Stabilitatea circuitelor cu reacţie
|
|
- ÏἸάϊρος Αβραμίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Lucrarea 21 Stabilitatea circuitelor cu reacţie Scopul lucrării: prezentarea schemei bloc, a terminologiei şi a criteriilor de stabilitate specifice circuitelor cu reacţie, exemplificarea acestora folosind scheme de oscilatoare elementare. Prezentarea lucrării Un sistem cu reacţie (feedback) se caracterizează prin faptul că legătura intrareieşire este bidirecţională: semnalul de la intrare circulă spre ieşire parcurgând o aşa-numită cale directă, iar semnalul de la ieşire este recirculat spre intrare parcurgând o cale inversă, denumită cale de reacţie. Schema-bloc a unui astfel de circuit se prezintă în Fig.1: Figura 1 Blocul notat cu ka(s) se numeşte amplificator pe calea directă, iar cel notat cu B(s) se numeşte amplificator pe calea de reacţie. Reacţia se consideră negativă dacă semnalul recirculat de la ieşirea circuitului spre intrare tinde să micşoreze semnalul total aplicat intrării amplificatorului de bază, (k>0). În caz contrar, reacţia se consideră pozitivă (k<0). Funcţia de transfer a circuitului, denumită funcţie de transfer în buclă închisă, se calculează cu formula de mai jos (considerând reacţia negativă): (s)= H r ka(s)b(s) 1+ ka(s)b(s) Mărimea ka(s)b(s) se numeşte funcţie de transfer în buclă deschisă a circuitului cu reacţie.
2 Studiul stabilităţii unui circuit cu reacţie se poate efectua utilizând criteriul general de stabilitate a unui circuit liniar, criteriul Routh-Hurwitz. Totuşi, ţinând cont de forma particulară a funcţiei de transfer a circuitului s-au elaborat şi criterii specifice, care folosesc următorul principiu: studiind funcţia de transfer în buclă deschisă a circuitului se trag concluzii privind stabilitatea circuitului în buclă închisă. Este un principiu extrem de util în practică, deoarece în cazul unui sistem cu reacţie instabil, închiderea buclei poate deveni periculoasă, putând conduce la distrugerea circuitului. Dintre criteriile de stabilitate specifice circuitelor cu reacţie menţionăm: - Criteriul Nyquist: Un sistem cu reacţie este stabil dacă hodograful funcţiei de transfer în buclă deschisă înconjoară punctul (-1,0) de P ori în sens trigonometric (sens invers acelor de ceasornic). Există câteva mărimi de interes care se definesc în contextul utilizării acestui criteriu: Z: numărul de zerouri din semiplanul drept ale funcţiei 1+kA(s)B(s) (care reprezintă, în acelaşi timp, poli ai funcţiei de transfer în buclă închisă); P: numărul de poli din semiplanul drept ai funcţiei de transfer în buclă deschisă ka(s)b(s); N: numărul de înconjururi pe care le efectuează hodograful funcţiei de transfer în buclă deschisă în jurul punctului (-1,0). N se consideră pozitiv dacă înconjurul se efectuează în sens orar şi negativ dacă se efectuează în sens trigonometric. Criteriul Nyquist presupune utilizarea formulei Z=N+P şi pentru ca sistemul în buclă închisă să fie stabil este necesar ca Z=0. După cum ştim, hodograful unei funcţii complexe se trasează într-un sistem de coordonate reprezentat de partea sa reală, respectiv partea sa imaginară. Semnificaţia unui punct de pe hodograf este următoarea: dacă unim originea cu punctul respectiv, lungimea vectorului este egală cu modulul funcţiei de transfer în buclă deschisă, iar unghiul format de vectorul respectiv cu axa absciselor este egal cu argumentul funcţiei de transfer în buclă deschisă în dreptul unei anumite frecvenţe. - Locul rădăcinilor: Un sistem cu reacţie este stabil dacă locul geometric descris de soluţiile ecuaţiei: 1+kA(s)B(s)=0 pentru diverse valori ale lui k (grafic care este denumit locul rădăcinilor) nu are porţiuni cuprinse în semiplanul drept. Acest grafic se trasează aplicând un set de reguli foarte simple, dintre care enumerăm: - locul rădăcinilor pleacă din polii şi se termină în zerourile funcţiei de transfer în buclă deschisă;
