Tema 1 Osnove navadnih diferencialnih enačb (NDE)
|
|
- Ωσαννά Μιχαλολιάκος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer vzemimo kar 2. Newtonov zakon za premo gibanje a = F m. Gibanje opišemo, če povemo, kako se hitrost in lega spreminjata s časom. Velja a = dv = d2 x 2 in Newtonov zakon za neznanko x zapišemo kot d 2 x 2 = f, f = F m. Neznanka je skrita v drugem odvodu, zato takšni enačbi pravimo diferencialna enačba. Ker nastopa drugi odvod, je enačba drugega reda. Če je sila konstantna, rešitev že poznamo; gre za enakomerno pospešeno gibanje z rešivijo v(t = f t + v 0, x(t = 1 2 f t2 + v 0 t + x 0. (1 (Namesto f seveda lahko zapišemo kar pospešek a. Težava se pojavi, če sila ni konstantna, ampak odvisna od hitrosti, lege ali časa. Zgled za silo, odvisno od hitrosti, je bodisi linearni upor (F u = 6πrηv za kroglico bodisi kvadratni upor v sredstvu (F u = 1 2 c uρsv 2 ; zgled za silo, odvisno od lege, je prožnostna sila F = kx ali gravitacijska sila med dvema telesoma F g = Gm 1 m 2 /r 2. V splošnem torej lahko zapišemo d 2 x F(v, x, t = = f 2 m (, x, t, (2 pri čmer smo v zadnjem koraku hitrost zapisali kot odvod lege po času. Zapisali smo splošno obliko enačbe 2. reda. Enačba povezuje drugi odvod odvisne spremenljivke (v našem primeru je to lega x s prvim odvodom odvisne spremenljivke, odvisno spremenljivko in neodvisno spremenljivko (v našem primeru je to čas t. V nadaljevanju bomo zapis posplošili na enačbo n-tega reda, ki povezuje n-ti odvod odvisne spremenljivke z neodvisno spremenljivko, odvisno spremenljivko in njenimi odvodi do n 1-tega odvoda. V enostavnih primerih obravnavali jih bomo v naslednjih poglavjih je mogoče reševane diferencialne enačbe prevesti na integriranje. V splošnem pa to ni mogoče in uporabiti moramo standardne prijeme za reševanje diferencialnih enačb. Nekaj teh si bomo ogledali v nadaljevanju. A ti prijemi delujejo le za posebne oblike NDE. Ko odpovedo, se zatečemo k numeričnemu reševanju. Pri numeričnemu reševanju je dobrodošla nekoliko drugačna oblika zapisa enačbe. Poleg lege vzamemo za odvisno spremenljivko še hitrost in zapišemo: dv = f (v, x, t, (3 = v. (4 Druga zapisana enačba je pravzaprav definicija hitrosti. Formalno pa lahko zapis obravnavamo kot sistem dveh enačb prvega reda za dve (odvisni spremenljivki.
2 Sistemi NDE Sisteme linearnih enačb srečamo v fiziki tudi pri zapisu enačb gibanja v dveh ali treh razsežnostih. V tem primeru zapišemo Newtonov zakon z vektorji a = d2 r 2 = ( F m = d r f, r, t. V ravnini zapišmo vektorje s komponentami r = (x, y in F = (Fx, F y. Koordinati x in y sta sedaj dve odvisni spremenljivki in naloga zahteva, da za obe poiščemo časovno odvisnost. Dobimo dve enačbi drugega reda: d 2 ( x 2 = f x, dy d 2 ( y 2 = f y, dy, x, y, t, x, y, t, (5. (6 Enačbi sta sklopljeni, saj (prva enačba za x vsebuje tudi spremenljivko y in njen odvod, prav tako kot enačba za y vsebuje x in njen odvod. Podobno kot smo to naredili na koncu prejšnjega razdelka, lahko tudi vsako od teh enačb zapišemo kot sistem dveh enačb prvega reda za štiri neznane količine x, y, v x, v y. dv x dv y dy = f x (v x, v y, x, y, t, = v x, = f y (v x, v y, x, y, t, = v y. (7 Za zgled vzemimo poševni met z upoštevanjem