Φωτογραμμετρία II Ψηφιακή εικόνα. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
|
|
- Σατανᾶς Δουμπιώτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Φωτογραμμετρία II Ψηφιακή εικόνα Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
2 Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Ceative Cmmns και δημιουργήθηκε στο πλαίσιο των Ανοιχτών Ακαδημαϊκών Μαθημάτων από την Μονάδα Υλοποίησης του ΕΜΠ. Για το υλικό που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.
3 Εσωτερική Γεωμετρία της φωτογραφικής μηχανής Κεντρική Προβολή, c Ο Θέση Ο σε σχέση με το επίπεδο προβολής (c,, Ευθύγραμμες ακτίνες (Δ Μηχανή σημειακής οπής (pinhle camea ; ; ; ; Φωτογραφική Μηχανή Σχήμα 1. Εσωτερική γεωμετρία φωτογραφικής μηχανής 3
4 Η μορφή της δέσμης των ακτίνων καθορίζεται από... την απόσταση (cτου προβολικού κέντρου (Ο από το εστιακό επίπεδο (αρνητικό τη θέση (, της προβολής (Η του προβολικού κέντρου (Ο σε κάποιο σύστημα αναφοράς (εικονοσήματα το μέτρο της ακτινικής διαστροφής του φακού (Δ τα οποία καλούνται στοιχεία του εσωτερικού προσανατολισμούτης φωτογραφικής μηχανής και καθορίζουν το μοντέλο εκείνο της Κεντρικής Προβολής, που περιγράφει καλύτερα τη συγκεκριμένη φωτογραφική μηχανή 4
5 Εσωτερικός Προσανατολισμός Ενέργειες: 1. Αποκατάσταση του Εσωτερικού Προσανατολισμού στόχος η ανάπλαση της δέσμης, δηλ. σωστό σχήμα δέσμης οι ακτίνες πράγματι ΓΤ όλων των απεικονιζόμενων σημείων πραγματοποιείται αναλυτικά (δηλ. υπολογιστικά σε όλα τα φωτογραμμετρικά συστήματα 2. Προσδιορισμός των παραμέτρων του με στόχο την ακριβέστερη γνώση του γίνεται με την διαδικασία της βαθμονόμησης 5
6 Αποκατάσταση Εσωτερικού Προσανατολισμού (1/5 2 κλίμακες (κατά και 2 στροφές αξόνων 2 μεταθέσεις Διόρθωση ακτινικής διαστροφής = a = a 1 4 ' ' a a 2 5 ' ' a a Αφινικός Μετασχηματισμός 3 6 Ο αφινικόςμετασχηματισμός ουσιαστικά αποκαθιστά την σχέση μεταξύ δύο επίπεδων συστημάτων: (1 της εικόνας (,, παραμορφωμένο και (2 της μηχανής (,, πρότυπο 6
7 Αποκατάσταση Εσωτερικού Προσανατολισμού (2/5 Σκόπευση στον φωτογραμμετρικό σταθμό τριών -τουλάχιστονεικονοσημάτων για προσδιορισμό των 6 παραμέτρων, σε κάθε εικόνα Με την σκόπευση περισσότερων εικονοσημάτωνη συνόρθωση δίνει εναπομένοντα σφάλματα Η διόρθωση από ακτινική διαστροφή γίνεται αναλυτικά (υπολογιστικά από το λογισμικό αμέσως μετά την σκόπευση κάθε σημείου Η τιμή της σταθεράς χρησιμοποιείται με την εφαρμογή της ΣΣ 7
8 Αποκατάσταση Εσωτερικού Προσανατολισμού (3/5 Εικόνα 1. Αντιστοίχηση μετρήσεων χρήστη από κατασκευαστή 8