3 - porţiunile din locul rădăcinilor aflate pe axa absciselor se găsesc la stânga unui număr impar se singularităţi (poli sau zerouri); - porţiunile din locul rădăcinilor aflate pe axa absciselor şi cuprinse între 2 singularităţi de acelaşi fel se desprind de pe axă sub un unghi de 90 ; - ramurile spre care porţiuni din locul rădăcinilor tind asimptotic formează cu axa absciselor unghiuri care se calculează cu relaţia: (2k +1) π θ k = P - Z în care P şi Z reprezintă numărul de poli, respectiv de zerouri finite ale funcţiei de transfer în buclă deschisă. Observaţie: P şi Z au altă semnificaţie decât la criteriul Nyquist! - asimptotele se intersectează într-un punct plasat întotdeauna pe axa reală, denumit centru de greutate, a cărui abscisă se calculează cu formula: abs pi - abs zi i i cg = P - Z Semnificaţia unui punct de pe locul rădăcinilor este următoarea: coordonatele acestuia reprezintă valoarea (reală sau complexă) a unei soluţii a ecuaţiei 1+kA(s)B(s)=0 pentru o valoare particulară a parametrului k. Acesta este motivul pentru care se spune că locul rădăcinilor este gradat în valori ale lui k (în sensul că în loc să precizăm coordonatele în planul complex ale unui punct de pe grafic putem indica valoarea lui k pentru care punctul respectiv este soluţie a ecuaţiei mai sus menţionate). - Criteriul Barkhausen: Un sistem cu reacţie este stabil în buclă închisă dacă modulul funcţiei de transfer în buclă deschisă este subunitar în dreptul frecvenţei la care faza acesteia este 180. Se definesc următoarele mărimi: - rezerva de amplitudine: diferenţa dintre 1 şi modulul funcţiei de transfer în buclă deschisă în dreptul frecvenţei la care argumentul acestei funcţii este rezerva de fază: diferenţa dintre argumentul funcţiei de transfer în buclă deschisă în dreptul frecvenţei la care modulul acestei funcţii este 1 şi unghiul de 180. Pentru ca sistemul să fie stabil în buclă închisă rezerva de amplitudine trebuie să fie pozitivă (tipic 6-10 db), respectiv rezerva de fază să fie pozitivă (tipic ). Procesul prin care se asigură aceste valori (şi implicit stabilitatea circuitului) se numeşte compensare.
4 Modul de lucru: 1. Se realizează circuitul din Fig.2, cu R=1,5 kω, C=33nF, R 1 =1,5kΩ: Figura 2 - calculaţi funcţia de transfer a circuitului, considerând amplificatorul operaţional ideal. Aplicăm la intrare semnal armonic de la generator. Semnalul de la ieşirea circuitului se aplică pe intrarea Y a osciloscopului, iar semnalul de la generator pe intrarea X. Pe ecran va apare o figură Lissajous de forma unei elipse. Se modifică frecvenţa semnalului până când elipsa degenerează într-o linie dreaptă cu panta pozitivă. - care este valoarea defazajului intrare-ieşire în acest moment? Fără a mai modifica frecvenţa se modifică poziţia cursorului potenţiometrului până când modulul funcţiei de transfer (amplificarea) devine egal cu În acest moment se îndepărtează generatorul şi se realizează conexiunea directă între intrare şi ieşire. Introducând baza de timp se poate observa pe ecran o oscilaţie a cărei frecvenţă se va măsura. - care este frecvenţa teoretică de oscilaţie? Modificând cursorul potenţiometrului se observă că într-un sens oscilaţia dispare, iar în celălalt sens se menţine, dar ieşirea amplificatorului operaţional intră rapid în saturaţie. În acelaşi timp, frecvenţa oscilaţiei se modifică. - care este explicaţia modificării frecvenţei de oscilaţie? - ce ar trebui să facem pentru ca oscilaţia să fie armonică (ieşirea amplificatorului operaţional să nu ajungă în saturaţie)? - care este valoarea minimă a amplificării conexiunii de amplificator neinversor pentru ca regimul oscilant să se amorseze? 3. Se repetă experimentul în cazul circuitului din Fig.3:
5 Figura 3 - calculaţi funcţia de transfer a circuitului, considerând amplificatorul operaţional ideal. - care este frecvenţa teoretică de oscilaţie? Întrebări suplimentare: 1. Propuneţi o funcţie de transfer care să corespundă unui sistem instabil în buclă închisă, fapt justificat de aplicarea criteriului Nyquist şi care să se dovedească stabil aplicând criteriul Barkhausen. 2. În ce condiţii un sistem instabil în buclă deschisă este stabil în buclă închisă? 3. Cum trebuie să fie caracteristica de frecvenţă a unui circuit selectiv plasat în bucla de reacţie a unui amplificator neselectiv pentru ca stabilitatea frecvenţei să fie bună? 4. Modelaţi amplificarea amplificatorului operaţional cu o funcţie de transfer de ordinul I, de forma: A(s)=A 0 ω 0 /s+ω 0. Cum se modifică funcţiile de transfer în buclă deschisă ale circuitelor studiate? Studiaţi stabilitatea în buclă închisă a circuitelor cu reacţie de mai înainte.