zračnega upora. Sila je v tem primeru odvisna od kvadrata hitrosti F u = 1 2 c uρsv 2. Ampak silo moramo zapisati kot vektor. Kaže v nasprotni smeri hitrosti, torej ( Fu = 1 2 c uρsv 2 v v = 1 2 c uρsv v = 1 2 c uρs v 2 x + v 2 y (v x, v y. V vodoravni smeri je to edina sila: f x = k v 2 x + v 2 y v x, v navpični smeri pa deluje še teža mg v smeri navzdol: f y = g k v 2 x + v 2 y v y. k = c uρs 2m, Izraza vstavimo v (7 in dobimo priročno obliko, primerno za numerično reševanje. 2
3 Začetni pogoji Že iz oblike rešitve najbolj preproste enačbe 2. reda vidimo, da je rešitev odvisna od dveh parametrov v 0 in x 0 ; če izberemo drugačno začetno hitrost ali odmik, dobimo drugačno rešitev za časovno odvisnost hitrosti in odmika. Če hočemo torej dobiti enolično rešitev, moramo pri problemu povedati njuni vrednosti. Navedemo začetna pogoja. V nekoliko bolj formalni obliki, ko namesto hitrosti pišemo odvod odmika, lahko pogoja zapišemo: (t = v 0, (8 t=0 x(t = 0 = x 0. (9 Da bo rešitev enolična, moramo torej poznati funkcijo in njen odvod ob začetnem času (običajno je to kar čas 0. Zato govorimo o začetnih pogojih. Zgornji razmislek velja za enačbo drugega reda. V splošnem velja, da moramo navesti toliko začetnih pogojev, kolikor je red enačbe. Pri enačbi prvega reda zadošča en sam pogoj: navesti moramo le vrednost spremenljivke ob začetnem žasu. Klasifikacija NDE red enačbe: Kot smo že povedali, red enačbe določa najvišji odvod. homogene in nehomogene enačbe: Če v enačbi ne nastopa člen, ki bi vseboval le neodvisno spremenljivko, pravimo, da je enačba homogena; če je prisoten tak člen, je enačba nehomogena. V primeru enačbe (2 pomeni, da v primeru homogene enačbe nastopajo le sile, odvisne od hitrosti in/ali odmika; če se pojavi še sila, ki je odvisna od čas (lahko je tudi konstantna, pa je enačba nehomogena/ linearne in nelinearne enačbe: Če se v enačbi pojavlja odvisna spremenljivka in njeni odvodi linearno (tj. v prvi potenci, je enačba linearna, sicer je nelinearna. Če je v primeru Newtonovega zakona sila odvisna linearno od odmika tako kot pri prožnostni sili ali od hitrosti kot pri linearnem zakonu upora je enačba linearna; v primeru kvadratnega upora, pa je nelinearna. Za linearne enačbe veljata pomembna lastnosti: Poljubna linearna kombinacija rešitev linearne NDE je tudi rešitev enačbe. Splošno rešitev linearne NDE n-tega reda zapišemo kot linearno superpozicijo n bazičnih rešitev. Zgled: bazični rešitvi Newtonovega zakona za nihanje sta x 1 (t = sin(ωt in x 2 (t = cos(ωt. Splošno rešitev torej zapišemo kot x(t = A sin(ωt + B cos(ωt pri čemer sta A in B poljubna koeficienta. Določimo ju iz začetnih pogojev. Nekaj splošnih lastnosti NDE V tem razdelku bom neodvisno spremenljivko pisali kot x, odvisno (iskano funkcijo pa z y. 3