9 Αποκατάσταση Εσωτερικού Προσανατολισμού (4/5 ΠΡΟΣΟΧΗ!! Η αποκατάσταση του Εσωτερικού Προσανατολισμού (που ουσιαστικά είναι η ανάπλαση του 3D σχήματος της δέσμης ΔΕΝ τελειώνει με την εφαρμογή του 2Dαφινικού, αλλά περιλαμβάνει ΚΑΙ την χρήση της σταθεράς c με την εφαρμογή της συνθήκης συγγραμμικότητας 9
10 Αποκατάσταση Εσωτερικού Προσανατολισμού (5/5 Στις ψηφιακές εικόνες η αποκατάσταση του εσωτερικού προσανατολισμού είναι απλούστερη διαδικασία. Δεν απαιτούνται εικονοσήματα λόγω δομής της ψηφιακής εικόνας (γραμμές στήλες Διόρθωση ακτινικής διαστροφής κατά τα γνωστά Χρήση της c με την εφαρμογή της ΣΣ 10
11 Ακτινική Διαστροφή (1/4 αρνητική θετική ή ή μηνοειδής πιθοειδής Εικόνα 2. Ακτινική διαστροφή 11
12 Λήψη με φακό Cann f = 24 mm Εικόνα 3. Λήψη με φακό Cann f=24mm 12
13 Λήψη με φακό Cann f = 85 mm Εικόνα 4. Λήψη με φακό Cann f=85 mm 13
14 Ακτινική Διαστροφή (2/4... αλλά και εφαπτομενική ή έκκεντρη Εικόνα 5. Εφαπτομενική ή έκκεντρη διαστροφή 14
15 Διαστροφήφωτογραφικών Φακών Ακτινική συμμετρική Ασύμμετρη διαστροφή διαστροφή εκκεντρότητας οι επιφάνειες των φακών αντί μη ακριβής κέντρωση των φακών για παραβολοειδή εκ περιστροφής μέσα στο σύστημα των φακών είναι σχεδόν σφαιρικές Δ = k k 1 3 k 2 5 Ασύμμετρη Εγκάρσια οι ευθείες του χώρου δεν απεικονίζονται ως ευθείες αλλά καμπυλωμένες Μεταβολή κλίμακας (τοπική διαφορική 15
16 Ακτινική Διαστροφή (3/4 Συμμετρική ως προς το πρωτεύον σημείο Εξ ορισμού μηδενική στο πρωτεύον σημείο Τοπική διαφοροποίηση της κλίμακας απεικόνισης!! Εικόνα 6α. Ακτινική διαστροφή 16
17 Ακτινική Διαστροφή (4/4 d i 3 5 = k0 i k1 i k2i... Δ = 3 k0 k1 k Εικόνα 6β. Ακτινική διαστροφή 17
18 Βασικές Έννοιες Βαθμονόμηση φωτογραφικών μηχανών: Ο προσδιορισμός των στοιχείων του εσωτερικού προσανατολισμού τους, δηλαδή της εσωτερικής γεωμετρίας τους Αποκατάσταση εσωτερικού προσανατολισμού: Οι αναλυτικές διαδικασίες που διασφαλίζουν την ισχύ της Κεντρικής Προβολής για μια εικόνα στους φωτογραμμετρικούς υπολογισμούς 18
19 Πεδία Ελέγχου (1/2 Εικόνα 7. Πεδία Ελέγχου Κέντρου Μετρολογίας ΣΑΤΜ ΕΜΠ 19
20 Πεδία Ελέγχου (2/2 Εικόνα 8. Η λήψη εικόνων και η μέτρηση εικονοσυντεταγμένωνοδηγούν στον προσδιορισμό στοιχείων εσωτερικού προσανατολισμού - Βαθμονόμηση 20
21 Αλγόριθμος Βαθμονόμησης Εύρεση παραμέτρων εσωτερικού προσανατολισμού για την καλύτερη προσέγγιση της πραγματικής απεικόνισης με το γεωμετρικό μοντέλο της κεντρικής προβολής Βαθμονομημένες καμπύλες ακτινικής διαστροφής και Κριτήρια: σταθεράς της μηχανής Απορρόφηση του γραμμικού όρου από το c Μηδενισμός της διαστροφής σε ακτινική απόσταση Ελαχιστοποίηση του ΣΔ i2 για περιοχή γύρω από το πρωτεύον σημείο ma Δ = min Δ 21