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Transformări de frecvenţă
Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
SCS II Lab
SS II Lab 9 67 Stabilitatea circuitelor cu reacţie. Ocilatorul cu retea Wienn Un item cu reacţie (feedback) e caracterizează prin faptul că legătura intrareieşire ete bidirecţională. Schemabloc a unui
Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,
vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Analiza sistemelor liniare şi continue
Paula Raica Departmentul de Automatică Str. Dorobantilor 71-73, sala C21, tel: 0264-401267 Str. Baritiu 26-28, sala C14, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Stabilitatea sistemelor liniare si invariante in timp
Stabilitatea sistemelor liniare si invariante in timp In continuare ne vom referi la sisteme liniare si invariante in timp cauzale. http://shannon.etc.upt.ro/teaching/ps/cap4_stabilitate.pdf Analiza stabilitatii
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)
ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Analiza sistemelor liniare şi continue
Paula Raica Departamentul de Automatică Str. Dorobanţilor 7, sala C2, tel: 0264-40267 Str. Bariţiu 26, sala C4, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
2.1 Amplificatorul de semnal mic cu cuplaj RC
Lucrarea nr.6 AMPLIFICATOAE DE SEMNAL MIC 1. Scopurile lucrării - ridicarea experimentală a caracteristicilor amplitudine-frecvenţă pentru amplificatorul cu cuplaj C şi amplificatorul selectiv; - determinarea
z a + c 0 + c 1 (z a)
1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
Conice - Câteva proprietǎţi elementare
Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
Electronică anul II PROBLEME
Electronică anul II PROBLEME 1. Găsiți expresiile analitice ale funcției de transfer şi defazajului dintre tensiunea de ieşire şi tensiunea de intrare pentru cuadrupolii din figurile de mai jos și reprezentați-le
COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE
COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE I. OBIECTIVE a) Determinarea caracteristicilor statice de transfer în tensiune pentru comparatoare cu AO fără reacţie. b) Determinarea tensiunilor de ieşire
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
wscopul lucrării: prezentarea modului de realizare şi de determinare a valorilor parametrilor generatoarelor de semnal.
wscopul lucrării: prezentarea modului de realizare şi de determinare a valorilor parametrilor generatoarelor de semnal. Cuprins I. Generator de tensiune dreptunghiulară cu AO. II. Generator de tensiune
2.2.1 Măsurători asupra semnalelor digitale
Lucrarea 2 Măsurători asupra semnalelor digitale 2.1 Obiective Lucrarea are ca obiectiv fixarea cunoştinţelor dobândite în lucrarea anterioară: Familiarizarea cu aparatele de laborator (generatorul de
Laborator 3 I.S.A. Stabilitatea sistemelor liniare şi răspunsul în frecvență.
Laborator 3 I.S.A. Stabilitatea sistemelor liniare şi răspunsul în frecvență. 1. Introducere...1 2. Stabilitatea sistemelor liniare...1 2.1 Stabilitatea internă...2 2.2 Stabilitatea externă...3 2.3. Exemple...4
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice
4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.
Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni
Problema 1. Se dă circuitul de mai jos pentru care se cunosc: VCC10[V], 470[kΩ], RC2,7[kΩ]. Tranzistorul bipolar cu joncţiuni (TBJ) este de tipul BC170 şi are parametrii β100 şi VBE0,6[V]. 1. să se determine
Transformata Laplace
Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Lucrarea nr. 7: Reprezentarea în frecvenţă a funcţiilor de transfer. Criterii de stabilitate
Lucrarea nr. 7: prezentarea în frecvenţă a funcţiilor de transfer. Criterii de stabilitate. Scopul lucrării Se va face analiza comportării în frecvenţă a sistemelor de reglare automate (reprezentarea hodografului
Lucrarea nr. 5 STABILIZATOARE DE TENSIUNE. 1. Scopurile lucrării: 2. Consideraţii teoretice. 2.1 Stabilizatorul derivaţie
Lucrarea nr. 5 STABILIZATOARE DE TENSIUNE 1. Scopurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare serie şi derivaţie; -
Lucrarea Nr. 11 Amplificatoare de nivel mare
Lucrarea Nr. 11 Amplificatoare de nivel mare Scopul lucrării - asimilarea conceptului de nivel mare; - studiul etajului de putere clasa B; 1. Generalităţi Caracteristic etajelor de nivel mare este faptul
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
A1. Valori standardizate de rezistenţe
30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea
( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)
Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN
AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN Montajul Experimental În laborator este realizat un amplificator cu tranzistor bipolar în conexiune cu emitorul comun (E.C.) cu o singură
Amplificatoare liniare
mplificatoare liniare 1. Noţiuni introductie În sistemele electronice, informaţiile sunt reprezentate prin intermediul semnalelor electrice, care reprezintă mărimi electrice arible în timp (de exemplu,
i R i Z D 1 Fig. 1 T 1 Fig. 2
TABILIZATOAE DE TENINE ELECTONICĂ Lucrarea nr. 5 TABILIZATOAE DE TENINE 1. copurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare
Lucrarea 9. Analiza în regim variabil de semnal mic a unui circuit de amplificare cu tranzistor bipolar
Scopul lucrării: determinarea parametrilor de semnal mic ai unui circuit de amplificare cu tranzistor bipolar. Cuprins I. Noţiuni introductive. II. Determinarea prin măsurători a parametrilor de funcţionare
10/31/2014. În evoluţia sistemelor dinamice unele semnale apar cu o anumită întârziere faţă de un anumit moment convenţional ales ca t = 0. (2.
Transformata F(s) definită de (.37) este univocă şi se numeşte transformata Laplace directă.. Transformata Laplace inversă este univocă numai în cazul funcţiilor f(t) continue şi se defineşte prin relaţia
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Polarizarea tranzistoarelor bipolare
Polarizarea tranzistoarelor bipolare 1. ntroducere Tranzistorul bipolar poate funcţiona în 4 regiuni diferite şi anume regiunea activă normala RAN, regiunea activă inversă, regiunea de blocare şi regiunea
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
LUCRAREA NR. 4 STUDIUL AMPLIFICATORUL INSTRUMENTAL
LUCRAREA NR. 4 STUDIUL AMPLIFICATORUL INSTRUMENTAL 1. Scopul lucrării În această lucrare se studiază experimental amplificatorul instrumental programabil PGA202 produs de firma Texas Instruments. 2. Consideraţii
Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
CIRCUITE LOGICE CU TB
CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune
Lucrarea 12. Filtre active cu Amplificatoare Operaţionale
Scopul lucrării: introducerea tipurilor de iltre de tensiune, a relaţiilor de proiectare şi a modului de determinare prin măsurători/simulări a principalilor parametri ai acestora. Cuprins I. Noţiuni introductive
7. AMPLIFICATOARE DE SEMNAL CU TRANZISTOARE
7. AMPLIFICATOARE DE SEMNAL CU TRANZISTOARE 7.1. GENERALITĂŢI PRIVIND AMPLIFICATOARELE DE SEMNAL MIC 7.1.1 MĂRIMI DE CURENT ALTERNATIV 7.1.2 CLASIFICARE 7.1.3 CONSTRUCŢIE 7.2 AMPLIFICATOARE DE SEMNAL MIC
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
CIRCUITE CU PORŢI DE TRANSFER CMOS
CIRCUITE CU PORŢI DE TRANSFER CMOS I. OBIECTIVE a) Înţelegerea funcţionării porţii de transfer. b) Determinarea rezistenţelor porţii în starea de blocare, respectiv de conducţie. c) Înţelegerea modului
Determinarea tensiunii de ieşire. Amplificarea în tensiune
I.Circuitul sumator Circuitul sumator are structura din figura de mai jos. Circuitul are n intrări, la care se aplică n tensiuni de intrare şi o singură ieşire, la care este furnizată tensiunea de ieşire.
7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL
7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in
11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.
REDRESOARE MONOFAZATE CU FILTRU CAPACITIV
REDRESOARE MONOFAZATE CU FILTRU CAPACITIV I. OBIECTIVE a) Stabilirea dependenţei dintre tipul redresorului (monoalternanţă, bialternanţă) şi forma tensiunii redresate. b) Determinarea efectelor modificării
EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC
.Masurarea unghiurilor intr-un triunghi dreptunghic sin B= cateta opusa ipotenuza = AC BC cateta alaturata, cos B= AB ipotenuza BC cateta opusa AC cateta alaturata AB tg B=, ctg B= cateta alaturata AB
prin egalizarea histogramei
Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o