4 Splošna oblika d n y(x d n x ( = F x, y(x, dy(x (x, d2 y(x d 2 x,..., dn 1 y(x d n 1 x (10 n... red NDE Linearne enačbe: d n y(x d n x = α 0 (xy(x α 1 (x dy(x (x α 2(x d2 y(x d 2... α n 1 (x dn 1 y(x x d n 1 + f (x (11 x Homogena NDE Nehomogena NDE f (x = 0 (12 f (x = 0 (13 Linearne enačbe s konstantnimi koeficienti: Vsi koeficienti α v (11 so neodvisni od x d n y(x d n x + α n 1 d n 1 y(x d n 1 x... + α 2 d 2 y(x d 2 x + α 1 dy(x (x + α 0 y(x = f (x (14 Začetni pogoji: Enolično rešitev enačbe določa n začetnih pogojev (n je red NDE. Običajno jih zapišemo v obliki Za x 0 lahko pogosto izberemo kar 0. y(x = x 0 = y 0 dy(x = y 1 x=x0 d 2 y(x d 2 x = y 2 x=x0 d n 1 y(x d n 1 x = y n 1 x=x0 Reševanje NDE Prevedba na integral: NDE oblike dy(x = f (yg(x (15 lahko takoj prevedemo na integral y(x y 0 dy f (y = x x 0 g(x (16 Začetni pogoj je vsebovan v spodnjih mejah integralov na desni in na levi: y(x 0 = y 0. 4
5 Linearna homogena NDE s konstantnimi koeficienti: Izberemo nastavek e λx, vstavimo v NDE in dobimo navadno enačbo n-tega reda za parameter λ λ n + α n 1 λ n α 2 λ 2 + α 1 λ + α 0 = 0 (17 Enačba je vedno rešljiva v kompleksnem, dobimo n rešitev za parameter λ, bazične rešitve so ϕ i (x = e λ ix, i = 1,... n. (18 Splošno rešitev zapišemo y(x = A 1 e λ 1x + A 2 e λ 2x + A 3 e λ 3x A n e λ nx (19 Koeficiente A i dobimo iz n začetnih pogojev. Linearna nehomogena NDE: Rešitev napišemo kot vsoto rešitve homogene enačbe (t.j. enačbe brez nehomogenega člena f (x in partikularne rešitve nehomogene enačbe: y(x = y H (x + y P (x (20 y p (x je katera koli rešitve nehomogene enačbe in v splošnem ne zadošča začetnim pogojem. Za nehomogeno enačbo s konstantnimi koeficienti rešitev zapišemo y(x = A 1 e λ 1x + A 2 e λ 2x + A 3 e λ 3x A n e λ nx + y p (x (21 Koeficiente A i določimo iz začetnih pogojev. Koeficiente določimo šele po tem, ko smo že dodali partikularno rešitev. Partikularno rešitev bodisi uganemo bodisi uporabimo katero od bolj sofisticiranih metod, ki bodo predstavljene kasneje. Numerične metode 5
6 Zgledi Reševanje nehomogene NDE s konstantnimi koeficienti y = 4y 3y + 1, y(0 = 0, y (0 = 0. (22 Ugotovimo, da gre za enačbo 2. reda, linearno, nehomogeno ( f (x = 1 s konstantnimi koeficienti. Homogeni del, y 4y + 3y = 0 rešujemo z nastavkom y(x = e λx. Dobimo kvadratno enačbo za λ: λ 2 4λ + 3 = 0, (λ 3(λ 1 = 0, λ 1 = 3, λ 1 = 1. (23 Dobimo dve bazični rešitvi y 1 (x = e 3x in y 2 (x = e x, in splošna rešitev homogene ima obliko y(x = Ae 3x + Be x (24 Partikularno rešitev nehomogene enačbe ugibamo, poskusimo kar z nastavkom y p (x = a. Ker sta prvi in drugi odvod konstante enaka 0, dobimo Splošna rešitev ima torej obliko 3a = 1, y p (x = 1 3. (25 y(x = Ae 3x + Be x (26 Koeficienta A in B določimo iz začetnih pogojev: y(x x=0 = Ae 3x + Be x = A + B + 1 x=0 3 = 0, y (x x=0 = 3Ae 3x + Be x x=0 = 3A + B = 0. Hitro ugotovimo A = 1 6 in B = 1 2, torej y(x = 1 6 e3x 1 2 ex (27 6
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Matematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:
Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
diferencialne enačbe - nadaljevanje
12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne
Analiza 2 Rešitve 14. sklopa nalog
Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)
vezani ekstremi funkcij
11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad
Matematične metode v fiziki II. B. Golli, PeF
Matematične metode v fiziki II B. Golli, PeF 8. september 2014 2 Kazalo 1 Navadne diferencialne enačbe (NDE) 5 1.1 Uvod.............................................. 5 1.1.1 Diferencialne enačbe v fiziki.............................
