Elektroenergetskega omrežja in naprave. Kabelski vodi
|
|
- Ευδοκία Κακριδής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Elektroenergetskega omrežja in naprave Kabelski vodi Boštjan Blažič leon.fe.uni-lj.si 2011/12 Napake in okvare v distribucijskih omrežjih Kakovost oskrbe z električno energijo Komercialna kakovost Kakovost električne energije Neprekinjenost dobave Delež vzrokov prekinitev atmosferske razelektritve stik s drevjem odpoved opreme živali veter vkopi avtomobilske nesreče led/sneg vandalizem gradbeništvo drugo Delež nastopa napake (%) merjenje harmonikov 1
2 Napake in okvare v distribucijskih omrežjih Okvare v kabelskem omrežju Okvar manj kot v nadzemnem omrežju Okvare navadno vodijo v trajne izpade (ni APV-ja!) Dolgi časi popravil Povprečno število odpovedi (Elektro Ljubljana) Nadzemno omrežje Kabelsko omrežje Povprečna dolžina tras v letih od 2003 do km 3930 km Skupno število odpovedi Vsota pogostosti trajnih in kratkotrajnih odpovedi (št. odpovedi/leto/km) 0,33 0,027 Pogostost odpovedi kablov (ZDA) Št. odpovedi na km v 1 letu 0,100 0,090 0,080 0,070 0,060 0,050 0,040 0,030 0,020 0,010 0, PE - vkopan XLPE - vkopan PE - kanal XLPE - kanal Kabel NA2XS2Y (70, 150 mm 2 ), vod Al/Fe 70/12 mm 2 Plasti uporabljene v kablu so: 1. Al prevodnik, 2. XLPE izolacija (2X), 3. polprevodna plast, 4. polprevodniški trak (vodna bloakda), 5. bakreni zaslon, 6. ločilna plast, 7. zunanja PE plast. Vrv Al/Fe * ACSR Kabel NA2XS2Y** (enožilni) S Al (mm 2 ) 70/ R' =20 C (Ω/km) 0,41 0,44 0,21 X' (Ω/km) 0,35 0,132 0,116 0,220 0,198 C' (μf/km) 0,009 0,20 0,24 R' 0 (Ω/km) 0,56 1,30 0,85 X' 0 (Ω/km) 1,22 0,55 0,30 C' 0 (μf /km) 0,004 0,20 0,24 Električni parametri R'/X' 1,18 3,3 2,0 1,8 1,1 merjenje harmonikov 2
3 Kapacitivnosti Kapacitivnost vodov deluje kot kapacitivno breme, ki v primeru induktivnih bremen kompenzira jalovo Polnilni tok Vrv Al/Fe Kabel NA2XS2Y S (mm 2 ) I p (A/km) 0,033 0,770 0,903 Padci napetosti (brez upoštevanja kapacitivnosti) PR' + QX ' PX ' QR' ΔU = l + j l U U n n merjenje harmonikov 3
4 Obremenljivost Pogojena z najvišjo dopustno temperaturo obratovanja Vodi Material Dopustna temperatura obratovanja ( C) Dovoljena temperatura v KS ( C) ACSR (klasična izvedba) TACSR ZTACIR XTACIR Kabli Izolacijski material Dovoljena temperatura obratovanja ( C) Dovoljena kratkostična temperatura ( C) PE XLPE EPR PVC -do 300 mm 2 -do 400 mm Obremenljivost Pri kablih se pogosto uporablja nižja maksimalna temperatura, npr. 65 C Uporaba korekcijskih faktorjev Nadzemni vod Al/Fe Kabel NA2XS2Y (enožilni) 35/6 70/12 95/15 120/20 150/ S (mm 2 ) T I max (A) v zraku 35 C v zemlji 20 C Ekvivalentni kabli Vod Al/Fe 35/6: Al kabel 70 mm 2, obremenljivost 126 % Vod Al/Fe 70/12: Al kabel 150 mm 2, obremenljivost 112 %, ali 240 mm 2 Življenjska doba kablov 40 let merjenje harmonikov 4
5 Kapacitivna komponenta zemeljskostičnih tokov Kapacitivna komponenta določena z dozemno kapacitivnostjo Kapacitivna komponenta zemeljskostičnega toka Nadzemni vod (Al/Fe) Kabel (NA2XS2Y) S (mm 2 ) 35/6 70/ I kap (A/km) 0,05 0,05 2,4 3,1 3,7 4,0 Efektivna vrednost električne poljske jakosti Kabli brez ekrana (pri ekraniziranih je polje znotraj ekrana) Nadzemni kabli Vod, jelka merjenje harmonikov 5
6 Efektivna vrednost gostote magnetnega pretoka Vod Al/Fe 70/12, Al kabel 150 mm 2 Kabli Vod, jelka Ekonomsko tehnična analiza Cene: vod 70/12 ( EUR/km), kabel 150 ( EUR/km) Stroški vzdrževanja: vod (1.000 EUR/km), kabel (500 EUR/km) Izgube: manjše pri kablu Stroški prekinitve napajanja: manjši pri kablu Zmanjšanje letnih stroškov pri investiciji v kabelsko omrežje (upoštevanje 1/40 investicije) Zmanjšanje stroškov (upoštevanje INV/40) ,00 zamenjava nv35 s k70 Meja, kjer se letni stroški investicije zamenjava nv35 s k150 izenačijo z letnim zmanjšanjem zamenjava nv70 s k150 stroškov zaradi investicije (pri prehodih ,00 krivulj preko abscisne osi) zamenjava nv70 s k , ,00 I (A) 0, ,00 Meja, kjer se enako splača investirati v debeljši ali tanjši kabel (na presečišču krivulj) merjenje harmonikov 6
7 VN kabli (do približno 500 kv) Lastnosti V Evropi obratuje 10 večjih vodov na 400 kv (skupna dolžina 100 km, najdaljši 22 km -> Köbenhavn, 1000 MVA) Trda izolacija (zamreženi polietilen), redkeje olje (pred 1990) Podmorski kabli velikokrat HVDC VN kabli - trasa Polaganje kabla Primer ČHE Avče, 110 kv (trasa, prevoz kabla, vzdrževanje trase ) merjenje harmonikov 7
8 VN kabli električne lastnosti Kabelski vodi so blizu skupaj (debelina izolacije pri 400 kv je mm) Velika dozemna kapacitivnost Majhne nične reaktance (majhna zanka fazni vodnik prevodni ekran) Velik polnilni tok: pribl. 12 MVAr/km pri 400 kv (kompenzacijske dušilke) Naravna moč od 3-4x večja od nazivne (višanje napetosti na koncu voda) VN kabli obratovanje Prehod nadzemni vod kabelski vod: različne impedance, problem udarnega vala pri udaru strele (zaščitne vrvi, prenapetostni odvodniki) Pri izgubah potrebno tudi upoštevati izgube kompenzacije jalove energije Predvidena življenjska doba 40 let Daljnovod Kablovod Pojasnilo Življenjska doba daljnovod 80 let; kablovod predvidoma 40 let; Obratovalne izkušnje Daljnovodi so že preizkušeni; S kablovodi je dokaj malo izkušen; Izgube Daljši kablovodi imajo večje izgube zaradi kompezacijskih naprav Opaznost v naravi Kablovod je v urbanih središčih ter na kmetijskih področjih veliko manj opazen Investicija Kablovod je veliko večja investicija že zaradi gradbenih del, drag kabel Okvare Pri kablovodu problem odkrivanje okvar potreben izkop na mestu napake; Obnašanje pri napakah Kablovod ima manjše število napak vendar skoraj vsaka napaka povzroči škodo Veliko lažja tehnika ščitenja pri Zaščita daljnovodu, ne potrebujemo dodatnih merjenj temperature izolacije, spojev Obremenljivost Pri enakem (primerljivem) preseku je možno daljnovod bolj preobremeniti Električna trdnost Pri daljnovodu zrak kot izolator, ki je samoobnovljiv; pri kablovodu s ob preboju izolacija uniči Preobremenljivost Daljnovod je bolj preobremenljiv ker lažje odvaja toploto; Potreba po jalovi moči Kablovod ima približno 18x večjo kapacitivnost kot daljnovod Vpliv prenapetosti Ob pojavu prenapetosti