωνή του ανθρώπου είτε ένα µουσικό όργανο. œ œ œ œ. ΚΕΦΑΛΑΙΟ ο 1 φθόγοι - νότες Φθόγγος ή νότα ονοµάζεται ο ήχος που παράγει είτε η φωνή του ανθρώπου είτε ένα µουσικό όργανο. Αυτόν τον φθόγγο τον χωρίζουµε σε µικρότερα κοµµάτια για να δώσουµε και την διάρκειά

Διαβάστε περισσότερα

Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881

Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881 Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881 του Παναγιώτη. Παπαδηµητρίου panayiotis@analogion.net, α έκδοση: 4 Οκτωβρίου 2005 Το Οικουµενικό Πατριαρχείο στα 1881 συγκρότησε

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση

Διαβάστε περισσότερα

Α. ΑΝΙΣΟΤΗΤΕΣ - ΚΑΝΟΝΕΣ ΑΝΙΣΟΤΗΤΩΝ

Α. ΑΝΙΣΟΤΗΤΕΣ - ΚΑΝΟΝΕΣ ΑΝΙΣΟΤΗΤΩΝ Κεφάλαιο o : Εξισώσεις - Ανισώσεις ΜΑΘΗΜΑ Υποενότητα.: Ανισώσεις ου Βαθµού Θεµατικές Ενότητες:. Ανισότητες - Κανόνες Ανισοτήτων.. Η έννοια της ανίσωσης.. Τρόπος επίλυσης ανισώσεων ου βαθµού. Α. ΑΝΙΣΟΤΗΤΕΣ

Διαβάστε περισσότερα

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >

Διαβάστε περισσότερα

Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο

Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο Γενικές Πληροφορίες 1. Τι είναι το μάθημα της Απευθείας Εναρμόνισης στο πιάνο: Αφορά την απευθείας εκτέλεση στο πιάνο, μιας δοσμένης μελωδικής

Διαβάστε περισσότερα

Εξεταστέα ύλη κατατακτηρίων εξετάσεων Τάξη: Β Γυµνασίου

Εξεταστέα ύλη κατατακτηρίων εξετάσεων Τάξη: Β Γυµνασίου Σχολικό έτος 2016-2017 Εξεταστέα ύλη κατατακτηρίων εξετάσεων Τάξη: Β Γυµνασίου 1. Ευρωπαϊκή µουσική Α. Θεωρία: Νότες στο κλειδί του Σολ και στο κλειδί του Φα. Μεταφορά µελωδίας από το κλειδί του Σολ στο

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ)

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο

Διαβάστε περισσότερα

τον αριθμητή 8 την κλασματική γραμμή τον παρανομαστή

τον αριθμητή 8 την κλασματική γραμμή τον παρανομαστή ΤΑΞΗ: ΣΤ ΔΙΑΘΕΣΙΜΟ ΣΤΗ: http //blogs.sch.gr/anianiouris ΥΠΕΥΘΥΝΟΣ: Νιανιούρης Αντώνης (email: anianiouris@sch.gr) «Η έννοια του Κλάσματος και οι πράξεις του» Κλασματικός είναι ένας αριθμός ο οποίος εκφράζει

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟΝ ΕΛΕΓΧΟ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟΝ ΕΛΕΓΧΟ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟΝ ΕΛΕΓΧΟ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ Παρασκευή 28 Ιουνίου 2019 ΟΜΑΔΑ

Διαβάστε περισσότερα

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Μουσική Πληροφορική Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Άδεια Χρήσης 2 Άδεια Χρήσης 3 Άδεια Χρήσης 4 Ήχος Κλίμακες Β & Γ Δ. Πολίτης 2 ο Μάθημα Περιεχόμενα Μέρος Α : Ανατομία και φυσιολογία του αυτιού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο. εισαγωγή

ΚΕΦΑΛΑΙΟ 1ο. εισαγωγή ΚΕΦΑΛΑΙΟ 1ο 1 εισαγωγή ΗΧΟΣ είναι κάθε τι που ακούµε. Παράγεται από µία πηγή και λαµβάνεται από το αυτί µας. Για να φτάσει ο ήχος από την πηγή στο δέκτη, µεσολαβεί ένα µέσο. Ένα µέσο, µπορεί να είναι ο

Διαβάστε περισσότερα

Αριθμητής = Παρονομαστής

Αριθμητής = Παρονομαστής Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ To κλάσμα κ εκφράζει τα κ μέρη από τα ν ίσα μέρη στα οποία έχει χωριστεί μία ποσότητα ν Αριθμητής = Παρονομαστής Το ν α = 0 = α κ ν = κ ν ονομάζεται κλασματική μονάδα 8 = α α = Άρα

