3. Lokalna optimizacija
|
|
- Αελλαι Καλάρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Optimizacijske metode 3. Lokalna optimizacija Vladimir Batagelj FMF, matematika na vrhu različica: 11. marec 2014 / 18 : 11
2 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija 1 Kazalo 1 Globalni in lokalni minimumi Lokalna optimizacija Primer: problem uravnotežanja turbin
3 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija 1 Globalni in lokalni minimumi Pogosto lahko v dani množici Ω definiramo relacijo sosednosti rešitev S Ω Ω, za katero zahtevamo le refleksivnost. Okolice. Kadar je Ω = R n, za dani ε > 0, običajno definiramo relacijo S(ε) s predpisom: xs(ε)y d(x, y) ε kjer je d izbrana razdalja. Množica S(ε, x) sosedov točke x je tedaj običajna ε okolica točke x. Velja: ε < η S(ε) S(η)
4 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija 2 Lokalne transformacije V diskretnih optimizacijskih nalogah običajno definiramo sosednost z lokalnimi transformacijami, ki prevedejo eno rešitev v drugo. Dvojiški vektorji. V množici IB n dvojiških vektorjev dolžine n navadno definiramo lokalno transformacijo s spremembo vrednosti na i-tem mestu: x i = 1 x i. Trgovski potnik. Pri problemu trgovskega potnika se najpogosteje uporabljajo sosednosti r-opt, pri katerih so sosednje rešitve določene tako, da iz tekočega cikla odstranimo r povezav in jih nadomestimo z novimi, ki zopet sestavljajo cikel.
5 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija 3... Lokalne transformacije Na slikah sta prikazani sosednosti 2-OPT in 3-OPT. Lin je s poskusi pokazal, da je sosednost 3-OPT veliko boljša kot sosednost 2-OPT, učinek sosednosti višjih redov pa ne upravičuje povečane porabe časa.
6 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija 4... Lokalne transformacije Permutacije. V primeru, ko je Ω = S n (permutacije n elementov), pa lahko postavimo: πsσ π = σ p, q : σ = (pq)π Vpeta drevesa. Vpeto drevo izberemo tetivo, vključimo jo v novo drevo, iz pripadajočega cikla pa izločimo neko povezavo.
7 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija 5 Lokalni minimumi Element x Φ je lokalni minumum glede na S natanko takrat, ko je x Min(Φ S(x), P ); ali drugače povedano, ko y Φ S(x) : P (x) P (y) Množico vseh lokalnih minimumov naloge (Φ, P, Min) glede na sosednost S označimo LocMin(Φ, P, S). Zato, da bi poudarili razliko, pravimo elementom množice Min(Φ, P ) tudi globalni minimumi. Očitno je vsak globalni minimum tudi lokalni.
8 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija 6... Lokalni minimumi Poleg tega velja še: IZREK 1 Za vsako sosednost S je LocMin(Φ, P, Φ Φ) = Min(Φ, P ) LocMin(Φ, P, S) in, če je Q S, tudi LocMin(Φ, P, S) LocMin(Φ, P, Q) Trditev je posledica lastnosti Ψ Φ x Ψ Min(Φ, P ) x Min(Ψ, P )
9 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija 7 Lokalna optimizacija Relacija sosednosti nam ponuja za reševanje optimizacijskih nalog naslednji postopek lokalne optimizacije: izberi x Φ ; while y S(x) Φ : P (y) < P (x) do x := y; Če se postopek izteče v končno korakih, konča v lokalnem minimumu. V postopku lahko relacijo sosednosti tudi spreminjamo npr. zmanjšujemo ε.
10 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija 8 Postopek lokalne optimizacije Pri razdelavi postopka lokalne optimizacije za dani optimizacijski problem moramo poiskati odgovore na naslednja vprašanja: a. določitev sosednosti S Ω Ω. Kot vemo, čim bogatejša je sosednost, tem verjetneje so lokalni minimumi tudi globalni. Po drugi strani pa pregledovanje obsežne soseščine zahteva precej časa. Pri izbiri sosednosti zato poskušamo uravnotežiti obe nasprotujoči si želji. b. izbira začetne rešitve. Lokalnim minimumom se poskušamo izogniti tako, da postopek lokalne optimizacije večkrat ponovimo pri različnih (naključnih) začetnih rešitvah in si zapomnimo najboljšo dobljeno rešitev. Izdelava poštenega generatorja naključnih dopustnih rešitev je lahko včasih sama zase zahtevna naloga.
11 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija 9... Postopek lokalne optimizacije Pri večjem številu ponovitev se pokaže kot zelo dober prikaz zgradbe prostora rešitev (glede na izbrano sosednost) tabela desetih trenutno najboljših dobljenih rešitev. Zaželjeno je tudi, da lahko postopku lokalne optimizacije kot začetno rešitev podtaknemo rešitev, ki si jo izmisli uporabnik, ali rešitev, ki jo dobimo s kakim približnim postopkom. c. dokaz ustavljivosti postopka. Zaporedje vrednosti rešitev, ki nastopijo pri lokalni optimizaciji, je padajoče. če pokažemo še, da je navzdol omejeno in se vsakič spremeni vsaj za δ > 0, se postopek po končno korakih izteče. Na končni množici Φ je to vselej res.
12 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija Postopek lokalne optimizacije d. izbira naslednje rešitve. Pri končnih soseščinah običajno uporabljamo kar pregled vseh sosedov. Včasih pa lahko za določitev ustrezne rešitveuporabimo lastnosti kriterijske funkcije in omejitev (npr. gradientni postopek). Pogosto obstaja v soseščini več rešitev z manjšo vrednostjo. V teh primerih najpogosteje izberemo ali prvo tako rešitev, ki jo najdemo; ali pa rešitev, ki najbolj zmanjša vrednost kriterijske funkcije (najhitrejši spust). Poskusi kažejo, da glede končnih rezultatov ni značilnih razlik med obema pristopoma. Prvi porabi manj časa pri pregledovanju okolice, pa zato naredi več korakov...
13 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija Postopek lokalne optimizacije e. učinkovito preverjanje pogoja P (y) < P (x). Pogosto je kriterijska funkcija P sestavljena iz prispevkov posameznih sestavin rešitve. Zato se izkaže, da se splača pogoj P (y) < P (x) nadomestiti z enakovrednim pogojem P (x) P (y) > 0 ali P (x)/p (y) > 1 ali kakim drugim, ker je izraz, ki nastopa v tem pogoju precej enostavnejši kot sama kriterijska funkcija prispevki sestavin, ki pri lokalni transformaciji ne sodelujejo, se pokrajšajo.
14 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija Postopek lokalne optimizacije f. lokalna optimalnost rešitev. Lokalna optimizacija nam v splošnem ne zagotavlja, da bomo dobili globalni minimum. V naslednjem razdelku bomo zvedeli, da je za konveksne naloge postopek lokalne optimizacije točen dobljeni lokalni minimum je vselej globalni. V splošnem se moramo zadovoljiti z ugotovitvijo, da če je postopek generiranja naključnih začetnih rešitev vsaj nekoliko pošten (ustvari lahko vsako dopustno rešitev, čeprav ne nujno z enako verjetnostjo), s številom ponovitev postopka lokalne optimizacije narašča tudi verjetnost, da bo dobljeni najboljši lokalni minimum tudi globalni. V poglavju o diskretni optimizaciji si bomo ogledali nekatere poskuse izpopolnitve postopka lokalne optimizacije: postopke ohlajanja (simulated annealing) in postopke prepovedanih smeri (tabu search).
15 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija Postopek lokalne optimizacije g. povezanost sosednosti S. Pri navadni lokalni optimizaciji je povezanost grafa (Ω, S) le lepotnega pomena, pri izpopolnjenih postopkih pa postane zelo zaželjena. h. preverjanje postopka. Ko postopek sprogramiramo, se postavi vprašanje, kako preveriti njegovo pravilnost in kakovost. Zato je potrebno pripraviti zbirko nalog z znanimi rešitvami. Vir takih nalog so lahko tudi teoretični rezultati o problemu.
16 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija 14 Primer: problem uravnotežanja turbin Pri izdelavi turbin lahko mase posameznih lopatic nihajo tudi za do pet odstotkov okrog povprečne vrednosti. Običajno turbino sestavlja 14 do 18 lopatic. Pri nameščanju lopatic na os namestimo težišča lopatic v isti ravnini enakomerno po krožnici. Lopatice želimo namestiti v takem vrstnem redu, da bo težišče turbine čim bliže osi vrtenja. Veternica v letalskem motorju Rolls Royce RB C
17 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija Problem uravnotežanja turbin Označimo z n število lopatic, z m 1, m 2,..., m n mase lopatic in z M = mi skupno maso lopatic. Razmestitev lopatic okrog osi opišemo s permutacijo σ na p-to mesto postavimo lopatico σ(p). Naj bo še ϕ i = (i 1) 2π n, i = 1, 2,..., n kot, ki pripada i-temu mestu in r polmer krožnice. Tedaj je za razmestitev σ težišče ( x σ, ȳ σ ) določeno z izrazoma: x σ = r n m σ(i) cos ϕ i ȳ σ = r n m σ(i) sin ϕ i M M i=1 odmik d(σ) težišča od osi vrtenja pa z; d(σ) = x 2 σ + ȳ 2 σ i=1 Nalogo uravnotežanja turbine lahko torej izrazimo kot optimizacijsko nalogo (S n, d(σ), min).
18 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija Problem uravnotežanja turbin Krajši razmislek nam pove, da lahko pri razmeščanju eno maso pribijemo na izbrano mesto enakovrednost rešitev glede na zasuk. Poleg tega tudi zrcalni permutaciji določata enakovredni rešitvi. Torej bi morali pri polnem preboru rešitev pregledati 1 2 (n 1)! permutacij. Recimo, da program pri polnem preboru (na super-računalniku) pregleda milijon rešitev na sekundo. Tedaj bi pri n = 14 tekel 8.6 ur; pri n = 18 pa že ure oziroma 5.6 let. 1 n (n 1)!
19 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija Problem uravnotežanja turbin Če dobimo (a) razmestitev η iz razmestitve σ tako, da v njej premenjamo masi na p-tem in q-tem mestu (transpozicija), sta koordinati novega težišča ( x η, ȳ η ) takole povezani (e) s težiščem razmestitve σ: x η = x σ r M (m σ(p) m σ(q) )(cos ϕ p cos ϕ q ) ȳ η = ȳ σ r M (m σ(p) m σ(q) )(sin ϕ p sin ϕ q ) Za izbiro (b) začetne razmestitve uporabimo kar naslednji postopek za mešanje, ki je popolnoma pošten for i := n downto 2 do begin j := 1 + trunc(i random); t := σ[i]; σ[i] := σ[j]; σ[j] := t; end; Za prvo permutacijo lahko postavimo kar σ[i] = i, i = 1,..., n. Ker je vsaka permutacija produkt transpozicij, (g) je graf sosednosti povezan.
20 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija Problem uravnotežanja turbin k max := (n 1)(n 2)/2; k := k max ; določi naključno začetno razmestitev σ; izračunaj x, ȳ, d 2 ; search : loop for p := 2 to n 1 do for q := p + 1 to n do x := x r M (m σ(p) m σ(q) )(cos ϕ p cos ϕ q ); ỹ := ȳ r M (m σ(p) m σ(q) )(sin ϕ p sin ϕ q ); d 2 := x 2 + ỹ 2 endif endfor endfor endloop if d 2 < d 2 then x := x; ȳ := ỹ; d 2 := d 2 ; k := k max ; t := σ(p); σ(p) := σ(q); σ(q) := t; else k := k 1; if k 0 exit search
21 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija Problem uravnotežanja turbin V postopku smo se odločili (d) za premik v prvo boljšo rešitev. Pri preverjanju posopka (h) pride prav naslednji izrek o celoštevilskem problemu uravnotežanja turbin, pri katerem je m i = i: Celoštevilski problem uravnotežanja turbin ima uravnoteženo rešitev d(σ) = 0 natanko takrat, ko n ni potenca nekega praštevila, n p k, k > 0. Na sliki je prikazana uravnotežena rešitev za n = 14.
22 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija Problem uravnotežanja turbin
23 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija Problem uravnotežanja turbin Sled lokalne optimizacije za σ a σ a = ( ) p q x y d σ a = ( )
24 V. Batagelj: Optimizacijske metode / 3. Lokalna optimizacija Problem uravnotežanja turbin Sled lokalne optimizacije za σ b σ b = ( ) p q x y d σ b = ( )
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
1. Optimizacijske naloge
Optimizacijske metode 1. Optimizacijske naloge Vladimir Batagelj FMF, matematika na vrhu različica: 25. februar 2014 / 03 : 20 V. Batagelj: Optimizacijske metode / 1. Optimizacijske naloge 1 Kazalo 1 Optimizacijske
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.
Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
Funkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006
1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006 1. Dana je množica predpostavk p q r s, r t, s q, s p r, s t in zaključek t r. Odloči, ali je sklep pravilen ali napačen. pravilen, zapiši
Kotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega
Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Poliedri Ines Pogačar 27. oktober 2009
Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta
Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Osnove matematične analize 2016/17
Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja
Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil.
Zaporedja števil V matematiki in fiziki pogosto operiramo s približnimi vrednostmi neke količine. Pri numeričnemu računanju lahko npr. število π aproksimiramo s števili, ki imajo samo končno mnogo neničelnih
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Reševanje sistema linearnih
Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje
Dodatna poglavja iz linearne algebre za 1. letnik finančne matematike na FMF. Primož Moravec
Dodatna poglavja iz linearne algebre za 1 letnik finančne matematike na FMF Primož Moravec 13 september 2017 1 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 51264(0758)
Teorija grafov in topologija poliedrov
Teorija grafov in topologija poliedrov Matjaž Željko Društvo matematikov, fizikov in astronomov Slovenije Seminar Razvedrilna matematika Ljubljana, 18. februar 2011 1 Matjaž Željko Teorija grafov in topologija
Algebraične strukture
Poglavje V Algebraične strukture V tem poglavju bomo spoznali osnovne algebraične strukture na dani množici. Te so podane z eno ali dvema binarnima operacijama. Binarna operacija paru elementov iz množice
Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA
Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa
Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.
1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.
Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti
Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim
Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva
cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.
TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
II. LIMITA IN ZVEZNOST FUNKCIJ
II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno
VEKTORJI. Operacije z vektorji
VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,
Vektorski prostori s skalarnim produktom
Poglavje IX Vektorski prostori s skalarnim produktom Skalarni produkt dveh vektorjev v R n smo spoznali v prvem poglavju. Sedaj bomo pojem skalarnega produkta razširili na poljuben vektorski prostor V
Funkcije dveh in več spremenljivk
Poglavje 3 Funkcije dveh in več spremenljivk 3.1 Osnovni pojmi Definicija 3.1.1. Funkcija dveh spremenljivk je preslikava, ki vsaki točki (x, y) ravninske množice D priredi realno število z = f(x, y),
TRANZITIVNI GRAFI. Katarina Jan ar. oktober 2008
TRANZITIVNI GRAFI Katarina Jan ar oktober 2008 Kazalo 1 Uvodne denicije........................ 3 2 Vozli² na tranzitivnost.................... 8 3 Povezavna tranzitivnost.................... 10 4 Lo na
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak
Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
1 Fibonaccijeva stevila
1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih
UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO
UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO LJUBLJANA, 2014 2 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA Študijska smer: Fizika in matematika SANDRA BOLTA
(Ne)rešljiva Rubikova kocka in grupe
(Ne)rešljiva Rubikova kocka in grupe Maša Lah, Sabina Boršić, Klara Drofenik Mentor: Rok Gregorič Matematično raziskovalno srečanje 24. avgust 2016 Povzetek Cilj našega projekta je bil ugotoviti kriterij
Navadne diferencialne enačbe
Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Analiza I. (študijsko gradivo) Matija Cencelj
Analiza I (študijsko gradivo) Matija Cencelj 2. maj 2007 2 Kazalo 1 Uvod 5 1.1 Izjave............................... 5 1.2 Množice.............................. 7 1.3 Relacije..............................
vezani ekstremi funkcij
11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad
Matematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
DISKRETNA FOURIERJEVA TRANSFORMACIJA
29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R.
II. FUNKCIJE 1. Osnovni pojmi 2. Sestavljanje funkcij 3. Pregled elementarnih funkcij 4. Zveznost Kaj je funkcija? Definicija Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi
Matematika. Funkcije in enačbe
Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana
Tema 1 Osnove navadnih diferencialnih enačb (NDE)
Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer
Matematika. BF Lesarstvo. Zapiski ob predavanjih v šolskem letu 2010/2011
Matematika BF Lesarstvo Matjaž Željko Zapiski ob predavanjih v šolskem letu 00/0 Izpis: 9 avgust 0 Kazalo Števila 5 Naravna števila 5 Cela števila 6 3 Racionalna števila 6 4 Realna števila 7 5 Urejenost
Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta
Matematika 1 Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 21. april 2008 102 Poglavje 4 Odvod 4.1 Definicija odvoda Naj bo funkcija f definirana na intervalu (a, b) in x 0 točka s tega intervala. Vzemimo
FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila
FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer
Lastne vrednosti in lastni vektorji
Poglavje VIII Lastne vrednosti in lastni vektorji V tem poglavju bomo privzeli, da so skalarji v vektorskih prostorih, koeficienti v matrikah itd., kompleksna števila. Algebraične operacije seštevanja,
Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik
Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI
Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija
Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a
Matematika 1. Jaka Cimprič
Matematika 1 Jaka Cimprič Predgovor Pričujoči učbenik je namenjen študentom tistih univerzitetnih programov, ki vključujejo samo eno leto matematike. Nastala je na podlagi izkušenj, ki jih imam s poučevanjem
Realne funkcije. Elementarne funkcije. Polinomi in racionalne funkcije. Eksponentna funkcija a x : R R + FKKT Matematika 1
Realne funkcije Funkcija f denirana simetri nem intervalu D = ( a, a) ali D = [ a, a] (i) je soda, e velja f(x) = f( x), x D; (ii) je liha, e velja f(x) = f( x), x D. Naj bo f denirana D f in x 1, x 2
Obvestila. Matematično programiranje z aplikacijami. Pregled predmeta Matematično programiranje z aplikacijami. Vaje: Nadaljujemo z začinjeno pizzo.
Obvestila. z aplikacijami Drago Bokal Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru 21. februar 2012 http://um.fnm.uni-mb.si/ Prosojnice: MPA NN Naslov
Kombinatorika. rekurzivnih enačb in rodovne funkcije. FMF Matematika Finančna matematika. Vladimir Batagelj. Ljubljana, april
FMF Matematika Finančna matematika Kombinatorika Reševanje rekurzivnih enačb in rodovne funkcije Vladimir Batagelj Math fun: Pascal triangle Ljubljana, april 2008 4. Dec 2012 različica: December 4, 2012
Matematično modeliranje. Simpleksna metoda.
Simpleksna metoda. Drago Bokal, Tanja Gologranc Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru Kanonična oblika linearnega programa. min c T x p. p.
1. UREJENE OBLIKE KVADRATNE FUNKCIJE
1. UREJENE OBLIKE KVADRATNE FUNKCIJE A) Splošna oblika Definicija 1 : Naj bodo a, b in c realna števila in a 0. Realno funkcijo: f : x ax + bx + c imenujemo kvadratna funkcija spremenljivke x v splošni
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti
Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne
Uporabna matematika za naravoslovce
Uporabna matematika za naravoslovce Zapiski predavanj Študijski programi: Aplikativna kineziologija, Biodiverziteta Študijsko leto 203/4 doc.dr. Barbara Boldin Fakulteta za matematiko, naravoslovje in
diferencialne enačbe - nadaljevanje
12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne
Osnovne lastnosti odvoda
Del 2 Odvodi POGLAVJE 4 Osnovne lastnosti odvoda. Definicija odvoda Odvod funkcije f v točki x je definiran z f f(x + ) f(x) (x) =. 0 Ta definicija je smiselna samo v primeru, ko x D(f), ita na desni
SEMINARSKA NALOGA Funkciji sin(x) in cos(x)
FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.
Navadne diferencialne enačbe
Poglavje 6 Navadne diferencialne enačbe 6.1 Uvod Splošna rešitev navadne diferencialne enačbe n-tega reda F(x, y, y, y,..., y (n) ) = 0 je n-parametrična družina funkcij. Kadar želimo iz splošne rešitve
Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1
Poglavje II Matrike Matrika je pravokotna tabela realnih števil Na primer: [ ] 1 1 1, 2 3 1 1 0 1 3 2 1, 0 1 4 [ ] 2 7, Matrika je sestavljena iz vrstic in stolpcev Vrstici matrike [ ] 1 1 1 2 3 1 [ ]
1 Seštevanje vektorjev in množenje s skalarjem
Poglavje I Vektorji Seštevanje vektorjev in množenje s skalarjem Za lažjo geometrično predstavo si najprej oglejmo, kaj so vektorji v ravnini. Vektor je usmerjena daljica, ki je natanko določena s svojo
Kanonična oblika linearnega programa. Simpleksna metoda. Bazne rešitve kanoničnega linearnega programa.
Kanonična oblika linearnega programa.. Drago Bokal, Tanja Gologranc Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru min c T x p. p. Ax = b x 0 Kako dobimo