22 Αυτοβαθμονόμησημε την ΣΣ (1/3 R = ωφκ λ c ( ( ( ( ( ( c ( ( ( ( ( ( c = = Η Συνθήκη Συγγραμμικότητας 22
23 Αυτοβαθμονόμησημε την ΣΣ (2/3 (Μέθοδος της Δέσμης = = 0 0 A1 c ΠΝ A2 c ΠΝ Δ Δ, : οι συντεταγμένες της προβολής του Προβολικού κέντρου πάνω στο εστιακό επίπεδο Δ, Δ : διορθώσεις των εικονοσυντεταγμένωνλόγω ακτινικής διαστροφής Δ d, Δ d : διορθώσεις των εικονοσυντεταγμένωνλόγω εφαπτομενικής διαστροφής Δ af, Δ af : διορθώσεις των εικονοσυντεταγμένωνλόγω αφινικών παραμορφώσεων Δ Δ d d Δ Δ af af 23
24 Αυτοβαθμονόμησημε την ΣΣ (3/3 (Μέθοδος της Δέσμης Δ Δ = (- = (- (k 1 2 k 2 4 k 3 6 Δ Δ = (- = (- (k 1 2 k 2 4 k 3 6 Δ d = (P 1 ( 2 2(- 2 2P 2 (- (- (1 P 3 2 Δ d = (2P 1 (- (- P 2 ( 2 2(- 2 (1 P
25 Αναλυτική Αυτοβαθμονόμηση (1/4 Δ =c A1 ΠΝ Οι παράμετροι Δκαι Δείναι συναρτήσεις των διορθώσεων των εικονοσυντεταγμένωνγια Δ =c A2 ΠΝ ακτινική διαστροφή εφαπτομενικήδιαστροφή άλλες παραμορφώσεις και συνεπώς μπορούν να συμπεριληφθούν στην επίλυση με την αναλυτική έκφρασή τους, ως συναρτήσεις δηλαδή του πολυωνύμου Δ = k 1 3 k
26 Αναλυτική Αυτοβαθμονόμηση (2/4 d d d dκ κ dφ φ dω ω d d d dk k dk k dc c d d d d d dκ κ dφ φ dω ω d d d dk k dk k dc c d d ( (0 = = = = Η γραμμικοποίηση δίνει: 26
27 Αναλυτική Αυτοβαθμονόμηση (3/4 = ( n ( 1 ( Δ Δ Δ Δκ Δφ Δω Δ Δ Δ κ φ ω κ φ ω κ φ ω Δk Δk Δc Δ Δ k k c k k c k k c Οι εξισώσεις παρατήρησης υπό μορφή πινάκων διαμορφώνονται ως εξής: Α 1 ΔΧ 1 Α 2 ΔΧ 2 Α 3 ΔΧ 3 L 27
28 Αναλυτική Αυτοβαθμονόμηση (4/4 Ο πίνακας σχεδιασμού: 28
29 ΑμεσοςΓραμμικός Μετασχηματισμός DLT (1/ λ c c λ c c ( ( ( ( ( ( c δ- ( ( ( ( ( ( c δ- = = = = 1 L L L L L L L 1 L L L L L L L = = 29
30 Άμεσος Γραμμικός Μετασχηματισμός DLT (2/2 Ανεξαρτησία από σύστημα αναφοράς Προβολική σχέση εικόνας (2D Συστήματος αναφοράς (3D Δεν απαιτείται η γνώση του εσωτερικού προσανατολισμού Μή αντιστρεπτές μονοσήμαντες σχέσεις Απαίτηση πολλών μη συνεπίπεδων φωτοσταθερών - m 6 Μαθηματική αδυναμία συστήματος Δεν αντιμετωπίζεται η διαστροφή του φακού Εξισώσεις Παρατήρησης v = L 1 L 2 L 3 L 4 -L 9 -L 10 -L 11 v = L 5 L 6 L 7 L 8 -L 9 -L 10 -L 11 30
31 Παράρτημα Εικόνα 1. Αντιστοίχηση μετρήσεων χρήστη από κατασκευαστή: ( - CC: B-NC-SA 31
32 Χρηματοδότηση Το παρόν υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο υλοποιείται στο πλαίσιο του επιχειρησιακού προγράμματος «Εκπαίδευσης και δια βίου μάθησης» και συγχρηματοδοτείται από την Ευρωπαϊκό Κοινοτικό Ταμείο και από εθνικούς πόρους.