Διαβάστε περισσότερα

ÊåöÜëáéï 1 ï. Ïé ñçôïß áñéèìïß

ÊåöÜëáéï 1 ï. Ïé ñçôïß áñéèìïß ÊåöÜëáéï 1 ï Ïé ñçôïß áñéèìïß ÂéâëéïìÜèçìá 1 ï ÅðáíÜëçøç âáóéêþí åííïéþí Ðñüóèåóç ñçôþí áñéèìþí èñïéóìá ðïëëþí ðñïóèåôýùí ÁðáëïéöÞ ðáñåíèýóåùí ÂéâëéïìÜèçìá ï Ðïëëáðëáóéáóìüò ñçôþí áñéèìþí Ãéíüìåíï ðïëëþí

Διαβάστε περισσότερα

Δύο ημιευθείες OX, OY με κοινό άκρο O, χωρίζουν το επίπεδο σε δύο μέρη και ορίζουν μία κυρτή γωνία ή απλά γωνία και μία μη κυρτή γωνία.

Δύο ημιευθείες OX, OY με κοινό άκρο O, χωρίζουν το επίπεδο σε δύο μέρη και ορίζουν μία κυρτή γωνία ή απλά γωνία και μία μη κυρτή γωνία. ΜΑΘΗΜΑ 2 Δύο ημιευθείες OX, OY με κοινό άκρο O, χωρίζουν το επίπεδο σε δύο μέρη και ορίζουν μία κυρτή γωνία ή απλά γωνία και μία μη κυρτή γωνία. Κυρτή γωνία ή απλά γωνία λέγεται το σχήμα που συμβολίζουμε

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

NTÙÍÉÏÓ ÃÊÏÕÔÓÉÁÓ - ÖÕÓÉÊÏÓ www.geocities.com/gutsi1 -- www.gutsias.gr

NTÙÍÉÏÓ ÃÊÏÕÔÓÉÁÓ - ÖÕÓÉÊÏÓ www.geocities.com/gutsi1 -- www.gutsias.gr Έστω µάζα m. Στη µάζα κάποια στιγµή ασκούνται δυο δυνάµεις. ( Βλ. σχήµα:) Ποιά η διεύθυνση και ποιά η φορά κίνησης της µάζας; F 1 F γ m F 2 ιατυπώστε αρχή επαλληλίας. M την της Ποιό φαινόµενο ονοµάζουµε

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτό το κεφάλαιο ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ.

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ. http://elearn.maths.gr/, maths@maths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ 007-008: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟΝ ΕΛΕΓΧΟ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟΝ ΕΛΕΓΧΟ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟΝ ΕΛΕΓΧΟ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ 30 Ιουνίου 2018 ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΙΓΜΑΤΙΚΗ Ι ΑΣΚΑΛΙΑ «ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΟΡΙΖΟΥΣΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ» 1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟΣ 1 : Γραµµική εξίσωση λέγεται κάθε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10. Μελέτη ηλεκτρικών δικτύων στην Ηµιτονική Μόνιµη Κατάσταση

ΚΕΦΑΛΑΙΟ 10. Μελέτη ηλεκτρικών δικτύων στην Ηµιτονική Μόνιµη Κατάσταση 26 ΚΕΦΑΛΑΙΟ 0 Μελέτη ηλεκτρικών δικτύων στην Ηµιτονική Μόνιµη Κατάσταση 0. ) Γενικά για την Ηµιτονική Μόνιµη Κατάσταση ( Η.Μ.Κ.) Η µελέτη ενός ηλεκτρικού δικτύου γίνεται πρώτιστα στο στο πεδίο του χρόνου.

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ /0/0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:ΕΝΝΕΑ (9) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ

Διαβάστε περισσότερα

5 Σύνθεση Ταλαντώσεων

5 Σύνθεση Ταλαντώσεων Πρόχειρες Σηµειώσεις 011-01 5 Σύνθεση Ταλαντώσεων Ενα σώµα µπορει να εκτελεί ταυτόχρονα δυο αρµονικές ταλαντώσεις, οι οποίες µπορεί να έχουν οποιαδήποτε διεύθυνση. Το αποτέλεσµα είναι, γενικά, µια πολύπλοκη

Διαβάστε περισσότερα

Θεωρία Μουσικής. Β εξάμηνο Θεωρία. Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός. Βιογραφικό