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Navadne diferencialne enačbe
Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:
4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Navadne diferencialne enačbe
Navadne diferencialne enačbe (študijsko gradivo) Matija Cencelj 1. maja 2003 2 Kazalo 1 Uvod 5 1.1 Preprosti primeri......................... 8 2 Diferencialne enačbe prvega reda 11 2.1 Ločljivi spremenljivki.......................
Funkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb
Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb Fakulteta za računalništvo in informatiko Univerza v Ljubljani 2017/2018 Za kaj rabimo diferencialne
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Reševanje sistema linearnih
Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti
Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Nekaj zgledov. J.Kozak Numerične metode II (IŠRM) / 21
Nekaj zgledov J.Kozak Numerične metode II (IŠRM) 2011-2012 1 / 21 V robnih problemih rešitev diferencialne enačbe zadošča dodatnim pogojem, ki niso vsi predpisani v isti točki. Že osnovna zahteva, kot
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Navadne diferencialne enačbe
Poglavje 6 Navadne diferencialne enačbe 6.1 Uvod Splošna rešitev navadne diferencialne enačbe n-tega reda F(x, y, y, y,..., y (n) ) = 0 je n-parametrična družina funkcij. Kadar želimo iz splošne rešitve
Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:
NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več
Definicija 1. Naj bo f : D odp R funkcija. Funkcija F : D odp R je primitivna funkcija funkcije f, če je odvedljiva in če velja F = f.
Nedoločeni integral V tem razdelku si bomo pogledali operacijo, ki je na nek način inverzna odvajanju. Za dano funkcijo bomo poskušali poiskati neko drugo funkcijo, katere odvod bo ravno dana funkcija.
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Kombinatorika. rekurzivnih enačb in rodovne funkcije. FMF Matematika Finančna matematika. Vladimir Batagelj. Ljubljana, april
FMF Matematika Finančna matematika Kombinatorika Reševanje rekurzivnih enačb in rodovne funkcije Vladimir Batagelj Math fun: Pascal triangle Ljubljana, april 2008 4. Dec 2012 različica: December 4, 2012
11.5 Metoda karakteristik za hiperbolične PDE
11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
8. Navadne diferencialne enačbe
8. Navadne diferencialne enačbe 8.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija
Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.
1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
DISKRETNA FOURIERJEVA TRANSFORMACIJA
29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,
Jasna Prezelj DIFERENCIALNE ENAČBE. za finančno matematiko
Jasna Prezelj DIFERENCIALNE ENAČBE za finančno matematiko Ljubljana 211 naslov: DIFERENCIALNE ENAČBE ZA FINANČNO MATEMATIKO avtorske pravice: Jasna Prezelj izdaja: prva izdaja založnik: samozaložba Jasna
α i y n i + h β i f n i = 0, Splošni nastavek je k
10.4 Večkoračne metode Splošni nastavek je k α i y n i + h i=0 k β i f n i = 0, kjer je f i = f(x i, y i ), privzamemo pa še α 0 = 1. Če je β 0 = 0, je metoda eksplicitna, sicer pa implicitna. i=0 Adamsove
Kvantni delec na potencialnem skoku
Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila
FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer
UPOR NA PADANJE SONDE V ZRAKU
UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži
VEKTORJI. Operacije z vektorji
VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega
Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,
3.1 Reševanje nelinearnih sistemov
3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
1. UREJENE OBLIKE KVADRATNE FUNKCIJE
1. UREJENE OBLIKE KVADRATNE FUNKCIJE A) Splošna oblika Definicija 1 : Naj bodo a, b in c realna števila in a 0. Realno funkcijo: f : x ax + bx + c imenujemo kvadratna funkcija spremenljivke x v splošni
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti
Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih
Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v
Enočlenske metode J.Kozak Uvod v numerične metode - / 4 Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v skupino Runge-Kutta metod.
Matematika. Funkcije in enačbe
Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana
8. Posplošeni problem lastnih vrednosti
8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki
Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
Afina in projektivna geometrija
fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +
Statistika II z računalniško analizo podatkov. Bivariatna regresija, tipi povezanosti
Statistika II z računalniško analizo podatkov Bivariatna regresija, tipi povezanosti 1 Regresijska analiza Regresijska analiza je statistična metoda, ki nam pomaga analizirati odnos med odvisno spremenljivko
Dinamika kapilarnega pomika
UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Goran Bezjak SEMINARSKA NALOGA Dinamika kapilarnega pomika Mentor: izr. prof. dr. Gorazd Planinšič Ljubljana, december 2007 1 Povzetek
UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II
UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA II Maribor, 2016 Kazalo Uvod v linearno algebro 1 1.1 Matrike................................ 1 1.2 Računanje
Osnove numeričnega reševanja fizikalnih problemov
Osnove numeričnega reševanja fizikalnih problemov Kazalo Bojan Golli, Pedagoška fakulteta, Univerza v Ljubljani 1. Nekatere metode za reševanje navadnih diferencialnih enačb 2 1.1 Diskretizacija......................................
Domača naloga 6: dušeno nihanje
Domača naloga 6: dušeno nihanje Vaje iz predmeta Numerične metode v fiziki Igor Grešovnik Kazalo: 1 Naloga 6a Nihanje... 1.1 Enačbe nihanja... 1. Numerično reševanje problema... 3 1..1 Reševanje sistema
1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III
UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 215 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................
Poliedri Ines Pogačar 27. oktober 2009
Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.
INTEGRALI RACIONALNIH FUNKCIJ
UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA NIKA HREN INTEGRALI RACIONALNIH FUNKCIJ DIPLOMSKO DELO LJUBLJANA, 203 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA MATEMATIKA - RAČUNALNIŠTVO NIKA HREN Mentor: izr.
MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK
abc MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK ŠTEVILA PRIBLIŽNO RAČUNANJE PRIBLIŽNO RAČUNANJE Ta fosil dinozavra je star 7 milijonov in šest let, pravi paznik v muzeju.??? Ko sem
Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta
Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,
Osnovne lastnosti odvoda
Del 2 Odvodi POGLAVJE 4 Osnovne lastnosti odvoda. Definicija odvoda Odvod funkcije f v točki x je definiran z f f(x + ) f(x) (x) =. 0 Ta definicija je smiselna samo v primeru, ko x D(f), ita na desni
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Slika 5: Sile na svetilko, ki je obešena na žici.
4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno
Osnove linearne algebre
Osnove linearne algebre Matrike Matrika razsežnosti n m je A = a 1 1 a 1 2 a 1 m a 2 1 a 2 2 a 2 m a n 1 a n 2 a n m Če je n = m, tedaj matriko imenujemo kvadratna matrika Elementi matrike so lahko realna
1 Fibonaccijeva stevila
1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih
primer reševanja volumskega mehanskega problema z MKE
Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )
VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]
Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko
Linearna algebra Bojan Orel Fakulteta za računalništvo in informatiko 23. februar 205 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 52.64(075.8)(0.034.2) OREL, Bojan
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Marko Koselj PRIMERI UPORABE NAVADNIH DIFERENCIALNIH ENAČB. Diplomsko delo
UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Matematika - pedagoška smer (UNI) Marko Koselj PRIMERI UPORABE NAVADNIH DIFERENCIALNIH ENAČB Diplomsko delo Ljubljana, 00 Sin človekov je namreč prišel
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2.
ENOTE IN MERJENJA Fizika temelji na merjenjih Vsa važnejša fizikalna dognanja in zakoni temeljijo na ustreznem razumevanju in interpretaciji meritev Tudi vsako novo dognanje je treba preveriti z meritvami
Osnove matematične analize 2016/17
Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja
UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ
1. UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ Vosnovnemtečaju mehanike trdnih teles smo izpeljali sistem petnajstih osnovnih enačb, s katerimi lahko načeloma določimo napetosti, deformacije in pomike
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Mehanika. L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS
Mehanika L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS 2. januar 2004 Kazalo 1 Gibalne enačbe 4 1 Posplošene koordinate...............................
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
ZBIRKA REŠENIH NALOG IZ MATEMATIKE I
Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE I Skripta za vaje iz Matematike I (UNI + VSP) Ljubljana, množice Osnovne definicije: Množica A je podmnožica
Dragi polinom, kje so tvoje ničle?
1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.