Φωτογραμμετρία ΙΙ Προσανατολισμοί φωτογραμμετρικώνεικόνων (Υπενθύμιση βασικών εννοιών- Αλγοριθμική προσέγγιση)
Φωτογραμμετρία ΙΙ Προσανατολισμοί φωτογραμμετρικώνεικόνων (Υπενθύμιση βασικών εννοιών- Αλγοριθμική προσέγγιση) Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. dag@ental.ntua.g Άδεια χρήσης Το παρόν υλικό υπόκειται
για φωτογραµµετρικές εφαρµογές: Αρχές λειτουργίας Εσωτερική Γεωµετρία Ακρίβεια απεικόνισης
ΑΡΧΕΣ ΛΕΙΤΟΥΡΓΙΑΣ & ΙΑΚΡΙΒΩΣΗ ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΩΝ ΟΡΓΑΝΩΝ Φωτογραµµετρικά όργανα Φωτογραφικές Μηχανές Φωτογραµµετρικά Όργανα Απόδοσης Σαρωτές ΦΩΤΟΓΡΑΦΙΚΕΣ ΜΗΧΑΝΕΣ Όργανα καταγραφής διευθύνσεων για φωτογραµµετρικές
ΦΩΤΟΓΡΑΜΜΕΤΡΙΑ ΙΙ ΕΠΑΝΑΛΗΨΗ. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
ΦΩΤΟΓΡΑΜΜΕΤΡΙΑ ΙΙ ΕΠΑΝΑΛΗΨΗ Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. dag@cental.ntua.g Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Ceative Commons και δημιουργήθηκε στο πλαίσιο των Ανοιχτών Ακαδημαϊκών
Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν
Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν Επεξήγηση Μηχανισµού Προσοµοίωση της ανθρώπινης όρασης B A C Μαθηµατική γεωµετρική περιγραφή ενός φυσικού φαινοµένου ΗΦωτογραµµετρική
Εξαγωγή µετρητικής πληροφορίας
Εξαγωγή µετρητικής πληροφορίας Μια εικόνα είναι: Κεντρική Προβολή 2D προβολή του 3D χώρου Το επιθυµητό τελικό προϊόν πρέπει να είναι: Ορθή προβολή 2D προβολή του 3D χώρου Εξαγωγή µετρητικής πληροφορίας
Εσωτερικός Προσανατολισμός 15/4/2014. Η μορφή της δέσμης των ακτίνων. Εσωτερική Γεωμετρία της φωτογραφικής μηχανής
5/4/04, Εστεριή Γεμετρία της τογραιής μηχανής Μηχανή σημειαής οπής (pinhle amera Ο Κεντριή Προβολή Θέση Ο σε σχέση με το επίπεδο προβολής (,, Ευθύγραμμες ατίνες (Δr ; Φτογραιή Μηχανή ; ; ; Η μορή της δέσμης
Χ, Υ, Ζ σηµείων. Εικονιστικό προϊόν
Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν Επεξήγηση η Μηχανισµού µ Προσοµοίωση της ανθρώπινης όρασης B A C Μαθηµατική γεωµετρική περιγραφή ενός φυσικού φαινοµένου
Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. dag@cental.ntua.g Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Ceative Commons και δημιουργήθηκε στο πλαίσιο των Ανοιχτών Ακαδημαϊκών Μαθημάτων από την Μονάδα
Φωτογραμμετρία II Το κυνήγι μιας ακτίνας. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
Φωτογραμμετρία II Το κυνήγι μιας ακτίνας Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. drag@central.ntua.gr Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο
28/2/2010 ; ; καθορίζεται από...
8//00, Εστεριή Γεµετρία της τογραιής µηχανής Μηχανή σηµειαής οπής (pinhle amea Ο Κεντριή Προβολή Θέση Ο σε σχέση µε το επίπεδο προβολής (,, Ευθύγραµµες ατίνες ( ; Φτογραιή Μηχανή ; ; ; Η µορή της δέσµης
Αναλυτική Φωτογραμμετρία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 5: Βασικά Φωτογραμμετρικά προβλήματα I Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Εξαγωγή µετρητικής πληροφορίας
Εξαγωγή µετρητικής πληροφορίας Μια εικόνα είναι: Κεντρική Προβολή 2D προβολή του 3D χώρου Το επιθυµητό τελικό προϊόν πρέπει να είναι: Ορθή προβολή 2D προβολή του 3D χώρου Εξαγωγή µετρητικής πληροφορίας
Αναλυτική Φωτογραμμετρία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 6: Βασικά Φωτογραμμετρικά προβλήματα II Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Εξαγωγή µετρητικής πληροφορίας
Εξαγωγή µετρητικής πληροφορίας Μια εικόνα είναι: Κεντρική Προβολή 2D προβολή του 3D χώρου Το επιθυµητό τελικό προϊόν πρέπει να είναι: Ορθή προβολή 2D προβολή του 3D χώρου Εξαγωγή µετρητικής πληροφορίας
Φωτογραμμετρία II Άσκηση 3-Αεροτριγωνισμός Ανδρέας Γεωργόπουλος Σχολή Αγρονόμων & Τοπογράφων Μηχανικών
Φωτογραμμετρία II Άσκηση 3-Αεροτριγωνισμός Ανδρέας Γεωργόπουλος Σχολή Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Αυτοματοποιημένη χαρτογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 3: Ψηφιακός χάρτης διαχείριση - 1 ο μέρος Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Φωτογραμμετρία II Αεροτριγωνισμός& Ακρίβειες. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
Φωτογραμμετρία II Αεροτριγωνισμός& Ακρίβειες Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. drag@central.ntua.gr Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Cmmns και δημιουργήθηκε στο πλαίσιο
5/3/2010. A. Στη δηµιουργία του στερεοσκοπικού µοντέλουέ B. Στη συσχέτισή του µε το γεωδαιτικό σύστηµα
5/3/ Για να είναι δυνατή η επεξεργασία στα φωτογραµµετρικά όργανα χρειάζεται κάποιο στάδιο προετοιµασίας του ζεύγους των εικόνων. Η προετοιµασία αυτή αφορά: A. Στη δηµιουργία του στερεοσκοπικού µοντέλουέ.
Απόλυτος Προσανατολισµός
Για την κατανόηση της διαδικασίας του Απόλυτου Προσανατολισµού, θα θεωρήσουµε ένα στερεό σώµα που αποτελείται από: 1. Τις δύο δέσµες του στερεοσκοπικού ζεύγους και 2. Το στερεοσκοπικό µοντέλο Ας µη ξεχνάµε
Τηλεπισκόπηση - Φωτοερμηνεία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 4: Εισαγωγή στη Φωτογραμμετρία. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Άδειες
Φωτογραμμετρία II Ορθοφωτογραφία(Μέρος I) Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
Φωτογραμμετρία II Ορθοφωτογραφία(Μέρος I) Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. drag@central.ntua.gr Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο
Αποτυπώσεις Μνημείων και Αρχαιολογικών Χώρων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποτυπώσεις Μνημείων και Αρχαιολογικών Χώρων Ενότητα 5 : Αποτύπωση με μεθόδους φωτογραμμετρίας Τοκμακίδης Κωνσταντίνος Τμήμα Αγρονόμων
Μέθοδος Ελαχίστων Τετραγώνων & Φωτογραµµετρία
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονόµων και Τοπογράφων Μηχ. Τοµέας Τοπογραφίας Μέθοδος Ελαχίστων Τετραγώνων & Φωτογραµµετρία Φωτογραµµετρική Οπισθοτοµία Υποδειγµατικά λυµένη άσκηση εδοµένα Τα δεδοµένα
Ηδηµιουργία του στερεοσκοπικού µοντέλου περιλαµβάνει:
Προσανατολισµoί στερεοσκοπικών ζευγών Για να είναι δυνατή η συνεχής απόδοση στα φωτογραµµετρικά όργανα χρειάζεται κάποιο στάδιο προετοιµασίας του ζεύγους των εικόνων. Η προετοιµασία αυτή αφορά: A. Στη
Φωτογραμμετρία II Ορθοφωτογραφία(Μέρος II) Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
Φωτογραμμετρία II Ορθοφωτογραφία(Μέρος II) Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. drag@central.ntua.gr Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΜΑΓΝΗΤΟΣΤΑΤΙΚΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Φωτογραμμετρία ΙΙ. Επανάληψη Ασκήσεων. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
Φωτογραμμετρία ΙΙ Επανάληψη Ασκήσεων Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. drag@central.ntua.gr Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο των
Φωτογραμμετρία II Προγραμματισμός πτήσης. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
Φωτογραμμετρία II Προγραμματισμός πτήσης Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. drag@central.ntua.gr Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Λογισμός ΙΙ Χρήστος Θ. Αναστασίου Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το
Αυτοματοποιημένη χαρτογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 4: Ψηφιακός χάρτης - Διαχείριση 2o μέρος Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 5: Τεχνικές Κλιμάκωσης, Γεωμετρία Γραμμικού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Πρέσσες κοχλία. Κινηματική Δυνάμεις Έργο. Πρέσσες κοχλία. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
Πρέσσες κοχλία Κινηματική Δυνάμεις Έργο Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Πρέσσες κοχλία Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο του Έργου των Ανοικτών
ΑΝΑΠΤΥΓΜΑΤΑ ΕΠΙΦΑΝΕΙΩΝ
Τοµέας Τοπογραφίας Εργαστήριο Φωτογραµµετρίας Εργαστήριο Γενικής Γεωδαισίας Τοµέας Έργων Υποδοµής & Αγρ. Ανάπτυξης Επιστηµονική Περιοχή Αρχιτεκτονικής Αποτυπώσεις Μνηµείων Υπεύθυνος Διδάσκων: Γεωργόπουλος
Αναλυτική Φωτογραμμετρία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 3: Μαθηματικό υπόβαθρο Αναλυτικής Φωτογραμμετρίας Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΠΕΙΚΟΝΙΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Γραμμικοί Μετασχηματισμοί Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα Σκοποί ενότητας
Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Αεροτριγωνισµός. Το βασικό πρόβληµα 13/4/2010
Αεροτριγωνισµός Αεροτριγωνισµός Εισαγωγή Χρησιµότητα Το Βασικό Πρόβληµα Τα σηµεία στον Αεροτριγωνισµό (Α/Τ) Μέθοδοι συνόρθωσης Μέθοδος των ανεξαρτήτων µοντέλων Μέθοδος των εσµών Πρόσθετες παρατηρήσεις
Φωτογραμμετρία & Τοπογραφία
Φωτογραμμετρία & Τοπογραφία Επίγειες μετρήσεις ΓΕΩΜΕΤΡΙΑ Εναέριες μετρήσεις Δορυφορικές μετρήσεις Ορισμός: Η επιστήμη τεχνική που ασχολείται με την εξαγωγή πληροφορίας από μετρήσεις σε εικόνες Είδος πληροφορίας:
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΤΟΠΟΛΟΓΙΚΟΙ ΟΡΙΣΜΟΙ ΣΤΟ ΜΙΓΑΔΙΚΟ ΕΠΙΠΕΔΟ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons.
Τηλεπισκόπηση - Φωτοερμηνεία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 8: Ψηφιακή Επεξεργασία Εικόνας Γεωμετρικές Διορθώσεις. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 9: Η έννοια και η χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 3.1: Μεθοδολογία Παράστασης Επιφανειών από το Εξωτερικό Περίβλημα Στερεών Σωμάτων Σταματίνα Γ. Μαλικούτη
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 3 Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.9: Το Διαφορικό Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.9: Το Διαφορικό 1 Άδειες
Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.3: Εμβαδά εκ Περιστροφής Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 7: Εξίσωση Laplace σε σφαιρικές συντεταγμένες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει και να επιλύσει
Φωτογραμμετρία II Άσκηση 1-Σχεδιασμός πτήσης Ανδρέας Γεωργόπουλος Σχολή Αγρονόμων & Τοπογράφων Μηχανικών
Φωτογραμμετρία II Άσκηση 1-Σχεδιασμός πτήσης Ανδρέας Γεωργόπουλος Σχολή Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Κλασική Hλεκτροδυναμική
Κλασική Hλεκτροδυναμική Ενότητα 3: Η συνάρτηση Green σε επίπεδη γεωμετρία και η μέθοδος των ειδώλων σε σφαιρική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας
Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής
Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Μαθηματικός Λογισμός Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΟΛΛΑΠΛΗ ΟΛΟΚΛΗΡΩΣΗ- ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΑΣΚΗΣΕΩΝ Παναγιώτης Βλάμος Αδειες Χρήσης Το παρόν εκπαιδευτικό
Σχολή Αγρονόµων Τοπογράφων Μηχανικών ΕΜΠ. Αποτυπώσεις Μνηµείων Υπεύθυνος Διδάσκων: Γεωργόπουλος Ανδρέας. Περί φωτογραµµετρίας
Σχολή Αγρονόµων Τοπογράφων Μηχανικών ΕΜΠ Αποτυπώσεις Μνηµείων Υπεύθυνος Διδάσκων: Γεωργόπουλος Ανδρέας Περί φωτογραµµετρίας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Crea:ve Commons.
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ. «Φωτογραμμετρική αποτύπωση μετώπων εκσκαφής μορφής πρανών» ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΟΛΓΑ Ι.
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Φωτογραμμετρική αποτύπωση μετώπων εκσκαφής μορφής πρανών» ΟΛΓΑ Ι. ΓΚΙΚΑ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: Παρτσινέβελος Παναγιώτης (επιβλέπων) Γαλετάκης
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος
Εργαστήριο Φωτοτεχνίας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Φωτοτεχνίας Ενότητα: Διαγράμματα Rousseau Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 017-018 Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ
Αυτοματοποιημένη χαρτογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 2: Ψηφιακός χάρτης Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το
Υπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Αναλυτική επίλυση του μαθηματικού ομοιώματος: Σύμμορφη Απεικόνιση Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Να υπολογιστεί η πιθανότερη ακτίνα, *, στην οποία θα βρίσκεται
Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 5: ΣΓΠ και τοπολογία Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #7: Μονοτονία- Ακρότατα-Αντιγραφή Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Εφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 3: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις μιας μεταβλητής Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΜΕΘΟΔΟΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ
Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Μαθηματικός Λογισμός Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΜΕΘΟΔΟΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ Παναγιώτης Βλάμος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΔΙΕΡΕΥΝΗΣΗ ΒΑΘΜΟΝΟΜΗΣΗΣ ΨΗΦΙΑΚΗΣ ΒΙΝΤΕΟΚΑΜΕΡΑΣ
ΔΙΕΡΕΥΝΗΣΗ ΒΑΘΜΟΝΟΜΗΣΗΣ ΨΗΦΙΑΚΗΣ ΒΙΝΤΕΟΚΑΜΕΡΑΣ Γ. Δρακωνάκης, Α. Μυλωνάς, Μ. Τρύφωνα, Σ. Ψωμαδάκη, Π. Αγραφιώτης, Α. Γεωργόπουλος Εργαστήριο Φωτογραμμετρίας, Σχολή Αγρονόμων και Τοπογράφων Μηχανικών, ΕΜΠ
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 12: Συνάρτηση Green από ιδιοσυναρτήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει την συνάρτηση Green από
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative
Αυτοματοποιημένη χαρτογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # : Αναλυτικές μέθοδοι παρεμβολής Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Άδειες
Ειδικά Θέματα Γεωδαισίας- Μετατροπή τοπογραφικών διαγραμμάτων σε διαφορετικά συστήματα συντ/νων
Ειδικά Θέματα Γεωδαισίας- Μετατροπή τοπογραφικών διαγραμμάτων σε διαφορετικά συστήματα συντ/νων Λάμπρου Ευαγγελία, Αναπληρώτρια Καθηγήτρια Ε.Μ.Π., litsal@central.ntua.gr Πανταζής Γεώργιος, Αναπληρωτής
ΠΡΟΤΑΣΗ ΜΕΘΟ ΟΛΟΓΙΑΣ ΒΑΘΜΟΝΟΜΗΣΗΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΚΑΜΕΡΑΣ ΕΙΚΟΝΟΓΕΩ ΑΙΤΙΚΟΥ ΣΤΑΘΜΟΥ
ΠΡΟΤΑΣΗ ΜΕΘΟ ΟΛΟΓΙΑΣ ΒΑΘΜΟΝΟΜΗΣΗΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΚΑΜΕΡΑΣ ΕΙΚΟΝΟΓΕΩ ΑΙΤΙΚΟΥ ΣΤΑΘΜΟΥ Α. Γεωργόπουλος, Χ. Ιωαννίδης, Ε. Λάµπρου, Γ. Πανταζής, Κ. Νικολίτσας Σχολή Αγρονόµων και Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 4: Τομές ΙΙ Όνομα Καθηγητή: Γιώργος Ανδρεάδης Τμήμα: Μηχανολόγων Μηχ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Τηλεπισκόπηση - Φωτοερμηνεία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 9: Συστήματα Συντεταγμένων. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Άδειες
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 2 η : Αγωγή Μονοδιάστατη αγωγή
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα η : Αγωγή Μονοδιάστατη αγωγή Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Cmmns.