Θεωρία Μουσικής. Β εξάμηνο Θεωρία. Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός. Βιογραφικό Θεωρία Μουσικής Β εξάμηνο Θεωρία Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός 1 Θεωρία Μουσικής (Θ) - ΜΙΧΑ Παρασκευή 1 Μουσικολόγος, Μουσικοπαιδαγωγός Βιογραφικό Πτυχιούχος μουσικολογίας και κάτοχος

Διαβάστε περισσότερα

Μάθηµα ευτέρας 20 / 11 / 17

Μάθηµα ευτέρας 20 / 11 / 17 90 Μάθηµα ευτέρας 20 / / 7 5) ιανυσµατικά διαγράµµατα στην Η.Μ.Κ. Κατά την µελέτη ηλεκτρικών δικτύων στην Η.Μ.Κ. χρησιµοποιούνται πολύ συχνά τα λεγόµενα διανυσµατικά διαγράµµατα. Οι στρεφόµενοι µε την

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-: Πιθανότητες - Χειµερινό Εξάµηνο 0 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο - Συνδυαστική Ανάλυση Επιµέλεια : Σοφία Σαββάκη Θεωρία. Η ϐασική αρχή της απαρίθµησης

Διαβάστε περισσότερα

1.2 ΓΩΝΙΑ ΒΑΣΙΚΑ ΕΠΙΠΕ Α ΣΧΗΜΑΤΑ

1.2 ΓΩΝΙΑ ΒΑΣΙΚΑ ΕΠΙΠΕ Α ΣΧΗΜΑΤΑ 1 2 ΩΝΙ ΣΙΚ ΠΙΠ ΣΧΗΜΤ ΘΩΡΙ ωνία : ίναι κάθε µία από τις χρωµατισµένες περιοχές του διπλνού σχήµατος µαζί µε τις ηµιευθείες Οx και Οy Τεθλασµένη γραµµή : ίναι µία πολυγωνική γραµµή που αποτελείται από διαδοχικά

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA

Διαβάστε περισσότερα

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0 5 Όριο συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση (δηλαδή όταν το βρίσκεται πολύ κοντά στο ) ή στο

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΕΣ ΠΟΣΟΤΗΤΟΣ. Κεντήµατα ανάβαση 1 φωνής διάρκεια 1 χρόνου. Κέντηµα ανάβαση 2 φωνών διάρκεια 1 χρόνου πνεύµα

ΧΑΡΑΚΤΗΡΕΣ ΠΟΣΟΤΗΤΟΣ. Κεντήµατα ανάβαση 1 φωνής διάρκεια 1 χρόνου. Κέντηµα ανάβαση 2 φωνών διάρκεια 1 χρόνου πνεύµα ΧΑΡΑΚΤΗΡΕΣ ΠΟΣΟΤΗΤΟΣ Ίσον επανάληψη φωνής διάρκεια 1 χρόνου... Όλίγον ανάβαση 1 φωνής διάρκεια 1 χρόνου Κεντήµατα ανάβαση 1 φωνής διάρκεια 1 χρόνου Πεταστή ανάβαση 1 φωνής διάρκεια 1 χρόνου Κέντηµα ανάβαση

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

2.5 ΑΝΙΣΟΤΗΤΕΣ ΑΝΙΣΩΣΕΙΣ

2.5 ΑΝΙΣΟΤΗΤΕΣ ΑΝΙΣΩΣΕΙΣ 1 2.5 ΑΝΙΣΟΤΗΤΕΣ ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ ΘΕΩΡΙΑ 1. Ανισότητα : Είναι µία σχέση µεταξύ δύο αριθµών που δεν είναι ίσοι µεταξύ τους 2. ιάταξη δύο πραγµατικών αριθµών που έχουµε παραστήσει µε σηµεία στον

Διαβάστε περισσότερα

Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β)

Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β) ΜΑΘΗΜΑ 5 Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.: Κλασµατικές Εξισώσεις Θεµατικές Ενότητες:. Κλασµατικές Εξισώσεις (Μέρος Β). Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β) ΟΡΙΣΜΟΙ Κλασµατική εξίσωση λέγεται

Διαβάστε περισσότερα

[ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ]

[ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ] 2013 Μουσικό Γυμνάσιο / Λύκειο Ιλίου Ευαγγελία Λουκάκη [ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ] Σημειώσεις για τις ανάγκες διδασκαλίας του μαθήματος της Αρμονίας. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ Στην Αρµονία συναντώνται συνηχήσεις-συγχορδίες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 17ο. κλειδιά

ΚΕΦΑΛΑΙΟ 17ο. κλειδιά ΚΕΦΑΛΑΙΟ 17ο 5 κλειδιά Όπως είπαµε στο κεφάλαιο 1ο υπάρχουν τρία κλειδιά σε επτά διαφορετικές θέσεις. Εδώ θα ασχοληθούµε µε τα άλλα δύο κλειδιά και τις άλλες έξη διαφορετικές θέσεις ς. 1) ΚΛΕΙ Ι ΤΟΥ ΦΑ

Διαβάστε περισσότερα

Μουσική και Μαθηματικά

Μουσική και Μαθηματικά Μουσική και Μαθηματικά Πρόλογος Ορισμός μουσικής : Ως μουσική ορίζεται η τέχνη που βασίζεται στην οργάνωση ήχων με σκοπό τη σύνθεση, εκτέλεση και ακρόαση /λήψη ενός μουσικού έργου, καθώς και η επιστήμη

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 5ο κεφάλαιο: Πρόοδοι ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 014 Περιεχόµενα 1 ΠΡΟΟ

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΙΚΕΣ - Α ΠΡΟΣΗΜΟ ΠΟΛΥΩΝΥΜΟΥ Μέχρι τώρα ξέρουµε να βρίσκουµε το πρόσηµο ενός πολυωνύµου βαθµού ή δεύτερου βαθµού Για να βρούµε το πρόσηµο ενός πολυωνύµου f πρώτου f βαθµού µεγαλύτερου

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου Κεφάλαιο 3 Δυνάμεις

Φυσική Β Γυμνασίου Κεφάλαιο 3 Δυνάμεις Φυσική Β Γυμνασίου Κεφάλαιο 3 Δυνάμεις Σχέσεις Σύνθεση Ισορροπία Ίσες Δυνάμεις Δυο δυνάμεις F 1 και F 2 είναι ίσες αν και μόνο αν έχουν την ίδια διεύθυνση, την ίδια φορά και το ίδιο μέτρο. F = F Στην περίπτωση

Διαβάστε περισσότερα

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet: Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω

Διαβάστε περισσότερα

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά

Διαβάστε περισσότερα

Εκπαιδευτικός Οργανισµός Ν. Ξυδάς 1

Εκπαιδευτικός Οργανισµός Ν. Ξυδάς 1 Εκπαιδευτικός Οργανισµός Ν. Ξυδάς 1 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1: ΟΓΚΟΣ Εισαγωγή Παρατήρησε τις δύο εικόνες. Σε τι διαφέρουν; Παρατηρείς ότι το δεύτερο αυτοκίνητο έχει περισσότερο χώρο για τις αποσκευές. Μια χαρακτηριστική

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΔΕΥΤΕΡΑ 20 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΔΕΥΤΕΡΑ 20 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΔΕΥΤΕΡΑ 20 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α .5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΤΡΙΤΗ 23 ΣΕΠΤΕΜΒΡΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΤΡΙΤΗ 23 ΣΕΠΤΕΜΒΡΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΤΡΙΤΗ 23 ΣΕΠΤΕΜΒΡΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ ΟΚΤΩ (8) ΟΜΑ Α Α: ΑΝΑΓΝΩΡΙΣΗ

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2011. 21.02.11 Χ. Χαραλάμπους ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών. Ιστορία των Μαθηματικών ΑΠΘ

Εαρινό Εξάμηνο 2011. 21.02.11 Χ. Χαραλάμπους ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών. Ιστορία των Μαθηματικών ΑΠΘ Εαρινό εξάμηνο 2011 21.02.11 Χ. Χαραλάμπους Μεσοποταμία Αίγυπτος 3000 1000 π.χ. Αίγυπτος: ο πάπυρος του Rhind ~1650 π.χ. Αγοράσθηκε από τον Σκωτσέζο Rhind το 1858 Αίγυπτος: ο πάπυρος της Μόσχας ~ 1600

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f Συνάρτηση f, λέγεται η διαδικασία µε βάση την οποία σε κάθε στοιχείο χ ενός συνόλου Α αντιστοιχούµε ακριβώς ένα στοιχείο ενός άλλου συνόλου Β. Το σύνολο Α λέγεται πεδίο ορισµού ( ή σύνολο ορισµού ) της

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (

Διαβάστε περισσότερα

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι?

ΜΕΡΟΣ Α. Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι? 1 Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι? Σήµερα η βιβλιογραφία της Αρµονίας είναι πλουσιότατη, σε πολλά επίπεδα σπουδής και σε πλήθος γλωσσών. Έτσι δεν θα πρότεινα µία από τα ίδια που

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων

Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων 1. Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων Είναι ομάδα από δύο ή περισσότερες εξισώσεις των οποίων ζητάμε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα