Lucrarea nr. 7: Reprezentarea în frecvenţă a funcţiilor de transfer. Criterii de stabilitate
|
|
- Αθορ Διαμαντόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Lucrarea nr. 7: prezentarea în frecvenţă a funcţiilor de transfer. Criterii de stabilitate. Scopul lucrării Se va face analiza comportării în frecvenţă a sistemelor de reglare automate (reprezentarea hodografului şi caracteristicilor semilogaritmice ale funcţiei de transfer). Se vor face precizări asupra stabilităţii sistemelor în buclă închisă cu ajutorul criteriilor de stabilitate Nyquist şi Bode. 2. Breviar teoretic Cu schimbarea de variabilă sjω, funcţia de transfer H(s) a unui sistem se poate scrie: ω ω ω ω ω ω ω () jω jarg H ( jω ) H(j ) H(j ) e H(j ) e H(j )+j H(j )U( )+jv( ) Analiza în frecvenţă a unui sistem constă în studiul regimului permanent armonic al mărimii de iesire la o intrare armonică de amplitudine constantă şi pulsaţie (frecvenţă) variabilă. Se introduc următoarele trei tipuri de reprezentări sau caracteristici ale funcţiei de transfer: locul de transfer (hodograful sau locul lui Nyquist); caracteristicile semilogaritmice de frecvenţă (amplitudine - pulsaţie şi fază - pulsaţie); caracteristica amplitudine - fază. Locul de transfer-hodograful sau locul lui yquist Maniera de reprezentare specifică hodografului este de tipul coordonate polare într-un plan ce are drept axe H(s), H(s).
2 Fig.. Caracteristici ale funcţiei de transfer: a - Locul de transfer; b - Caracteristicile semilogaritmice de frecvenţă; c - Caracteristica amplitudine - fază. La o reprezentare analitică a hodografului se preferă ca ea sa fie privită ca o transformare conformă a planului s denumit contur Nyquist care are următoarele proprietăţi: porţiunea sa principală este pe axa imaginară pe care sjω deci corespunzătoare răspunsului în frecvenţă eventualii poli pe care H(s) îi are pe axa imaginară sunt ocoliţi cu semicercuri de rază mică situaţi în semiplanul drept închiderea conturului Nyquist se face cu un semicerc de rază mare ce cuprinde întregul semiplan drept al planului s Sensul pe conturul Nyquist este dictat de sensul de creştere a pulsaţiei ω. Fig.2. Conturul yquist Se consideră k r( s) H ( s) q o _ s, p( s) unde r _ () p _ () şi se introduce noţiunea def e grad[ p( s)] grad[ r( s)], excesul polilor faţă de zerouri. _ - 2 -
3 Caracteristici semilogaritmice Caracteristica amplitudine - pulsaţie asimptotică Pentru trasarea caracteristicii pe axa ordonatelor se vor tece valorile (în decibeli) H(j ω) 2lg H(j ω) iar pe axa absciselor se figurează valorile (de obicei, db axa în decade, intervale de frecvenţă pentru care ω k ω ). k m ( + jω T i ) Scriind H(jω ) în formulă : K H j i ( ω ) n q ( jω ) ( + jω T k ) k şi punând fiecare termen complex sub formă de modul şi argument, se obţine: jϕ ( ω ) H ( jω ) H ( jω ) e (2) jϕ ' jϕ 2 ' jϕ m ' K ( H ' e ) ( H 2 ' e )... ( H m ' e ) jα π / 2 jϕ ' jϕ n ' ( e ) ( H ' e )... ( H ' n e ) (3) ' din care rezultă imediat: H( jω) 2lg H( jω) K + H H db m n idb i k laţia (4) permite trasarea caracteristicii asimptotice amplitudine-pulsaţie a unui sistem automat pentru care se cunosc elementele tip din funcţia de transfer (prin însumarea grafică a caracteristicilor acestora). Pentru elementele tip caracteristicile amplitudine-pulsaţie sunt date în tabela. gulile generale de trasare a caracteristicii sunt prezentate pe exemplul următor:. Se factorizează cu coeficienţi reali numărătorul şi numitorul lui H(s) - în general, acest lucru este dat din start. 32( s +. 2)( s + 5) H ( s) (5) 2 2 s ( s +. 4s + )( s + 8s + 6) 2. Elementele ce compun funcţia de transfer se aduc la o formă ce evidenţiază termenii tip (constantele de timp). 32 *. 2 * 5( + 5s )( +. 2s) 2( + 5s )( +. 2s) H ( s) s ( s +. 4s + )( s + s + ) s( s +. 4s + )( s + s + ) Se identifică elementele standard ce compun funcţia de transfer şi se determină parametrii necesari trasării: pulsaţiile de frângere (inversul constantelor de timp identificate la punctul ) factorii de amortizare pentru elementele de ordinul 2. element de anticipare de ordinul H a +5s; T 5; ω t /T.2 H a +.2s; T 2.2; ω t2 /T 2 5 ε 3dB kdb (4) - 3 -
4 element de întârziere de ordinul 2 H I ( s) ; T ; t ; 2 T ω 3 ζ 3 ζ s +. 4s + T 3 ε( ωt 3) db 2lg 2ζ 2lg. 4 8dB H I ( s) ; T ; t ; T. 4 ω 4 4 2ζ 4 ζ 2 4 T 2 s + s ε( ωt 4 ) db 2lg 2ζ 2lg. 2 4dB 4. Partea de joasă frecvenţă a caracteristicii este o dreaptă cu panta (-q 2 db/dec) trecând prin punctul de coordonate ω si K db 2 lgk K 2; K db 2 lg K 2 lg 2 2*.3 6 db q panta de joasă frecvență de - 2 db/dec 5. Considerând pulsaţiile de frângere ordonate crescător, se prelungeşte panta de joasă frecvenţă până la cea mai mică pulsaţie de frângere ω t. Cunscând tipul elementului standard cu pulsaţia de frângere ω t, se calculează panta rezultantă pe următoarea pulsaţie de frângere, ş.a.m.d. Ca verificare, panta porţiunii de înaltă frecvenţă trebuie să rezulte de (-e 2 db/dec) Caracteristica exactă amplitudine-pulsaţie se obţine corectând caracteristica asimptotică amplitudine - pulsaţie cu erorile făcute prin aproximarea respectivă. Acestea sunt de 3dB (în pulsaţiile de frângere) la elementele standard de ordinul I şi la elementele de ordinul II se calculează cu relaţia ε( ωt ) lg ζ db 2 2 Caracteristica fază-pulsaţie Trasarea acestei caracteristici se face analitic pe baza expresiei funcţiei ϕ sau cu şabloane de trasare a caracteristicilor standard componente (tabelul ). Din scrirea sub formă complexă a lui H(s), relaţia (), se deduce expresia: H( jω) f ( ω) arctg care arată dependenţa de pulsaţia fazeiϕ. Pentru sistemul H( jω) descris de funcţia de transfer (3) rezultă imediat: f m n π ( ω) ϕi '( ω) ϕ j( ω) q (6) i j 2 Aşadar după trasarea caracteristicilor fază-pulsaţie ale elementelor componente prin sumare se obţine caracteristica fază-pulsaţie a funcţiei de transfer considerate. Caracteristicile amplitudine-pulsaţie exacte şi faza pulsaţie pentru H(s) definit prin relaţia (5) sunt reprezentate în figura
5 Fig.3. Caracteristicile exacte amplitudine-pulsaţie şi faza pulsaţie prezentările în frecvenţă a funcţiilor de transfer sunt folosite la aprecierea stabilitaţii sistemelor descrise de aceste funcţii. Se spune că un sistem fizic realizabil este stabil faţă de o situaţie de echilibru staţionar, dacă sub acţiunea unei perturbaţii exterioare (impuls Dirac) îşi paraseşte starea de echilibru stabil, tinzând să revină, după un timp finit (perturbaţia încetând) la o noua stare de echilibru staţionar cu sau fară eroare staţionară. Dacă acest lucru nu este realizat, în sensul că mărimea de ieşire are o variaţie cu amplitudine din ce în ce mai mare în timp (oscilant sau aperiodic) se spune că sistemul este instabil. Aprecierea stabilităţii se poate face direct prin criteriul Hurwitz sau apelând la analiza frecvenţei prin criteriile Nyquist si Bode. Stabilitatea SRA poate fi analizată prin Criteriul yquist pe baza hodografului funcţiei de transfer din bucla H b (s). Se trasează hodograful pentru H b (s) şi se analizează stabilitatea pentru H (s) H b ( s ). + H b ( s) Criteriul Nyquist generalizat: Condiţia necesară şi suficientă ca un SRA să fie stabil este ca locul de transfer (hodograful) lui H b (s) să înconjoare punctul critic (-,j) în sens trigonometric de atâtea ori câţi poli are H b (s) în interiorul conturului yquist. Criteriul Nyquist simplificat: Condiţia necesară şi suficientă ca un SRA să fie stabil este ca hodograful lui H b (s) să nu înconjoare punctul critic (-,j) (se consideră H b (s) stabil)
6 Criteriul Bode Acest criteriu analizează stabilitatea SRA pe baza caracteristicilor semilogaritmice ale funcţiei de transfer din bucla deschisă H b (s), permiţând determinarea rezervei de stabilitate a sistemului H (s). zerva de stabilitate a unui SRA se evaluează prin două mărimi caracteristice: marginea de amplitudine (rezerva de stabilitate în modul): mdb H b ( jω Π ) db marginea de fază (rezerva de stabilitate în fază): γ 8 o + ϕ ( ωt ) unde ω t este pulsaţia de tăiere ( Hb ( jω t ) ) iar ω db Π pulsaţia la care sistemul H b (s) are o fază egală cu -Π. Criteriul Bode reprezintă transpunerea în scara logaritmică a criteriului Nyquist simplificat. El se exprimă astfel: Condiţia necesară şi suficientă ca un SRA să fie stabil este ca reprezentarea fază-pulsaţie să intersecteze axa ω într-un punct situat după intersecţia cu aceeaşi axă a reprezentării amplitudine pulsaţie (deci ω Π >ω t ). Fig.4. Criteriul yquist simplificat Fig.5. Criteriul Bode - 6 -
7 3. Chestiuni de studiat. Urmărind regulile generale ale trasării caracteristicilor semilogaritmice să se traseze caracteristicile amplitudine-pulsaţie şi fază-pulsaţie pentru sistemul definit prin funcţia de transfer de mai jos: Hb ( s). Să se verifice ( s+. )( s+. 8)( s+ 5 ) forma caracteristicilor cu ajutorul funcţiilor Matlab. 2. Urmărirea stabilitaţii următoarelor sisteme, caracterizate de funcţiile de transfer în circuit deschis, cu ajutorul criteriilor Bode şi Nyquist: k Hb ( s) ( s+. )( s+. 8)( s+ 5 ), k, k 5 k 2 Hb ( s) s( s+ 3)( s+ 3 ), k 2, k 2 Observaţii: Pentru reprezentare în frecvenţă se folosesc funcţiile nyquist(num,den) şi bode(num,den). Amănunte despre folosirea acestor funcţii se pot obţine tastând în linia de comandă Matlab: >> help nyquist >> help bode - 7 -
8 Nr. Crt. Tabelul nr.. Denumirea termenului tip Funcţia de transfer Element constant: Locul de transfer Caracteristici semilogaritmice H ( jω ) k k 2 Element derivativ: H ( jω) jω l d K ω+ ω + 3 Element integrator: Hl i ( jω) jω 4 Element de anticipare de ordinul : H ( jω) jωt + L i 5 Element de întârziere de ordinul : ω+ ω + ω+ ω + H L i ( jω) jωt + ω+.5 ω + 6 Element de anticipare de ordinul 2: 2 2 ( ) H ( jω) T ω + jω2ζ T Q i ω+ ζ 2ζ ω + 7 Element de întârziere de ordinul 2: k H Q i ( jω) T + jω 2ζ T 2 2 ( ω ) ω+.5 ζ 2ζ ω + 8
A1. Valori standardizate de rezistenţe
30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Laborator 3 I.S.A. Stabilitatea sistemelor liniare şi răspunsul în frecvență.
Laborator 3 I.S.A. Stabilitatea sistemelor liniare şi răspunsul în frecvență. 1. Introducere...1 2. Stabilitatea sistemelor liniare...1 2.1 Stabilitatea internă...2 2.2 Stabilitatea externă...3 2.3. Exemple...4
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Analiza sistemelor liniare şi continue
Paula Raica Departmentul de Automatică Str. Dorobantilor 71-73, sala C21, tel: 0264-401267 Str. Baritiu 26-28, sala C14, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Stabilitatea circuitelor cu reacţie
Lucrarea 21 Stabilitatea circuitelor cu reacţie Scopul lucrării: prezentarea schemei bloc, a terminologiei şi a criteriilor de stabilitate specifice circuitelor cu reacţie, exemplificarea acestora folosind
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Stabilitatea sistemelor liniare si invariante in timp
Stabilitatea sistemelor liniare si invariante in timp In continuare ne vom referi la sisteme liniare si invariante in timp cauzale. http://shannon.etc.upt.ro/teaching/ps/cap4_stabilitate.pdf Analiza stabilitatii
Analiza sistemelor liniare şi continue
Paula Raica Departamentul de Automatică Str. Dorobanţilor 7, sala C2, tel: 0264-40267 Str. Bariţiu 26, sala C4, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
LUCRAREA nr.6: Sinteza SRA. Criteriul Ziegler Nichols
LUCRAREA nr.6: Sinteza SRA. Criteriul Ziegler Nichols. Scopul lucrării În practica industrială apar frecvent probleme privind sinteza compensatoarelor în cazul unor instalaţii relativ simple, caracterizabile
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Proiectarea sistemelor de control automat
Teoria sistemelor p. 1/28 Proiectarea sistemelor de control automat Paula Raica Paula.Raica@aut.utcluj.ro Departamentul de Automatică Universitatea Tehnică din Cluj-Napoca Dorobantilor, sala C21 Baritiu,
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
10/31/2014. În evoluţia sistemelor dinamice unele semnale apar cu o anumită întârziere faţă de un anumit moment convenţional ales ca t = 0. (2.
Transformata F(s) definită de (.37) este univocă şi se numeşte transformata Laplace directă.. Transformata Laplace inversă este univocă numai în cazul funcţiilor f(t) continue şi se defineşte prin relaţia
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
z a + c 0 + c 1 (z a)
1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei
Transformări de frecvenţă
Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Sisteme discrete liniare şi invariante în timp
PS Lucrarea 3 (partea a II-a) Sisteme discrete şi invariante în timp Lucrarea 3 (partea a II-a) Sisteme discrete liniare şi invariante în timp. Caracterizarea sistemelor discrete liniare, invariante în
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni
Problema 1. Se dă circuitul de mai jos pentru care se cunosc: VCC10[V], 470[kΩ], RC2,7[kΩ]. Tranzistorul bipolar cu joncţiuni (TBJ) este de tipul BC170 şi are parametrii β100 şi VBE0,6[V]. 1. să se determine
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Tratarea numerică a semnalelor
LUCRAREA 5 Tratarea numerică a semnalelor Filtre numerice cu răspuns finit la impuls (filtre RFI) Filtrele numerice sunt sisteme discrete liniare invariante în timp care au rolul de a modifica spectrul
a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
Proiectarea filtrelor IIR prin metode de transformare
Laboratorul 6 Proiectarea filtrelor IIR prin metode de transformare 6. Tema Proiectarea filtrelor IIR utilizând prototipuri analogice şi transformarea biliniară. Utilizarea rutinelor Matlab pentru proiectarea
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)
Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul
CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1
CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare
TEORIA CIRCUITELOR ELECTRICE
TEOA TEO EETE TE An - ETT S 9 onf. dr.ing.ec. laudia PĂA e-mail: laudia.pacurar@ethm.utcluj.ro TE EETE NAE ÎN EGM PEMANENT SNSODA /8 EZONANŢA ÎN TE EETE 3/8 ondiţia de realizare a rezonanţei ezonanţa =
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
FIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE
FIZICĂ Oscilatii mecanice ş.l. dr. Marius COSTACHE 3.1. OSCILAŢII. Noţiuni generale Oscilaţii mecanice Oscilaţia fenomenul fizic în decursul căruia o anumită mărime fizică prezintă o variaţie periodică
Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener
Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
LUCRAREA NR. 11 RETELE CARE MODIFICA STRUCTURA SEMNALULUI
LUCAEA N. ETELE CAE MODIFICA STUCTUA SEMNALULUI Amplificatoarele de AF sunt prevazute in mod obisnuit, cu circuite auxiliare al caror rol este acela de a opera modificari asupra semnalului transferat.
Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1
Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
8 Intervale de încredere
8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată
Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
SEMINAR TRANSFORMAREA FOURIER. 1. Probleme
SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)
Conice - Câteva proprietǎţi elementare
Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii
Transformata Laplace
Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
3. REPREZENTAREA PLANULUI
3.1. GENERALITĂŢI 3. REPREZENTAREA PLANULUI Un plan este definit, în general, prin trei puncte necoliniare sau prin o dreaptă şi un punct exterior, două drepte concurente sau două drepte paralele (fig.3.1).
3.4. Minimizarea funcţiilor booleene
56 3.4. Minimizarea funcţiilor booleene Minimizarea constă în obţinerea formei celei mai simple de exprimare a funcţiilor booleene în scopul reducerii numărului de circuite şi a numărului de intrări ale
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER
2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care
Progresii aritmetice si geometrice. Progresia aritmetica.
Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a
11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
2.1 Amplificatorul de semnal mic cu cuplaj RC
Lucrarea nr.6 AMPLIFICATOAE DE SEMNAL MIC 1. Scopurile lucrării - ridicarea experimentală a caracteristicilor amplitudine-frecvenţă pentru amplificatorul cu cuplaj C şi amplificatorul selectiv; - determinarea
Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)
ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic
FILTRE RC ACTIVE. 1. Obiectul lucrării. 2. Aspecte teoretice
FILTRE RC ACTIVE 1. Obiectul lucrării Se studiază răspunsul în frecvență al filtrelor trece jos și trece sus realizate cu amplificatoare operaționale, rezistoare și condensatoare. Se studiază pentru cazul
Electronică anul II PROBLEME
Electronică anul II PROBLEME 1. Găsiți expresiile analitice ale funcției de transfer şi defazajului dintre tensiunea de ieşire şi tensiunea de intrare pentru cuadrupolii din figurile de mai jos și reprezentați-le