Σχεδίαση με Ηλεκτρονικούς Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 2: Μετασχηματισμοί συντεταγμένων στις 2 διαστάσεις Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα
Εφαρμογές Πληροφορικής στην Τοπογραφία
Εφαρμογές Πληροφορικής στην Τοπογραφία 11η Ενότητα - Μετασχηματισμός Κεντρικής Προβολής (αναγωγή) με σημεία φυγής στο λογισμικό VeCAD- Photogrammetry και ψηφιοποίηση λεπτομερειών στο AutoCAD Τσιούκας Βασίλειος,
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΚΑΤΑΓΡΑΦΗ ΤΟΥ ΙΧΝΟΥΣ ΤΗΣ ΟΠΤΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ: ΜΙΑ ΜΕΘΟΔΟΣ ΔΙΕΡΕΥΝΗΣΗΣ ΤΗΣ ΕΠΙΛΕΚΤΙΚΟΤΗΤΑΣ ΤΗΣ ΟΠΗΣ ΩΣ ΒΑΣΙΚΟΥ ΧΑΡΑΚΤΗΡΙΣΤΙΚΟΥ ΤΟΥ ΣΧΗΜΑΤΟΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΧΑΡΤΟΓΡΑΦΙΑΣ ΚΑΤΑΓΡΑΦΗ ΤΟΥ ΙΧΝΟΥΣ ΤΗΣ ΟΠΤΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ: ΜΙΑ ΜΕΘΟΔΟΣ ΔΙΕΡΕΥΝΗΣΗΣ ΤΗΣ ΕΠΙΛΕΚΤΙΚΟΤΗΤΑΣ
Κβαντική Φυσική Ι. Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει κάποιες
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 2: Εισαγωγή στον βέλτιστο έλεγχο Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.4: Υπολογισμός Όγκων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 10: Δυναμικός προγραμματισμός Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν
ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ
ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Άσκηση 4: Σφάλματα φακών: Ι Σφαιρική εκτροπή Εξεταζόμενες γνώσεις: σφάλματα σφαιρικής εκτροπής. Α. Γενικά περί σφαλμάτων φακών Η βασική σχέση του Gauss 1/s +1/s = 1/f που
ΕΦΑΡΜΟΓΕΣ ΦΩΤΟΓΡΑΜΜΕΤΡΙΑΣ. Βασίλης Γιαννακόπουλος, Δρ. Δασολόγος
ΕΦΑΡΜΟΓΕΣ ΦΩΤΟΓΡΑΜΜΕΤΡΙΑΣ Βασίλης Γιαννακόπουλος, Δρ. Δασολόγος Φωτογραμμετρία Εισαγωγή Ορισμοί Πλεονεκτήματα Μειονεκτήματα Εφαρμογές Εισαγωγή Προσδιορισμός θέσεων Με τοπογραφικά όργανα Σχήμα Μέγεθος Συντεταγμένες
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες
Εφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 1: Το πρόβλημα της βελτιστοποίησης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 19: Η συνάρτηση Green για την κυματική εξίσωση και θεώρημα Poynting Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει
ΠΕΡΙΕΧΟΜΕΝΑ. Περίληψη...5. Κεφάλαιο 1. Χρήσιμες φωτογραμμετρικές πληροφορίες...6
ΠΕΡΙΕΧΟΜΕΝΑ σελ Περίληψη...5 Κεφάλαιο 1. Χρήσιμες φωτογραμμετρικές πληροφορίες...6 1.1. Συστήματα αναφοράς...7 1.1.1 Σύστημα αναφοράς του φωτογραφικού επιπέδου (x, y)...7 1.1.2 Σύστημα αναφοράς της φωτογραφίας
Συστήματα Πολυμέσων Ενότητα 4: Συμπίεση. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
Συστήματα Πολυμέσων Ενότητα 4: Συμπίεση Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11: Γεωμετρικός τόπος των ριζών Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ
7.1 ΑΣΚΗΣΗ 7 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ ΘΕΩΡΙΑ Όταν φωτεινή παράλληλη δέσμη διαδιδόμενη από οπτικό μέσο α με δείκτη διάθλασης n 1 προσπίπτει σε άλλο οπτικό μέσο β με δείκτη διάθλασης n 2 και
Μαθηματικά και Φυσική με Υπολογιστές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Εφαρμογές στη Φυσική Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης