Z μποηόνιο. Σαμαράσ Σταφροσ Α.Ε.Μ.: Σαράφθ Ευαγγελία Α.Ε.Μ.: 12467
|
|
- Καλλιόπη Βλαβιανός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Z μποηόνιο Σαμαράσ Σταφροσ Α.Ε.Μ.: Σαράφθ Ευαγγελία Α.Ε.Μ.: 12467
2 ΡΕΙΕΧΟΜΕΝΑ Ιςτορικι αναδρομι ανακάλυψθ του Η Ιδιότθτεσ του Η Διαςπάςεισ του Η Η lineshape Θ γωνία Weinberg
3 Ιςτορικι αναδρομι Οι αςκενείσ δυνάμεισ αρχικά περιγράφθκαν γφρω ςτθ δεκαετία του ϋ40 από τθ κεωρία του Fermi, δθλαδι των αντιδράςεων επαφισ τεςςάρων φερμιονίων. Αυτά αλλθλεπιδροφν μεταξφ τουσ ςτο ίδιο χωροχρονικό ςθμείο Ο Fermi πρϊτοσ πρότεινε, ςε αναλογία με τον θλεκτρομαγνθτιςμό, ότι κα πρζπει να υπάρχει κάποιο ςωματίδιο-φορζασ τθσ αςκενοφσ δυνάμεωσ. Ρροζβλεψε για το ςωματίδιο, ότι: κα ζχει μεγάλθ μάηα και ότι κα είναι φορτιςμζνο.
4 Ιςτορικι αναδρομι Τθ λφςθ ςε κάποια προβλιματα, που εμφανίηονταν ςτθ κεωρία του Fermi, ιρκαν να δϊςουν οι C.N.Yang και R.Mills. Το 1954 ανζπτυξαν μια κεωρία, που περιελάμβανε άμαηα ςωμάτια ανταλλαγισ.
5 Ιςτορικι αναδρομι Το κακιερωμζνο πρότυπο για τισ θλεκτραςκενείσ αλλθλεπιδράςεισ αναπτφχκθκε από τουσ Glashow, Weinberg και Salam. Είχε ωσ αφετθρία τα άμαηα ςωματίδια από τθ κεωρία των Yang-Mills. Αυτά ονομάςτθκαν W:, W+, W και Β. Μζςω του μθχανιςμοφ Higgs, τα W αποκτοφν μάηα. Το W: με το Β παράγουν δφο ςωματίδια, το φωτόνιο και το Η.
6 Ιςτορικι αναδρομι Στθ κεωρία των Glashow, Weinberg και Salam οι αςκενείσ δυνάμεισ διαδίδονται μζςω μποηονίων βακμίδασ. Ρζρα από τα μποηόνια W ±, το μοντζλο GWS προβλζπει και τθν φπαρξθ του ουδζτερου μποηονίου βακμίδασ Η:.
7 Ρρόβλεψθ των W και Z Το 1968 οι Glashow-Weinberg-Salam, κατζλθξαν ςε μια ενοποιθμζνθ κεωρία για τον θλεκτρομαγνθτιςμό και τισ αςκενείσ αλλθλεπιδράςεισ, για τθν οποία τιμικθκαν και με το βραβείο Nobel το Αυτι θ κεωρία ζδειξε ότι εκτόσ από τα W μποηόνια, απαραίτθτα για τθν περιγραφι τθσ β- διάςπαςθσ, είναι και τα Z. Εμπόδιο ςτθ κεωρία τουσ ςτάκθκε το γεγονόσ ότι τα W και Z ζχουν μάηα, ενϊ το φωτόνιο δεν ζχει.
8 Ρρόβλεψθ των W και Z Τα ςωμάτια αυτά περιγράφονται ακριβϊσ από τθν SU(2) ςυμμετρία, όμωσ πρζπει να είναι άμαηα. Χρειαηόμαςτε ζναν μθχανιςμό για να ςπάςει αυτι τθ ςυμμετρία και να δϊςει μάηα ςτα ςωμάτια μασ. Θ λφςθ ιρκε από τον μθχανιςμό Higgs, που προωκικθκε από τον Higgs και άλλουσ ςτα μζςα του 60.
9 Ανακάλυψθ του Z Τα πρϊτα αςκενι ρεφματα ανακαλφφκθκαν ςτα μζςα τoυ 1973 από τουσ A.Lagarrique, P.Musset, D.H.Perkins και A.Rousset ςτο κάλαμο φυςαλίδων Gargamelle του Cern. Ο κάλαμοσ αυτόσ ιταν γεμιςμζνοσ με ζνα πολφ πυκνό υλικό, το φρζον. Στο πείραμα χρθςιμοποιικθκαν διαφορετικζσ δζςμεσ νετρίνο και αντινετρίνο. ( κυρίωσ νετρίνο μυονίων).
10 Ανακάλυψθ του Z Ο Gargamelle φωτογράφθςε τισ τροχιζσ μερικϊν θλεκτονίων, που φαινομενικά άρχιςαν να κινοφνται από μόνα τουσ. Ερμθνεία: ζνα νετρίνο αλλθλεπιδρά με ζνα e ανταλλάςοντασ ζνα απαρατιρθτο Z μποηόνιο. Το πείραμα αυτό μασ παρείχε πειςτικζσ αποδείξεισ για γεγονότα ουδζτερων ρευμάτων.επίςθσ μετρικθκε θ αναλογία ουδζτερων προσ φορτιςμζνων ρευμάτων και για νετρίνο και για αντινετρινο.
11 Ανακάλυψθ του Η Τα πρϊτα ςαφι ςιματα για τθν φπαρξθ του Η μποηονίου, ιρκαν ςτθν επιφάνεια το Μάιο του 1983 ςτον επιταχυντι πρωτονίουαντιπρωτονίου SPS (Super Proton Synchrotron). Επικεφαλείσ των πειραμάτων ιταν οι: Carlos Rubbia και Peter Jenni.
12 Ανακάλυψθ του Η Το 1989 άρχιςε θ λειτουργία του LEP ςτο CERN. Χρθςιμοποιικθκαν δζςμεσ θλεκτρονίων-ποηιτρονίων. Ανιχνευτζσ: ALEPH, DELPHI, L3 και OPAL. Από το ςυλλζχκθκαν 18 εκατομμφρια Η μποηόνια. Εκεί μετρικθκε με ακρίβεια θ μάηα του Η μποηονίου, με μια μικρι απόκλιςθ μερικϊν MeV.
13 Ανακάλυψθ του Η Ο SLC ιταν ζνασ γραμμικόσ ειταχυντισ ςτο SLAC, όπου εκεί είχαμε ςυγκροφςεισ θλεκτρονίων-ποηιτρονίων. Θ ενζργεια ςτο κζντρο μάηασ ιταν ςτα 90GeV. Το πρϊτο γεγονόσ ανακαλφφκθκε τον Απρίλιο του 1989 από τον ςπουδαςτι Barrett D.Milliken.
14 Ραράγεται ςε υψθλζσ ενζργειεσ. Ιδιότθτεσ του Η Είναι θλεκτρικά ουδζτερο, όπωσ και το αντιςωματίδιο του. Ζχει μάηα m= 91,1876 ± GeV. Ζχει ςπιν S=1. Ο μζςοσ χρόνοσ ηωισ είναι sec. Δεν αλλάηει το θλεκτρικό φορτίο, το βαρυονικό και λεπτονικό αρικμό, τθν παραξενιά κ.λ.π. κανενόσ ςωματιδίου. Αντικζτωσ αλλάηει τθν ορμι, το ςπιν και τθν ενζργεια του ςωματιδίου με το οποίο αλλθλεπιδρά.
15 Διαςπάςεισ Τα μποηόνια Η διαςπϊνται ςε ζνα φερμιόνιο και ςτο αντιςωμάτιο του. e e + (γ,η) f + f Οι ςτακερζσ ςφηευξθσ c v και c A δίνονται από τουσ τφπουσ: c A = T 3 c v = T 3 Qsin 2 θ w, Ππου T₃ θ τρίτθ ςυνιςτϊςα του αςκενοφσ ιςοςπίν, Q το φορτίο του φερμιονίου και x το sin 2 θ W.
16 Κφριεσ διαςπάςεισ και Branching Ratios Σωματίδιο BR για x=0.23( %) Πειραματικό BR ν e, ν μ, ν τ ±0.06% e, μ, τ ~10 10,5±0.0023% u, c ±0.6% b, d, s ±0.4% Αδρόνια ±0.06% Το Branching ratio (ποςοςτό διάςπαςθσ) είναι ο λόγοσ του κλάςματοσ των ςωματιδίων που διαςπϊνται με ςυγκεκριμζνο τρόπο προσ το ςυνολικό αρικμό των διαςπϊμενων ςωματιδίων.
17 Η διαςπάςεισ Οι πικανζσ κατάςτάςεισ από τθ διάςπαςθ του Η είναι: 3 φορτιςμζνα λεπτόνια, 3 ουδζτερα λεπτόνια (νετρίνο) και 5 κουάρκ. Επειδι όμωσ το κάκε κουάρκ μπορεί να ζχει 3 διαφορετικά χρϊματα ουςιαςτικά ζχω περιςςότερεσ πικανζσ καταςτάςεισ. Αν ιταν όλεσ ιςοπίκανεσ τότε κα αντιςτοιχοφςε ποςοςτό διάςπαςθσ για κάκε κατάςταςθ ~4,7%.
18 Η διαςπάςεισ c A c V BR v e ,06 e ,03 2sin2 θ w u 1 2 d sin2 θ w sin2 θ w 0,11 0,14 Το W, επειδι περιγράφεται από τθν V-A κεωρία όλα τα ενδεχόμενα διάςπαςισ του, είναι ιςοπίκανα. Το Η, επειδι περιγράφεται από τθν (V-A)+V κεωρία τα ενδεχόμενα των διαςπάςεϊν του δεν είναι ιςοπίκανα.
19 Κφριεσ διαςπάςεισ και Branching Ratios
20
21 Διάςπαςθ ςε e e+ Aπό αυτι τθ μεγεκυμζνθ όψθ βάςθσ μποροφμε να δοφμε ζνα θλεκτρόνιο και ζνα ποηιτρόνιο να κινοφνται "πλάτθ-μεπλάτθ". Δεν παρουςιάηεται ελλείπουςα εγκάρςια ορμι, δθλαδι δεν ζχουμε δθμιουργία νετρίνο. Καταλαβαίνουμε ότι αυτό είναι ζνα τυπικό Z e- + e+ γεγονόσ.
22 Διάςπαςθ ςε μ μ+ Στθ μεγεκυμζνθ αυτι εικόνα διακρίνονται κακαρά δφο τροχιζσ από μιόνια. Κοιτάηοντασ τα φορτία των δφο μιονίων, βλζπουμε ότι το ζνα είναι κετικά φορτιςμζνο ενϊ το άλλο αρνθτικά φορτιςμζνο. Ανιχνεφςαμε λοιπόν ζνα ηευγάρι μιονίουαντιμιονίου. Αυτό είναι ζνα κακαρό ςθμάδι ότι παριχκθ ζ να μποηόνιο Η
23 Διάςπαςθ ςε τ τ+ Πταν ζνα ςωματίδιο Η διαςπάται ςε δφο ταυ ςωματίδια, τα τελευταία δεν ανιχνεφονται αλλά διαςπϊνται ακαριαία (μζςοσ χρόνοσ ηωισ s) ςε άλλα ςωματίδια. Αυτά τα ταυ γεγονότα μποροφν να ταυτοποιθκοφν γνωρίηοντασ ότι πρζπει να δίνουν 2, 4 ι πικανϊσ 6 φορτιςμζνεσ τροχιζσ.
24 Διάςπαςθ ςε τ τ+ Οι κφριοι τρόποι διάςπαςθσ των λεπτονίων τ είναι: 1. ςε θλεκτρόνιο και 2 νετρίνο, 2. ςε μιόνιο και 2 νετρίνο και 3. ςε 1 ι 3 φορτιςμζνα αδρόνια και νετρίνο Στισ 2 πρϊτεσ περιπτϊςεισ είναι εφκολο να καταλάβουμε ότι πρόκειται για ζνα Η τ τ+, λόγω κίνθςθσ των παραγόμενων λεπτονίων και μικρισ καταγραφόμενθσ ενζργειασ. Στθν περίπτωςθ που ζνα τ διαςπάται ςε λεπτόνιο και 2 νετρίνo, ενϊ το άλλο τα διαςπάται ςε 1 φορτιςμζνο αδρόνιο (που μπορεί να ςυνοδεφεται και απο ζνα ι περιςςότερα ουδζτερα ςωματίδια ) μποροφμε πάλι να αναγνωρίςουμε το γεγονόσ ωσ Η τ τ+ Θ δυςκολία ζγκειται κυρίωσ ςτθν αναγνϊριςθ των γεγονότων, ςτα οποία και τα 2 λεπτόνια τ διαςπϊνται ςε 3 φορτιςμζνα αδρόνια, ζνα ι περιςςότερα ουδζτερα ςωματίδια και νετρίνο
25 Διάςπαςθ ςε κουάρκ Πταν ζνα ςωματίδιο Η διαςπάται ςε δφο κουάρκ, ανιχνεφεται ςαν δφο πίδακεσ ςωματιδίων, ζνασ πίδακασ από κάκε κουάρκ. Μερικζσ φορζσ, ζνα ι και περιςςότερα γκλουόνια δθμιουργοφνται ςε πρϊιμο ςτάδιο. Σε αυτιν τθν περίπτωςθ, κάκε γκλουόνιο κα δθμιουργιςει ζναν επιπλζον πίδακα.
26 Διάςπαςθ ςε νετρίνο Τα νετρίνο είναι τα μόνα ςωματίδια που κανονικά δεν μποροφν να ανιχνευτοφν ςε ζναν ανιχνευτι ςωματιδίων. κακϊσ αλλθλεπιδροφν μόνο μζςω τθσ αςκενοφσ αλλθλεπίδραςθσ. Συνεπϊσ, ζνα νετρίνο αλλθλεπιδρά πολφ ςπάνια με το περιβάλλον του. Ωςτόςο, είναι δυνατό να ςυμπεράνουμε ζμμεςα αν δθμιουργικθκαν νετρίνα από διάςπαςθ, επειδι, θ ενζργεια και θ ορμι που κα ανιχνευτεί κα είναι μικρότερεσ από τισ αναμενόμενεσ ςτο ςφςτθμα κζντρου μάηασ. Αυτό ςθμαίνει πωσ δεν ξζρουμε πόςεσ τζτοιεσ διαςπάςεισ ςυνζβθςαν.
27 Z lineshape Πταν ζγιναν τα πειράματα ςτο LEP, οι βαςικζσ ιδιότθτεσ των αςκενϊν αλλθλεπιδράςεων ιταν ιδθ γνωςτζσ. Πμωσ υπιρχε μια βαςικι απορία : Ρόςεσ είναι οι γενιζσ των φερμιονίων; Θ απάντθςθ δόκθκε από τθ μζτρθςθ τθσ καμπφλθσ ςυντονιςμοφ του Η.
28 Z lineshape Θ καμπφλθ ςχεδιάςτθκε το 1987 πριν το LEP. Μζχρι τότε ζιχε προςδιοριςτεί θ μάηα του Η, Μ Ζ =92 GeV c 2 ± 1.5 GeV c 2
29 Z lineshape Θ ενεργόσ διατομι τθσ αντίδραςθσ, e e+ Ζ ff δίνεται από τον τφπο: f 12 M 2 c s ef 1 Ππου Γ z =3Γ l + Γ had + N v Γ ν (2) 2 z s M 2 z s 2 2 z / M 2 z Πςο αυξάνεται το N v, το εφροσ τθσ καμπφλθσ αυξάνεται και θ ενεργόσ διατομι μειϊνεται.
30 Z lineshape Κατόπιν διορκϊςεων και μετρϊντασ πειραματικά τθν ενεργό διατομι, από τθ ςχζςθ Ν=Lς, καταλιξαμε ότι θ ενεργόσ διατομι ςτο ςθμείο τθσ κορυφισ, δίνεται από τον εξισ τφπο: 0 f 12 c 2 M z 2 e 2 z f 3 Συνδυάηοντασ τισ ςχζςεισ 1,2 και 3 καταλιγουμε ςτθ ςχζςθ, που μασ δίνει τον αρικμό των οικογενειϊν των νετρίνο. l 12Rl R l M z had
31 Z lineshape Τα ςπουδαιότερα πειράματα, για τον προςδιοριςμό αυτϊν των μεγεκϊν, ζγιναν ςτον LEP και ςτον SLC.Τα αποτελζςματα αυτϊν των πειραμάτων, είναι τα εξισ: SLC: Μ Ζ = 91,11 ± 0,23GeVc 2 N ν = 3,8 ± 1,4, Ν ν = 3,12 ± 0,19 LEP: Μ Ζ = 91,1876 ± GeV. Ν ν = 2,9841 ± 0,0083
32 Z lineshape u d ' c s' t b' 1.Left-handed quarks v e e v v 2.Left-handed leptons
33 Z lineshape Τελικά, το lineshape μασ ενδιαφζρει, κακϊσ από αυτό μποροφμε να προςδιορίςουμε μεγζκθ πολφ χριςιμα ςε υπολογιςμοφσ.
34 Γωνία Weinberg Θ ενζργεια αλλθλεπίδραςθσ των φερμιονίων αναπαριςτάται από τθ Λαγκραντηιανι πυκνότθτα ενζργειασ: L g 2 g cos 3 2 / / J W J W J sin wj Z g sinwj A w Στθν παραπάνω εξίςωςθ ο πρϊτοσ όροσ αντιπροςωπεφει το αςκενζσ φορτιςμζνο ρεφμα, ο δεφτεροσ το ουδζτερο αςκενζσ ρεφμα και ο τρίτοσ το θ/μ ουδζτερο ρεφμα.
35 Γωνία Weinberg Αυτζσ είναι οι ςτακερζσ ςφηευξθσ των ςωματιδίων με το μποηόνιο ανταλλαγισ. Ξζρουμε ότι θ ενεργόσ διατομι είναι περίπου ίςθ με το τετράγωνο του γινομζνου των ςτακερϊν ςφηευξθσ. g cos w 4 g cosw 2 sin w 4
36 Γωνία Weinberg Διαδικαςία e e + μ μ + Το μζγεκοσ τθσ ενεργοφσ διατομισ για αυτιν τθν θ/μ διαδικαςία είναι: σ(e e + μ μ + )= 4π 3s α2, με γωνιακι κατανομι απλισ μορφισ: dσ dω (1 + cos2 θ), κ: γωνία εκπομπισ μιονίων ωσ προσ τθ διεφκυνςθ τθσ προςπίπτουςασ δζςμθσ ςτο ΣΚΜ. Πλεσ οι λεπτονικζσ μάηεσ ζχουν αγνοθκεί ςε ςφγκριςθ με τθν ενζργεια ςτο ΣΚΜ
37 Γωνία Weinberg Τα πειραματικά αποτελζςματα των διαφορικϊν ενεργϊν διατομϊν, παρουςιάηονται ςτο διπλανό ςχιμα. Θ γωνιακι κατανομι ζχει τθ γενικι μορφι: (1 + cos 2 θ). Ραρατθροφμε όμωσ μια αςυμμετρία, θ οποία οφείλεται ςτο γεγονόσ ότι εκτόσ από θ/μ, ζχουμε και αςκενι αλλθλεπίδραςθ.
38 Γωνία Weinberg Θ αςκενισ αλλθλεπίδραςθ παραβιάηει τθν ομοτιμία και ζτςι ζχουμε μια μπροσ- πίςω αςυμμετρία, που προκφπτει από τθν ανταλλαγι του Η. Θ μπροσ πίςω αςυμμετρία, παρατθρείται ςτθ γωνιακι κατανομι των εκπεμπόμενων μυονίων. Ο όροσ μπροσ αντιςτοιχεί ςτθν κίνθςθ του μυονίου προσ μια προτιμθτζα κατεφκυνςθ. Θ αςυμμετρία αυτι, δίνεται από τον τφπο: Α = F B F+B
39 Γωνία Weinberg Επίςθσ θ αςυμμετρία, δίνεται και από τον εξισ τφπο. A FB 3 4 A e A f Ππου A f f cv c 2 c c f v f A f A και A e : the initial state coupling.
40 Γωνία Weinberg Επίςθσ ξζρουμε ότι: c A v e 1 2 c V 1 2 e sin2 θ w u 1 2 d sin2 θ w sin2 θ w Μζςω του πίνακα βλζπουμε τθν εξάρτθςθ του Cv από το τετράγωνο του θμιτόνου τθσ γωνίασ Weinberg. Άρα κατά ςυνζπεια θ αςυμμετρία μασ εξαρτάται από το sin 2 θ w.
CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ
CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ PARITY (ΟΜΟΤΙΜΙΑ) P & ΣΥΖΥΓΙΑ ΦΟΤΙΟΥ C Τι είναι θ parity; Τι είναι θ ςυηυγία φορτίου; Το C αντιςτρζφει και τον λεπτονικό και βαρυονικό αρικμό.
ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β
4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι
Διδάςκων: Κακθγθτισ Αλζξανδροσ Ριγασ υνεπικουρία: πφρογλου Ιωάννθσ
ΔΗΜΟΚΡΙΣΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΡΑΚΗ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ ΣΟΜΕΑ ΣΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΔΙΑΣΗΜΙΚΗ Βιοϊατρική Σεχνολογία 9 ο Εξάμηνο Διδάςκων: Κακθγθτισ Αλζξανδροσ Ριγασ υνεπικουρία:
ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.
.. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται
ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο)
ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) χήμα Κφκλωμα RLC ςε ςειρά χήμα 2 Διανυςματικι παράςταςθ τάςεων και ρεφματοσ Ζςτω ότι ςτο κφκλωμα του ςχιματοσ που περιλαμβάνει ωμικι, επαγωγικι και χωρθτικι
Απάντηση ΘΕΜΑ1 ΘΕΜΑ2. t=t 1 +T/2. t=t 1 +3T/4. t=t 1 +T ΔΙΑΓΩΝΙΣΜΑ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ).
Απάντηση ΘΕΜΑ1 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ). ΘΕΜΑ2 Α)Ανάκλαςθ ςε ακίνθτο άκρο. Το προςπίπτον κφμα ςε χρόνο Τ/2 κα ζχει μετακινθκεί προσ τα δεξιά κατά 2 τετράγωνα όπωσ φαίνεται ςτο ςχιμα. Για
Η αυτεπαγωγή ενός δακτυλίου
Η αυτεπαγωγή ενός δακτυλίου Υποκζςτε ότι κρατάτε ςτο χζρι ςασ ζναν μεταλλικό δακτφλιο διαμζτρου πχ 5 cm. Ζνασ φυςικόσ πικανότθτα κα προβλθματιςτεί: τι αυτεπαγωγι ζχει άραγε; Νομίηω κα ιταν μια καλι ιδζα
Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά
Τάξη Β Φυςικθ Γενικθσ Παιδείασ Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά k 2 9 9 10 Nm 2 1. Δφο ακίνθτα ςθμειακά θλεκτρικά φορτία q 1 = - 2 μq και q 2 = + 3 μq, βρίςκονται
Εισαγωγή στα Lasers. Γ. Μήτσου
Εισαγωγή στα Lasers Γ. Μήτσου Θζματα προσ ανάπτυξθ Η ανακάλυψθ του Laser Στακμοί ςτθν τεχνολογία Εφαρμογζσ Μοναδικζσ ιδιότθτεσ των Lasers Χωρικζσ ιδιότθτεσ τθσ δζςμθσ Κατανομι τθσ ζνταςθσ Συμφωνία Φαινόμενα
ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι
Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ
Άπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου
Άπειρεσ κροφςεισ Δακτφλιοσ ακτίνασ κυλάει ςε οριηόντιο δάπεδο προσ ζνα κατακόρυφο τοίχο όπωσ φαίνεται ςτο ςχιμα. Ο ςυντελεςτισ τριβισ ίςκθςθσ του δακτυλίου με το δάπεδο είναι, ενϊ ο τοίχοσ είναι λείοσ.
ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ
Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο
3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ
3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 1) Τίτλοσ τθσ ζρευνασ: «Ποια είναι θ επίδραςθ τθσ κερμοκραςίασ ςτθ διαλυτότθτα των ςτερεϊν ςτο νερό;» 2) Περιγραφι του ςκοποφ τθσ ζρευνασ: Η ζρευνα
Ενδεικτικζσ Λφςεισ Θεμάτων
c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.
Ο Maxwell ενοποίησε τις Ηλεκτρικές με τις Μαγνητικές δυνάμεις στον
Η Ηλεκτρασθενής Ενοποίηση Ο Maxwell ενοποίησε τις Ηλεκτρικές με τις Μαγνητικές δυνάμεις στον γνωστό μας Ηλεκτρομαγνητισμό. Οι Glashow, einberg και Salam απέδειξαν ότι οι Ηλεκτρομαγνητικές αλληλεπιδράσεις
Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:
Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.
ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας
1 ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας Μόνιμα Φορτία Ίδιον Βάροσ (για Οπλιςμζνο Σκυρόδεμα): g=25 KN/m 3 Σε οδικζσ γζφυρεσ πρζπει
Slide 1. Εισαγωγή στη ψυχρομετρία
Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν
Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά;
; Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά; 30/1/ 2 Η φυςικι τθσ ςθμαςία είναι ότι προςδιορίηει τθ ςτροφικι κίνθςθ ενόσ ςτερεοφ ωσ
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη
Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8
Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,
EUROPEAN TRADESMAN PROJECT
EUROPEAN TRADESMAN PROJECT NOTES ON ELECTRICAL TESTS OF ELECTRICAL INSTALLATIONS ΚΥΚΛΩΜΑΤΑ ΦΩΤΙΣΜΟΥ Εγκατάςταςη κυκλωμάτων φωτιςμοφ 2 Μια λάμπα που λειτουργεί με ζναν διακόπτη Αυτό είναι το ευκολότερο
ςυςτιματα γραμμικϊν εξιςϊςεων
κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο
ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)
ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.
Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ
Πρόλογοσ το άρκρο αυτό κα δοφμε πωσ διαμορφϊνονται κάποιεσ ζννοιεσ όπωσ το εςωτερικό γινόμενο διανυςμάτων, οι ςυνκικεσ κακετότθτασ και παραλλθλίασ διανυςμάτων και ευκειϊν, ο ςυντελεςτισ διευκφνςεωσ διανφςματοσ
Διάδοση θερμότητας σε μία διάσταση
Διάδοση θερμότητας σε μία διάσταση Η θεωρητική μελζτη που ακολουθεί πραγματοποιήθηκε με αφορμή την εργαςτηριακή άςκηςη μζτρηςησ του ςυντελεςτή θερμικήσ αγωγιμότητασ του αλουμινίου, ςτην οποία διαγωνίςτηκαν
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ ΕΚΦΕ Α & Β ΑΝΑΣΟΛΙΚΗ ΑΣΣΙΚΗ τόχοι Μετά το πζρασ τθσ εργαςτθριακισ άςκθςθσ, οι μακθτζσ κα πρζπει να είναι ςε κζςθ:
ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ
ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ Θζμα Α Α1: γ, Α2: β, Α3: α, Α4: β, A5: β Θζμα Β Β1: Σ ι Λ (ελλιπισ διατφπωςθ), Λ, Σ, Σ, Σ Β2: α) Οι διαφορζσ μεταξφ ς και π δεςμοφ είναι: α. Στον ς
ΚΥΚΛΩΜΑΤΑ VLSI. Ασκήσεις Ι. Γ. Τσιατούχας. Πανεπιςτιμιο Ιωαννίνων. Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18
ΚΥΚΛΩΜΑΤΑ LSI Πανεπιςτιμιο Ιωαννίνων Ασκήσεις Ι Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18 Γ. Τσιατούχας Άσκηση 1 1) Σχεδιάςτε τισ ςφνκετεσ COS λογικζσ πφλεσ (ςε επίπεδο τρανηίςτορ) που υλοποιοφν τισ
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα
The European Tradesman - Basics of electricity - Czech Republic
Ηλεκτρικά φορτία Q Coulomb [C] Ζνταςθ Amper [A] (Βαςικι μονάδα του διεκνοφσ ςυςτιματοσ S) Πυκνότθτα ζνταςθσ J [Am -2 ] Τάςθ Volt [V] Αντίςταςθ Ohm [W] Συχνότθτα f Hertz [Hz] Το άτομο αποτελείται από τον
Παράςταςη ςυμπλήρωμα ωσ προσ 1
Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'
ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ
ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ Οριςμόσ: Με τον όρο αδράνεια ςτθ Φυςικι ονομάηεται θ χαρακτθριςτικι ιδιότθτα των ςωμάτων να αντιςτζκονται
3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ
3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 1 2 3 4 5 6 7 Παραπάνω φαίνεται θ χαρακτθριςτικι καμπφλθ μετάβαςθσ δυναμικοφ (voltage transfer characteristic) για ζναν αντιςτροφζα,
8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο
κεφάλαιο 8 τριγωνομετρία Α βαςικζσ ζννοιεσ τθν τριγωνομετρία χρθςιμοποιοφμε τουσ τριγωνομετρικοφσ αρικμοφσ, οι οποίοι ορίηονται ωσ εξισ: θμω = απζναντι κάκετθ πλευρά υποτείνουςα Γ ςυνω = εφω = προςκείμενθ
Δομή του Πρωτονίου με νετρίνο. Εισαγωγή στη ΦΣΣ - Γ. Τσιπολίτης
Δομή του Πρωτονίου με νετρίνο 411 Η Ηλεκτρασθενής Ενοποίηση Ο Maxwell ενοποίησε τις Ηλεκτρικές με τις Μαγνητικές δυνάμεις στον γνωστό μας Ηλεκτρομαγνητισμό. Οι Glashow, Weinberg και Salam απέδειξαν ότι
ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:
ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: 2008030075 ΕΙΑΓΩΓΗ Το Heartstone είναι ζνα ψθφιακό παιχνίδι καρτϊν που διεξάγιεται πάνω ςτο Battle.net, ζναν διακομιςτι τθσ εταιρίασ
Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ
Λεπτζσ Αξονικζσ γραμμζσ χρθςιμοποιοφνται για να δθλϊςουν τθν φπαρξθ ςυμμετρίασ του αντικειμζνου. Υπενκυμίηουμε ότι οι άξονεσ ςυμμετρίασ χρθςιμοποιοφνται μόνον όταν το ίδιο το εξάρτθμα είναι πραγματικά
Α1. Ροιεσ από τισ δυνάμεισ του ςχιματοσ ζχουν μθδενικι ροπι ωσ προσ τον άξονα (ε) περιςτροφισ του δίςκου;
ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΡΩΝΥMΟ: ΗΜΕΟΜΗΝΙΑ: 1/3/2015 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΚΥΜΑΤΑ ΚΑΙ ΣΤΕΕΟ ΣΩΜΑ ΘΕΜΑ Α Α1. Ροιεσ από τισ δυνάμεισ του ςχιματοσ ζχουν μθδενικι ροπι ωσ προσ τον άξονα (ε)
ΛΥΣΕΙΣ ΒΙΟΛΟΓΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2010
ΛΥΣΕΙΣ ΒΙΟΛΟΓΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2010 ΘΕΜΑ Α Α1 δ Α2 β Α3 α Α4 β Α5 γ ΘΕΜΑ Β Β1. Σελ.17 Τα κφτταρα διπλοειδι Β2. Σελ.14 Το DNA φωςφοδιεςτερικόσ δεςμόσ Β3. Σελ.37,38 Σθμειϊνεται.αντίγραφα ενόσ γονιδίου
ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι
ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι Λογιςμικό (Software), Πρόγραμμα (Programme ι Program), Προγραμματιςτισ (Programmer), Λειτουργικό Σφςτθμα (Operating
Ανταλλαγι δυο ταυτόςθμων κβαντικών ςωματιδίων. r 2. r 2 r 1. ,r 1. r 1. r, r r. , r
Ανταλλαγι δυο ταυτόςθμων κβαντικών ςωματιδίων Μποηόνια - Φερμιόνια ςπιν ακζραιο ςπιν θμι-ακζραιο 5 ςυμμετρικι Ψ αντι-ςυμμετρικι Ψ φωτόνια μεςόνια Γκλουόνια κλπ θλεκτρόνια πρωτόνια νετρόνια Μιόνια κλπ β
ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO
ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO Το Micro Worlds Pro είναι ζνα ολοκλθρωμζνο περιβάλλον προγραμματιςμοφ. Χρθςιμοποιεί τθ γλϊςςα προγραμματιςμοφ Logo (εξελλθνιςμζνθ) Το Micro Worlds Pro περιλαμβάνει
Διαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο
Διαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα
ΠΡΟΦΟΡΑ ΖΗΣΗΗ ΚΡΑΣΘΚΗ ΠΑΡΕΜΒΑΗ
ΠΡΟΦΟΡΑ ΖΗΣΗΗ ΚΡΑΣΘΚΗ ΠΑΡΕΜΒΑΗ 1 Ειςαγωγι: Οι αγοραίεσ δυνάµεισ τθσ προςφοράσ και ηιτθςθσ Προσφορά και Ζήτηση είναι οι πιο γνωςτοί οικονοµικοί όροι. Η λειτουργία των αγορϊν προςδιορίηεται από δφο βαςικζσ
ΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ
ΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ 1. Νόμοσ των ελλειπτικών τροχιών Η τροχιζσ των πλανθτϊν είναι ελλείψεισ, των οποίων τθ μία εςτία κατζχει ο Ήλιοσ. Προφανϊσ όλοι οι πλανιτεσ του ίδιου πλανθτικοφ ςυςτιματοσ
Σο θλεκτρικό κφκλωμα
Σο θλεκτρικό κφκλωμα Για να είναι δυνατι θ ροι των ελεφκερων θλεκτρονίων, για να ζχουμε θλεκτρικό ρεφμα, απαραίτθτθ προχπόκεςθ είναι θ φπαρξθ ενόσ κλειςτοφ θλεκτρικοφ κυκλϊματοσ. Είδθ κυκλωμάτων Σα κυκλϊματα
ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ
ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ Ειςαγωγή Τπάρχουν τρία επίπεδα ςτα οποία καλείςτε να αξιολογιςετε το εργαςτιριο D-ID: Νζα κζματα Σεχνολογία Διδακτικι Νέα θέματα Σο εργαςτιριο κα ειςαγάγουν τουσ ςυμμετζχοντεσ
Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου
Ζνωςθ Ελλινων Χθμικϊν Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου Χημεία 03/07/2017 Τμιμα Παιδείασ και Χθμικισ Εκπαίδευςθσ 0 Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη
Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του
Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα
Και τα τρία σωμάτια έχουν σπιν μονάδα.
Καθιερωμένο Πρότυπο W και Z μποζόνια Στη φυσική, τα W και Z μποζόνια είναι τα στοιχειώδη σωμάτια που μεταδίδουν την ασθενή αλληλεπίδραση. Η ανακάλυψή τους στο CERN το 1983 αντιμετωπίστηκε ως μια σπουδαία
ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ. 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν
ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν Τι είναι θ Γραμμι Εντολϊν (1/6) Στουσ πρϊτουσ υπολογιςτζσ, και κυρίωσ από τθ δεκαετία του 60 και μετά, θ αλλθλεπίδραςθ του χριςτθ με τουσ
ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ
ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ ΚΑΜΠΤΛΕ ΕΛΕΤΘΕΡΗ ΜΟΡΦΗ Χριςιμεσ για τθν περιγραφι ομαλών και ελεφκερων ςχθμάτων Αμάξωμα αυτοκινιτου, πτερφγια αεροςκαφών, ςκελετόσ πλοίου χιματα χαρακτιρων κινουμζνων ςχεδίων Περιγραφι
Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων»
Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων» Το Πλθροφοριακό Σφςτθμα τθσ δράςθσ «e-κπαιδευτείτε» ζχει ςτόχο να αυτοματοποιιςει τισ ακόλουκεσ
Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα:
2 ο Σετ Ασκήσεων Δομές Δεδομένων - Πίνακες Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8
-Έλεγχοσ μπαταρίασ (χωρίσ φορτίο) Ο ζλεγχοσ αυτόσ μετράει τθν κατάςταςθ φόρτιςθ τθσ μπαταρίασ.
1 -Έλεγχοσ μπαταρίασ (έλεγχοσ επιφανείασ) Ο ζλεγχοσ αυτόσ γίνεται για τθν περίπτωςθ που υπάρχει χαμθλό ρεφμα εκφόρτιςθσ κατά μικοσ τθσ μπαταρίασ -Έλεγχοσ μπαταρίασ (χωρίσ φορτίο) Ο ζλεγχοσ αυτόσ μετράει
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 5 η : Μερικι Παράγωγοσ Ι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις
Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί
Θεςιακά ςυςτιματα αρίκμθςθσ
Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ
Εργαςτιριο Βάςεων Δεδομζνων
Εργαςτιριο Βάςεων Δεδομζνων 2010-2011 Μάθημα 1 ο 1 Ε. Σςαμούρα Σμήμα Πληροφορικήσ ΑΠΘ Σκοπόσ του 1 ου εργαςτθριακοφ μακιματοσ Σκοπόσ του πρϊτου εργαςτθριακοφ μακιματοσ είναι να μελετιςουμε ερωτιματα επιλογισ
ΝΟΜΟ ΣΟΤ BOYLE(βαςιςμζνο ςε πείραμα)
2ο ΠΕΙΡΑΜΑΣΙΚΟ ΛΤΚΕΙΟ ΑΘΗΝΩΝ τθσ Κυπραίου Φωτεινισ 'Eτοσ:2012-2013 ΝΟΜΟ ΣΟΤ BOYLE(βαςιςμζνο ςε πείραμα) O Νόμος του Boyle τθ κερμοδυναμικι ο Νόμοσ του Boyle είναι ζνασ από τουσ τρεισ νόμουσ των αερίων.ωσ
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 1γ Μια ματιά στα Στοιχειώδη Σωμάτια και τους κβαντικούς αριθμούς τους Κώστας
ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΡΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 7: Ρροςταςία Λογιςμικοφ - Ιοί
ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΡΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 7: Ρροςταςία Λογιςμικοφ - Ιοί Ρρόγραμμα-ιόσ (virus), Αντιϊικό πρόγραμμα (antivirus), Αντίγραφα αςφαλείασ (backup), Χάκερ (hacker) Είναι οι αποκθκευμζνεσ
Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία).
Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία). Από τθν τράπεηα κεμάτων Α_ΧΘΜ_0_20651 Διακζτουμε υδατικό διάλυμα (Δ1) KOH 0,1 Μ. α)να υπολογίςετε τθν % w/v περιεκτικότθτα του
Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1]
Το e-class του Πανελλινιου Σχολικοφ Δίκτυου [ΠΣΔ/sch.gr] είναι μια πολφ αξιόλογθ και δοκιμαςμζνθ πλατφόρμα για αςφγχρονο e-learning. Ανικει ςτθν κατθγορία του ελεφκερου λογιςμικοφ. Αρχίηουμε από τθ διεφκυνςθ
ΑΣΛΑΝΣΙΚΗ ΕΝΩΗ ΠΑΝΕΤΡΩΠΑΪΚΟ STRESS TEST ΑΦΑΛΙΣΙΚΩΝ ΕΣΑΙΡΙΩΝ ΑΠΟΣΕΛΕΜΑΣΑ 2014
ΑΣΛΑΝΣΙΚΗ ΕΝΩΗ ΠΑΝΕΤΡΩΠΑΪΚΟ STRESS TEST ΑΦΑΛΙΣΙΚΩΝ ΕΣΑΙΡΙΩΝ ΑΠΟΣΕΛΕΜΑΣΑ 2014 τθ διάρκεια του τρζχοντοσ ζτουσ εξελίχκθκε θ ευρωπαϊκι άςκθςθ προςομοίωςθσ ακραίων καταςτάςεων για τισ Αςφαλιςτικζσ Εταιρίεσ
Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις
Ασθενείς Αλληλεπιδράσεις έχουμε ήδη δει διάφορες αντιδράσεις που γίνονται μέσω των ασθενών αλληλεπιδράσεων π.χ. ασθενείς διασπάσεις αδρονίων + + 0 K ππ Λ pπ n pe ν π e μ v + + μ ασθενείς διασπάσεις λεπτονίων
Στοιχειώδη σωμάτια. Τα σωμάτια ύλης
Στοιχειώδη σωμάτια Γύρω στο 1930 η εικόνα που είχαν οι φυσικοί για τα στοιχειώδη σωμάτια- σωμάτια που τότε πίστευαν ότι δεν είχαν συστατικά φαίνεται στον παρακάτω πίνακα: Σωμάτια Σύμβολο Μάζα ΜeV/c 2 Τα
ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ
ΦΥΣΙΚΗ vs ΒΙΟΛΟΓΙΑ ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ «Προτείνω να αναπτφξουμε πρώτα αυτό που κα μποροφςε να ζχει τον τίτλο: «ιδζεσ ενόσ απλοϊκοφ φυςικοφ για τουσ οργανιςμοφσ». Κοντολογίσ, τισ ιδζεσ που κα μποροφςαν
ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:
Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ
Βάςεισ Δεδομζνων Ι Ενότητα 12: Κανονικοποίηςη Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό
Δείκτεσ απόδοςθσ υλικών
Δείκτεσ απόδοςθσ υλικών Κάκε ςυνδυαςμόσ λειτουργίασ, περιοριςμϊν και ςτόχων, οδθγεί ςε ζνα μζτρο τθσ απόδοςθσ τθσ λειτουργίασ του εξαρτιματοσ και περιζχει μια ομάδα ιδιοτιτων των υλικϊν. Αυτι θ ομάδα των
Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ
Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ Οι παρακάτω οδθγίεσ αφοροφν το χριςτθ webdipe. Για διαφορετικό λογαριαςμό χρθςιμοποιιςτε κάκε φορά το αντίςτοιχο όνομα χριςτθ. = πατάμε αριςτερό κλικ ςτο Επιςκεφκείτε
Το Ρολφεδρο. Ζδρεσ: ΑΗΘΔ, ΗΘΚΕ, ΕΚΓΒ, ΔΓΚΘ, ΑΒΓΔ. Κορυφζσ: Α, Β, Γ, Δ, Ε,Η Θ, Κ. Διαγϊνιοσ: ΑΚ. Ακμζσ: ΑΒ, ΒΓ, ΓΔ, ΑΔ,.
Το Ρολφεδρο Ζδρεσ: ΑΗΘΔ, ΗΘΚΕ, ΕΚΓΒ, ΔΓΚΘ, ΑΒΓΔ Κορυφζσ: Α, Β, Γ, Δ, Ε,Η Θ, Κ Διαγϊνιοσ: ΑΚ Ακμζσ: ΑΒ, ΒΓ, ΓΔ, ΑΔ,. Θ Ρριςματικι - Ρρίςμα οσ Οριςμόσ οσ Οριςμόσ Δίδεται μια Θ κλειςτι κυρτι πολυγωνικι γραμμι,
Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)».
Εφδοξοσ+ Διαθζτοντασ βιβλία μζςω του «Εφδοξοσ+» Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εμφανίηεται θ λίςτα με όλα ςασ τα βιβλία. Από εδϊ μπορείτε: -
Modellus 4.01 Συ ντομοσ Οδηγο σ
Νίκοσ Αναςταςάκθσ 4.01 Συ ντομοσ Οδηγο σ Περιγραφή Σο είναι λογιςμικό προςομοιϊςεων που ςτθρίηει τθν λειτουργία του ςε μακθματικά μοντζλα. ε αντίκεςθ με άλλα λογιςμικά (π.χ. Interactive Physics, Crocodile
ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 6: Το γραφικό περιβάλλον Επικοινωνίασ (Γ.Π.Ε)
ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 6: Το γραφικό περιβάλλον Επικοινωνίασ (Γ.Π.Ε) Γραφικό Περιβάλλον Επικοινωνίασ Περιβάλλον Εντολϊν Γραμμισ (Graphical User Interface/GUI), (Command Line Interface),
Αναφορά Εργαςίασ Nim Game
Αναφορά Εργαςίασ Nim Game Αυτόνομοι Πράκτορεσ (ΠΛΗ 513) Βαγενάσ Σωτιριοσ 2010030034 Ειςαγωγή Για τθν εργαςία του μακιματοσ αςχολικθκα με το board game Nim. Ρρόκειται για ζνα παιχνίδι δφο παιχτϊν (2-player
Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7)
Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων (v.1.0.7) 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ ςτθλών βιβλίου Εςόδων - Εξόδων.
Ζρευνα ικανοποίθςθσ τουριςτϊν
Ζρευνα ικανοποίθςθσ τουριςτϊν Ammon Ovis_Ζρευνα ικανοποίθςθσ τουριςτϊν_ Ραδιοςτακμόσ Flash 96 1 ΣΤΟΙΧΕΙΑ ΔΕΙΓΜΑΤΟΣ Σο δείγμα περιλαμβάνει 332 τουρίςτεσ από 5 διαφορετικζσ θπείρουσ. Οι περιςςότεροι εξ αυτϊν
Διαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια
Διαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί
Κάτω. Πάνω. Όνομα: Πάνω Επώνυμο: Κουάρκ. Επώνυμο: Κουάρκ. Του αρέσουν:z, W+, W-, γλουόνια, φωτόνια. W-, γλουόνια, φωτόνια. Παιχνίδι με κάρτες: Σνάπ
Πάνω Κάτω Όνομα: Πάνω Χαρούμενες Z, Οικογένειες Όνομα: W-, gluon, Κάτω photon Του αρέσουν:z, Μάζα: πολύ ελαφρύ Φορτίο: +2/3 Μάζα: πολύ ελαφρύ Φορτίο: -1/3 Ένα από τα βασικά συστατικά των πρωτονίων και
Διδάςκων: Κακθγθτισ Αλζξανδροσ Ριγασ υνεπικουρία: πφρογλου Ιωάννθσ
ΔΗΜΟΚΡΙΣΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΡΑΚΗ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ ΣΟΜΕΑ ΣΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΔΙΑΣΗΜΙΚΗ Βιοϊατρική Σεχνολογία 9 ο Εξάμηνο Μάθημα 2 ο Διδάςκων: Κακθγθτισ Αλζξανδροσ Ριγασ
Αςκήςεισ. Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ
Αςκήςεισ Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ 1. Ζςτω το ςιμα τάςθσ V(t)=V dc +Asin(ωt) που βλζπουμε ςτο επόμενο ςχιμα. Να προςδιορίςετε το πλάτοσ Α και τθν dc ςυνιςτώςα κακώσ και να υπολογίςτε
ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου)
ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου) 19 Μαρτίου 011 10:00-11:15 3 point/μονάδες 1) Μια διάβαςθ πεηϊν ζχει άςπρεσ και μαφρεσ λωρίδεσ, πλάτουσ 50 cm. ε ζνα δρόμο θ διάβαςθ ξεκινά και τελειϊνει με άςπρεσ
τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014
τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014 Ειςαγωγι Στο παρόν κείμενο παρουςιάηονται και αναλφονται τα ςτατιςτικά ςτοιχεία του ιςτοτόπου τθσ ΚΕΠΑ-ΑΝΕΜ,
Yπεύθυνη καθηγήτρια Ομίλου Φυσικής, Γεωργία Ρουμπέα
Μαθητές του ομίλου Φυσικής του Βαρβακείου Λυκείου επεξεργασθήκαμε δεδομένα του πειράματος ATLAS για την ταυτοποίηση ανίχνευση του σωματίδιου Ζ. Παρουσιάζουμε εδώ, τη σύνοψη μιας εφαρμογής που έγινε κατά
ΟΝΟΜΑΣΕΠΩΝΤMΟ: ΗΜΕΡΟΜΗΝΙΑ: ΕΙΡΑ: 3 ΕΞΕΣΑΣΕΑ ΤΛΗ: ΗΛΕΚΣΡΙΚΟ ΠΕΔΙΟ- ΜΑΓΝΗΣΙΚΟ ΠΕΔΙΟ- ΕΠΑΓΩΓΗ
ΜΑΘΗΜΑ /ΣΑΞΗ: ΦΤΙΚΗ ΚΑΣΕΤΘΤΝΗ / Β ΛΤΚΕΙΟΤ ΟΝΟΜΑΣΕΠΩΝΤMΟ: ΗΜΕΡΟΜΗΝΙΑ: ΕΙΡΑ: 3 ΕΞΕΣΑΣΕΑ ΤΛΗ: ΗΛΕΚΣΡΙΚΟ ΠΕΔΙΟ- ΜΑΓΝΗΣΙΚΟ ΠΕΔΙΟ- ΕΠΑΓΩΓΗ ΘΕΜΑ Α 1. Δφο ςθμειακά φορτία απζχον μεταξφ τοσ απόςταςθ r και θ δναμικι
ΣΕΙΣΜΟΣ. Τι είναι; Πϊσ δημιουργείται;
ΣΕΙΣΜΟΣ Εκπαιδευτικό υλικό Ηλικιακή ομάδα 9-12 Τι είναι; Ο ςειςμόσ είναι ζνα φαινόμενο, που ςυμβαίνει ςτο εςωτερικό τθσ Γθσ και ζχει ωσ αποτζλεςμα ιςχυρζσ δονιςεισ του εδάφουσ. Αν ο ςειςμόσ είναι ιςχυρόσ
Πειραματικι Ψυχολογία (ΨΧ66)
Πειραματικι Ψυχολογία (ΨΧ66) Διάλεξη 7 Σεχνικζσ για τθν επίτευξθ ςτακερότθτασ Πζτροσ Ροφςςοσ Μζθοδοι για την επίτευξη του ελζγχου Μζςω του κατάλλθλου ςχεδιαςμοφ του πειράματοσ (ςτόχοσ είναι θ εξάλειψθ
Ιδιότθτεσ πεδίων Γενικζσ.
Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)
ΡΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΧΕΣ ΟΓΑΝΩΣΗΣ & ΔΙΟΙΚΗΣΗΣ ΕΡΙΧΕΙΗΣΕΩΝ & ΥΡΗΕΣΙΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΡΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΧΕΣ ΟΓΑΝΩΣΗΣ & ΔΙΟΙΚΗΣΗΣ ΕΡΙΧΕΙΗΣΕΩΝ & ΥΡΗΕΣΙΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Α1. Να χαρακτηρίςετε τισ προτάςεισ που ακολουθοφν, γράφοντασ ςτο τετράδιό ςασ, δίπλα
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΑΠΟ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
Λφκειο Ακρόπολθσ 2015 Επιμζλεια Μάριοσ Πουργουρίδθσ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΑΠΟ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 1. Η πιο κάτω μπάλα αφινεται να πζςει από το ςθμείο Α,κτυπά ςτο ζδαφοσ ςτο ςθμείο Ε και αναπθδά ςε μικρότερο
ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου
ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ Ειρινθ Φιλιοποφλου Ειςαγωγι Ο Παγκόςμιοσ Ιςτόσ (World Wide Web - WWW) ι πιο απλά Ιςτόσ (Web) είναι μία αρχιτεκτονικι για τθν προςπζλαςθ διαςυνδεδεμζνων εγγράφων
ΤΙΤΛΟΣ: "SWITCH-ΠΩ ΝΑ ΚΑΣΑΦΕΡΕΙ ΣΗΝ ΑΛΛΑΓΗ ΟΣΑΝ Η ΑΛΛΑΓΗ ΕΙΝΑΙ ΔΤΚΟΛΗ" Σσγγραφείς: Chip Heath & Dan Heath. Εκδόζεις: Κσριάκος Παπαδόποσλος/ΕΕΔΕ
ΤΙΤΛΟΣ: "SWITCH-ΠΩ ΝΑ ΚΑΣΑΦΕΡΕΙ ΣΗΝ ΑΛΛΑΓΗ ΟΣΑΝ Η ΑΛΛΑΓΗ ΕΙΝΑΙ ΔΤΚΟΛΗ" Σσγγραφείς: Chip Heath & Dan Heath Εκδόζεις: Κσριάκος Παπαδόποσλος/ΕΕΔΕ www.dimitrazervaki.com Περιεχόμενα ΣΡΕΙ ΑΝΑΠΑΝΣΕΧΕ ΔΙΑΠΙΣΩΕΙ
Διαδικασία με βήματα. 1. Αλλάηω το χρϊμα ςκθνικοφ ςε γκρι(#3333).
Διαδικασία με βήματα 1. Αλλάηω το χρϊμα ςκθνικοφ ςε γκρι(#3333). 2. Διαλζγω το Polystar Tool. Από τα Options κάνω το Polygon ςε Star και τα υπόλοιπα όπωσ είναι. Ζωγραφίηω ζνα αςτζρι πάνω αριςτερά. Fill
Πωσ δθμιουργώ φακζλουσ;
Πωσ δθμιουργώ φακζλουσ; Για να μπορζςετε να δθμιουργιςετε φακζλουσ ςτο χαρτοφυλάκιό ςασ ςτο Mahara κα πρζπει να μπείτε ςτο ςφςτθμα αφοφ πατιςετε πάνω ςτο ςφνδεςμο Mahara profiles από οποιοδιποτε ςελίδα