lahko pride do preboja izolacije kablovoda Kratki stiki Pri kablovodu lahko pride do poškodbe izolacije zaradi velikih temperatur Vzdrževanje Pri obeh je potrebno čiščenje trase, le da je trasa kablovoda nekoliko ožja Magnetno polje Vpilv kablovoda je večji ker je bliže tlem Električno polje Pri kablovodu ni zunanjega el. polja Nerazpoložljivost Pri kablovodu traja veliko dlje da se napaka odpravi Raba prostora Več različnih aktivnost je možno pod daljnovodom kot nad kablovodm Daljšim kablovodm je potrebno dograditi Impedanca prilagoditvene dušilke ker imajo premajhno impedanco Vpliv na družbo Visoki daljnovodi vzbujalo občutek nelagodja merjenje harmonikov 8
Primerjava kablov in nadzemnih vodov. Kazalo
Kazalo 1 PRIMERJAVA KABLOV IN NADZEMNIH VODOV... 2 1.1 IZBRANI TIP KABLA IN VODA... 2 1.2 PADCI NAPETOSTI... 4 1.3 POLNILNI TOKI... 6 1.4 OBREMENLJIVOST NADZEMNIH VODOV IN KABLOV... 7 1.4.1 Primerjava
Διαβάστε περισσότεραZaporedna in vzporedna feroresonanca
Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju
Διαβάστε περισσότερα+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
Διαβάστε περισσότεραOsnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Διαβάστε περισσότεραPONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Διαβάστε περισσότεραDelovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Διαβάστε περισσότεραElektrične lastnosti vodov. Ohmske upornosti. Induktivnost vodov. Kapacitivnost vodov. Odvodnost vodov. Vod v svetlobi telegrafske enačbe.
Električne lastnosti vodov Ohmske upornosti. Induktivnost vodov. Kapacitivnost vodov. Odvodnost vodov. Vod v svetlobi telegrafske enačbe. Primarne konstante vodov Če opazujemo električni vod iz istega
Διαβάστε περισσότεραLogatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
Διαβάστε περισσότεραDiferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Διαβάστε περισσότεραPRENAPETOSTNE ZAŠČITE ZA DOM
PRENAPETOSTNE ZAŠČITE ZA DOM? TEVIZA, d.o.o., Bevkova 5, 1270 Litija, tel.: (0) 1 898 37 53, fax: (0) 1 898 32 93 PRENAPETOSTNE ZAŠČITE V ENERGETSKIH NIZKONAPETOSTNIH SISTEMIH PROTEC B - Odvodnik skupine
Διαβάστε περισσότερα3. Dimenzioniranje in kontrola zaščitnih naprav
3. Dimenzioniranje in kontrola zaščitnih naprav V skladu z zahtevami elektrotehniškh standardov za el. Instalacije NN (do 1kV) morajo biti vsi el. stroji in naprave zaščiteni pred el. udarom. Poznamo dve
Διαβάστε περισσότεραBooleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Διαβάστε περισσότεραIZRAČUN UPORNOSTI IN REAKTANCE VODA
IZRAČUN UPORNOSTI IN REAKTANCE VODA Seminarska naloga pri predmetu Razdelilna in industrijska omrežja Podiplomski magistrski študij elektrotehnike, smer elektroenergetika Avtor: Jaka Jenškovec, univ. dipl.
Διαβάστε περισσότεραDržavni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
Διαβάστε περισσότεραNadtokovna zaščita vodnikov in kablov
Nadtokovna zaščita vodnikov in kablov Ustrezna izbira nadtokovne zaščite kablov in vodnikov onemogoča preobremenitev vodnikov in tako prekomerno segrevanje ter krajšanje življenjske dobe izolacije vodnikov.
Διαβάστε περισσότεραver / maj 2005 PRIROČNIK UNIVERZALNIH KABLOV EXCEL, FXCEL, AXCES TM
ver. 900 00 04 / maj 2005 PRIROČNIK UNIVERZALNIH KABLOV EXCEL, FXCEL, AXCES TM Ericsson Cables Priročnik univerzalnih kablov Ericsson Network Technologies je hčerinsko podjetje podjetja Ericsson, ki zaposluje
Διαβάστε περισσότεραNEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Διαβάστε περισσότεραFunkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Διαβάστε περισσότεραSATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
Διαβάστε περισσότεραKODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Διαβάστε περισσότεραPOSTROJI ZA PRENOS IN TRANSFORMACIJO ELEKTRIČNE ENERGIJE
Univera v Ljubljani Fakulteta a elektrotehniko POTROJ ZA PRENO N TRANFORMACJO ELEKTRČNE ENERGJE MULACJKA VAJA Avtorja: doc. dr. Boštjan Blažič, Blaž Uljanić Ljubljana, 2012 1 hema omrežja Na sliki 1 je
Διαβάστε περισσότεραdr. Boris Vidrih dvoriščna stavba soba N3 T: 01/ E: W:
dr. Boris Vidrih dvoriščna stavba soba N3 T: 01/ 477 1231 E: boris.vidrih@fs.uni-lj.si W: www.ee.fs.uni-lj.si Sistemi za proizvodnjo električne energije iz obnovljivih virov energije Obnovljivi viri energije
Διαβάστε περισσότεραFrekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Διαβάστε περισσότεραUNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji
Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite
Διαβάστε περισσότεραSKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Διαβάστε περισσότεραMAPA Z NAČRTI 4-NAČRT ELEKTRIČNIH INŠTALACIJ IN ELEKTRIČNE OPREME. INVESTITOR: CEROP d.o.o. Vaneča 81/B 9201 Puconci. SN 20 kv kablovod CEROP Puconci
ELEKTRO MARIBOR, podjetje za distribucijo električne energije, d.d., Vetrinjska ul. 2, 2000 Maribor MAPA Z NAČRTI 4 NAČRT ELEKTRIČNIH INŠTALACIJ IN ELEKTRIČNE OPREME INVESTITOR: CEROP d.o.o. Vaneča 81/B
Διαβάστε περισσότεραTransformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Διαβάστε περισσότεραTretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Διαβάστε περισσότεραRaziskava kratkostičnih razmer v omrežju
UNIVERZA V MARIBORU, Fakulteta za elektrotehniko, računalništvo in informatiko Laboratorij za energetiko Smetanova ulica 17, 2000 Maribor, SLOVENIJA Telefon: +386 (2) 220 70 50 fax: + 386 (2) 25 25 481
Διαβάστε περισσότεραKontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Διαβάστε περισσότεραTIPIZACIJA TP 10-20/0,4 kv
TIPIZACIJA TP 10-20/0,4 kv Transformatorska postaja tip TB - 30 10-20/0,4 kv; 35 kva Maribor, 2017 Kazalo 1 UVOD... 1 1.1 Referenčni dokumenti... 1 1.2 Pomen izrazov... 3 1.3 Kratice... 3 1.4 Standardi...
Διαβάστε περισσότεραPoglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
Διαβάστε περισσότεραVisokofrekvenčni ni vodi. KOAKSIALNI KABLI 1. del SEMINARSKA NALOGA. Pri predmetu: PRENOSNA ELEKTRONIKA
SEMINARSKA NALOGA Pri predmetu: PRENOSNA ELEKTRONIKA KOAKSIALNI KABLI 1. del Radenci, 23.11.2006 Visokofrekvenčni ni vodi S pojavom TV sprejemnikov se je pojavila potreba po višjih nivojih signala, za
Διαβάστε περισσότεραVarjenje polimerov s polprevodniškim laserjem
Laboratorijska vaja št. 5: Varjenje polimerov s polprevodniškim laserjem Laserski sistemi - Laboratorijske vaje 1 Namen vaje Spoznati polprevodniške laserje visokih moči Osvojiti osnove laserskega varjenja
Διαβάστε περισσότεραARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
Διαβάστε περισσότεραSPTE V OBRATU PRIPRAVE LESA
Laboratorij za termoenergetiko SPTE V OBRATU PRIPRAVE LESA Avditorna demonstracijska vaja Ekonomska in energijska analiza kotla in SPTE v sušilnici lesa Cilj vaje analiza proizvodnje toplote za potrebe
Διαβάστε περισσότεραpredpisi. Brez podatkov o the dveh dejavnikih tudi ne moremo določiti potrebne višine droga.
NAPENJANJE VODNIKOV Če vodnik pritrdimo med dvema podpornima ali zateznima točkama, se bo zaradi lastne teže in dodatne obremenitve v zimskem času (led, sneg) bolj ali manj povesil. Lego vodnika imenujemo
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Διαβάστε περισσότεραOCENJEVANJE OPREME V ELEKTROENERGETIKI
OCENJEVANJE OPREME V ELEKTROENERGETIKI Ljubljana, 3. marec 2016 Željko Markan, pooblaščeni ocenjevalec strojev in opreme UVOD (teoretični del): PRENOS IN DISTRIBUCIJA ELEKTRIČNE ENERGIJE (kratka osvežitev
Διαβάστε περισσότεραTOPLOTNA ČRPALKA ZRAK-VODA - BUDERUS LOGATHERM WPL 7/10/12/14/18/25/31
TOPLOTN ČRPLK ZRK-VOD - BUDERUS LOGTHERM WPL 7/0//4/8/5/ Tip Moč (kw) nar. št. EUR (brez DDV) WPL 7 7 8 7 700 95 5.6,00 WPL 0 0 7 78 600 89 8.9,00 WPL 7 78 600 90 9.78,00 WPL 4 4 7 78 600 9 0.88,00 WPL
Διαβάστε περισσότεραElektrične lastnosti vodov. Ohmske upornosti. Induktivnost vodov. Kapacitivnost vodov. Odvodnost vodov. Vod v svetlobi telegrafske enačbe.
Električne lastnosti vodov Ohmske upornosti. Induktivnost vodov. Kapacitivnost vodov. Odvodnost vodov. Vod v svetlobi telegrafske enačbe. Primarne konstante vodov Če opazujemo električni vod iz istega
Διαβάστε περισσότερα6. ZAŠČITA ZBIRALK IN ZAŠČITE PRI ZATAJITVI DELOVANJA ODKLOPNIKOV
6. ZAŠČITA ZBIRALK IN ZAŠČITE PRI ZATAJITVI DELOVANJA ODKLOPNIKOV 6.1. UVOD Čeprav so se prve zaščite zbiralk pričele uporabljati že l. 1930, je bila njihova uporaba precej časa omejena. Uporabljali so
Διαβάστε περισσότεραPRIKLJUČITEV PORABNIKOV NA OMREŽJE
PRIKLJUČITEV PORABNIKOV NA OMREŽJE Električno energijo proizvajamo v elektrarnah. Do porabnikov gradimo daljnovode za prenos energije do porabniških centrov (npr. vasi, mest, industrije ipd.), ki obratujejo
Διαβάστε περισσότεραNumerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Διαβάστε περισσότεραPRENAPETOSTNI ODVODNIKI
Univerza v Ljubljani Fakulteta za elektrotehniko PRENAPETOSTNI ODVODNIKI (seminar pri predmetu Razdelilna in industrijska omrežja) Mentor: prof. dr. Grega Bizjak študentka:, 64120072 Ljubljana, študijsko
Διαβάστε περισσότεραLaboratorij za termoenergetiko. Vodikove tehnologije in PEM gorivne celice
Laboratorij za termoenergetiko Vodikove tehnologije in PEM gorivne celice Pokrivanje svetovnih potreb po energiji premog 27% plin 22% biomasa 10% voda 2% sonce 0,4% veter 0,3% nafta 32% jedrska 6% geoterm.
Διαβάστε περισσότεραElektrično polje. Na principu električnega polja deluje npr. LCD zaslon, fotokopirni stroj, digitalna vezja, osciloskop, TV,...
1 Električno polje Vemo že, da: med elektrinami delujejo električne sile prevodniki vsebujejo gibljive nosilce elektrine navzven so snovi praviloma nevtralne če ima telo presežek ene vrste elektrine, je
Διαβάστε περισσότεραPRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
Διαβάστε περισσότεραELEKTROMAGNETNA SEVANJA VPLIVNA OBMOČJA
ELEKTROMAGNETNA SEVANJA VPLIVNA OBMOČJA Slovarček Z besedo Uredba označujemo Uredbo o elektromagnetnem sevanju v naravnem in življenjskem okolju (Ul. RS 70/1996), ki določa mejne vrednosti za EMS. Uredba
Διαβάστε περισσότεραIterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Διαβάστε περισσότεραKotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
Διαβάστε περισσότεραDimenzioniranje vodnikov
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo. letnik Aplikativna elektrotehnika - 6467 Električne inštalacije in razsvetljava Dimenzioniranje vodnikov predavatelj
Διαβάστε περισσότεραMERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
Διαβάστε περισσότεραΚεφάλαιο 7 Προσδιορισμός των καλωδίων και της Προστασίας τους (συν.)
Κεφάλαιο 7 Προσδιορισμός των καλωδίων και της Προστασίας τους (συν.) Παράγοντες που πρέπει να ληφθούν υπόψη Ελάχιστες διατομές καλωδίων Ικανότητα θερμικής φόρτισης μονωμένων αγωγών και καλωδίων στη μόνιμη
Διαβάστε περισσότερα*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Διαβάστε περισσότεραPOPIS DEL IN PREDIZMERE
POPIS DEL IN PREDIZMERE ZEMELJSKI USAD v P 31 - P 32 ( l=18 m ) I. PREDDELA 1.1 Zakoličba, postavitev in zavarovanje prečnih profilov m 18,0 Preddela skupaj EUR II. ZEMELJSKA DELA 2.1 Izkop zemlje II.
Διαβάστε περισσότεραKotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Διαβάστε περισσότεραMeritve električnih inštalacij
Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Varnost Meritve električnih inštalacij predavatelj
Διαβάστε περισσότεραp 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Διαβάστε περισσότερα17. Električni dipol
17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje
Διαβάστε περισσότερα13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Διαβάστε περισσότεραPriloga V: Baza tehničnih podatkov
Priloga V: Baza tehničnih podatkov Tabela 1: Daljnovod 1. ime DV 2. leto izgradnje in posameznih rekonstrukcij 3. lastništvo DV in mesto lo itve lastništva ter meje vzdrževanja Konstrukcijske lastnosti
Διαβάστε περισσότεραSPREMEMBA PGD; 11/2015
ŠTEVILČNA OZNAKA NAČRTA IN VRSTA NAČRTA: 4.2 Načrt električnih inštalacij in električne opreme za ureditev SN napajanja obstoječe TP ter za napajanje porabnika KIMDPŠ (1. faza) INVESTITOR: RS, Ministrstvo
Διαβάστε περισσότεραUniverza v Ljubljani Pedagoška fakulteta. Indukcijska plošča. Špela Jelinčič. Seminarska naloga pri predmetu Didaktika tehnike III
Univerza v Ljubljani Pedagoška fakulteta Indukcijska plošča Špela Jelinčič Seminarska naloga pri predmetu Didaktika tehnike III Mentor: doc. dr. Janez Jamšek Ljubljana, 2013 Povzetek Seminarska naloga
Διαβάστε περισσότεραKlasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Διαβάστε περισσότεραPRENAPETOSTNA ZAŠČITA
135 PRENAPETOSTNA ZAŠČITA w KAZALO PREGLED... 136 HITRI IZBOR ODVODNIKOV... 137 PROTEC, TI + TII (B/C) 25 ka (10/350)... 138 COMBTEC, TI + TII (B/C) 12,5 ka (10/350)... 140 VARTEC, TII (C)... 142 ODVODNIKI
Διαβάστε περισσότερα3. Uporaba Biot-Savartovega zakona. Tokovna daljica: Premica: Tokovna zanka:
1. Magnetostatika 1. Amperov zakon magnetne sile (med tokovnima elementoma) Pravilno predvideva, da če električni tok povzroča magnetno polje in s tem odklon magnetne igle, mora obstajati tudi sila med
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότεραESPiN d.o.o. Bernekerjeva 12, 1000 Ljubljana, tel.: 01 540 36 30, faks: 01 544 31 32 Elektro Svetovanje Projektiranje in Nadzor Mapa št. 4 NAČRT ELEKTRIČNIH INŠTALACIJ IN ELEKTRIČNE OPREME 4.1 NASLOVNA
Διαβάστε περισσότεραMAGNETNI PRETOK FLUKS
MGNETNI PRETOK FLUKS Equation Section 4 Vsebina poglavja: Določitev magnetnega pretoka, brezizvornost magnetnega polja, upodobitev polja z gostotnicami, induktivnost, lastna induktivnost, magnetni sklep.
Διαβάστε περισσότερα) produkta toka z vektorjem diferen razdalje v smeri. d - Sila je pravokotna na tokovni element in mag.polje
1.MAGNETOSTATIKA 1.1 Amperov zakon mag.sile: Sila med dvema vzporednima vodnikoma je sorazmerna produktu toka v obeh vodnikih in njuni dolžini in nasprotno sorazmerna razdalji med vodnikoma - Tokovni element
Διαβάστε περισσότεραFazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
Διαβάστε περισσότερα1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26
Διαβάστε περισσότερα2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30
Διαβάστε περισσότεραTransformator. Izmenični signali, transformator 22.
zmenični signali, transformator. Transformator Vsebina: Zapis enačb transformatorja kot dveh sklopljenih tuljav, napetostna prestava, povezava medd maksimalnim fluksom in napetostjo, neobremenjen transformator
Διαβάστε περισσότεραElektro Gorenjska podjetje za distribucijo električne energije, d. d. telefon n.c.: telefaks INVESTITOR: OBJEKT:
Elektro Gorenjska podjetje za distribucijo električne energije, d. d. telefon n.c.: 04 2083 000 telefaks 04 2083 600 4/2.1. NASLOVNA STRAN S KLJUČNIMI PODATKI O NAČRTU ŠTEVILČNA OZNAKA NAČRTA IN VRSTA
Διαβάστε περισσότεραDoc.dr. Matevž Dular N-4 01/
soba telefon e-ošta reavatelja: Ir.rof.r. Anrej Seneačnik 33 0/477-303 anrej.seneacnik@fs.uni-lj.si Doc.r. Matevž Dular N-4 0/477-453 atev.ular@fs.uni-lj.si asistenta: Dr. Boštjan Drobnič S-I/67 0/477-75
Διαβάστε περισσότεραTEHNIČNO POROČILO
3 4.2.3. TEHNIČNO POROČILO SPLOŠNO Izdelan je projekt PZI-NNP elektro inštalacij za objekt: OSNOVNA ŠOLA PODGRAD za investitorja OBČINA ILIRSKA BISTRICA, Bazoviška 14, 6250 Ilirska Bistrica. Pri projektiranju
Διαβάστε περισσότεραGospodarjenje z energijo
Sočasna proizvodnja toplote in električne energije Značilnosti: zelo dobra pretvorba primarne energije v sekundarno in končno energijo 75 % - 90 % primarne energije se spremeni v želeno obliko uporaba
Διαβάστε περισσότεραS53WW. Meritve anten. RIS 2005 Novo Mesto
S53WW Meritve anten RIS 2005 Novo Mesto 15.01.2005 Parametri, s katerimi opišemo anteno: Smernost (D, directivity) Dobitek (G, gain) izkoristek (η=g/d, efficiency) Smerni (sevalni) diagram (radiation pattern)
Διαβάστε περισσότεραCM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραTermovizijski sistemi MS1TS
Termovizijski sistemi MS1TS Vežbe 02 primer 1 MATLAB funkcija conv. f x = rect x rect x 2 ( ) ( ) ( ) y=conv(rectangle_function(x),rectangle_function(x-2)); figure,subplot(3,1,1),plot(x,rectangle_function(x)),xlabel('\itx'),ylabel('rect({\itx})');
Διαβάστε περισσότερα1.5 POLPREVODNIŠKE KOMPONENTE
Polprevodniške komponente 1.5 POLPREVODNIŠKE KOMPONENTE Polprevodniške komponente lahko delimo glede na način delovanja oz. tehnologijo izdelave na bipolarno in unipolarno (MOS- Metal Okside Silicon )
Διαβάστε περισσότεραDržavni izpitni center. Izpitna pola 2. Četrtek, 2. junij 2016 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M1617711* SPOMLADANSKI IZPITNI ROK Izpitna pola Četrtek,. junij 016 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični
Διαβάστε περισσότεραМЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)
Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини
Διαβάστε περισσότεραRealizacija elektronskih sklopov. Napajanje M. Jankovec
Realizacija elektronskih sklopov M. Jankovec 2 Napajalne linije so prisotne na vsej površini vezja Potencialni prenašalec motenj po celotnem vezju Lastnosti Dovajanje konstantne enosmerne napetosti kjerkoli
Διαβάστε περισσότεραIZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Διαβάστε περισσότεραDržavni izpitni center *M * SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 29. maj 2008 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M877* SPOMLADANSK ZPTN ROK ELEKTROTEHNKA NAVODLA ZA OCENJEVANJE Četrtek, 9 maj 8 SPLOŠNA MATRA RC 8 M8-77-- A zračunajte gostoto toka v vodniku s presekom
Διαβάστε περισσότεραIZRAČUN MEHANSKIH PARAMETROV NADZEMNEGA VODA
Univerza v Ljubljani Fakulteta za elektrotehniko IZRAČUN MEHANSKIH PARAMETROV NADZEMNEGA VODA Seminar pri predmetu Razdelilna in industrijska omrežja Maja Mikec Profesor: dr. Grega Bizjak Študijsko leto
Διαβάστε περισσότεραOsnove sklepne statistike
Univerza v Ljubljani Fakulteta za farmacijo Osnove sklepne statistike doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo e-pošta: mitja.kos@ffa.uni-lj.si Intervalna ocena oz. interval zaupanja
Διαβάστε περισσότεραNadzemni vodi. Univerza v Ljubljani. Fakulteta za elektrotehniko. Jure Jenko. Seminarska naloga pri predmetu: Razdelilna in industrijska omrežja
Univerza v Ljubljani Fakulteta za elektrotehniko Jure Jenko Nadzemni vodi Seminarska naloga pri predmetu: Razdelilna in industrijska omrežja Mentor: prof. dr. Grega Bizjak, univ.dipl.inž.el. Ljubljana
Διαβάστε περισσότεραTEHNOLOGIJA MATERIALOV
Naslov vaje: Nastavljanje delovne točke trajnega magneta Pri vaji boste podrobneje spoznali enega od možnih postopkov nastavljanja delovne točke trajnega magneta. Trajne magnete uporabljamo v različnih
Διαβάστε περισσότεραFunkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
Διαβάστε περισσότερα3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa.
3. AMPEROV ZAKON Equation Section 3 Vsebina poglavja: Integral polja po zaključeni zanki je sorazmeren toku, ki ga zanka objame. Izračuni polja s pomočjo Amperovega zakona za: tokovno premico, solenoid,
Διαβάστε περισσότεραDržavni izpitni center ELEKTROTEHNIKA. Izpitna pola. Petek, 31. avgust 2007 / 180 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M0777111* JESENSKI ROK ELEKTROTEHNIKA Izpitna pola Petek, 31. avgust 007 / 180 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese s seboj
Διαβάστε περισσότερα