The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear

Σχετικά έγγραφα
Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space

Random Attractors for Stochastic Reaction-Diffusion Equations with Distribution Derivatives on Unbounded Domains

A Note on Saigo s Fractional Integral Inequalities

8. The Normalized Least-Squares Estimator with Exponential Forgetting

On Quasi - f -Power Increasing Sequences

Fourier Series. Fourier Series

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

arxiv: v1 [math.ap] 5 Apr 2018

On Generating Relations of Some Triple. Hypergeometric Functions

On Strong Product of Two Fuzzy Graphs

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Homework for 1/27 Due 2/5

On Inclusion Relation of Absolute Summability

Congruence Classes of Invertible Matrices of Order 3 over F 2

hp-bem for Contact Problems and Extended Ms-FEM in Linear Elasticity

Statistical Inference I Locally most powerful tests

A study on generalized absolute summability factors for a triangular matrix

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

4.6 Autoregressive Moving Average Model ARMA(1,1)

1. For each of the following power series, find the interval of convergence and the radius of convergence:

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Every set of first-order formulas is equivalent to an independent set

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

Linear singular perturbations of hyperbolic-parabolic type

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

2 Composition. Invertible Mappings


Homework 3 Solutions

Oscillations CHAPTER 3. ν = = 3-1. gram cm 4 E= = sec. or, (1) or, 0.63 sec (2) so that (3)

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Generating Set of the Complete Semigroups of Binary Relations

Degenerate Perturbation Theory

Riesz ( ) Vol. 47 No u( x, t) 5 x u ( x, t) + b. 5 x u ( x, t), 5 x = R D DASSL. , Riesz. , Riemann2Liouville ( R2L ) = a

Fractional Colorings and Zykov Products of graphs

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Example Sheet 3 Solutions

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Solve the difference equation

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Damage Constitutive Model of Mudstone Creep Based on the Theory of Fractional Calculus

A Note on Intuitionistic Fuzzy. Equivalence Relation

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Matrices and Determinants

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Managing Production-Inventory Systems with Scarce Resources

LAD Estimation for Time Series Models With Finite and Infinite Variance

ST5224: Advanced Statistical Theory II

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

The one-dimensional periodic Schrödinger equation

1. Introduction and Preliminaries.

IIT JEE (2013) (Trigonomtery 1) Solutions

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Commutative Monoids in Intuitionistic Fuzzy Sets

w o = R 1 p. (1) R = p =. = 1

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Tridiagonal matrices. Gérard MEURANT. October, 2008

Second Order RLC Filters

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

EE512: Error Control Coding

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

Reminders: linear functions

F19MC2 Solutions 9 Complex Analysis

Presentation of complex number in Cartesian and polar coordinate system

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Homomorphism in Intuitionistic Fuzzy Automata

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

α β

Lecture 12 Modulation and Sampling

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Solution Series 9. i=1 x i and i=1 x i.

5. Choice under Uncertainty

Bessel function for complex variable

Fourier Transform. Fourier Transform

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

EXISTENCE AND BOUNDEDNESS OF gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS ON CAMPANATO SPACES

Ψηφιακή Επεξεργασία Εικόνας

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Transcript:

Advaces i Pure Mahemaics 8 8 - hp://wwwscirporg/oural/apm ISSN Olie: 6-384 ISSN Pri: 6-368 The Esimaes of he Upper Bouds of Hausdorff Dimesios for he Global Aracor for a Class of Noliear Coupled Kirchhoff-Type Equaios Guoguag Li Mig Zhag Deparme of Mahemaics Yua Uiversiy Kumig Chia How o cie his paper: Li GG ad Zhag M 8 The Esimaes of he Upper Bouds of Hausdorff Dimesios for he Global Aracor for a Class of Noliear Coupled Kirchhoff-Type Equaios Advaces i Pure Mahemaics 8 - hps://doiorg/436/apm88 Received: December 7 7 Acceped: Jauary 6 8 Published: Jauary 9 8 Absrac This paper deals wih he Hausdorff dimesios of he global aracor for a class of Kirchhoff-ype coupled equaios wih srog dampig ad source erms We obai a precise esimae of upper boud of Hausdorff dimesio of he global aracor Keywords Kirchhoff-Type Equaios The Global Aracor Hausdorff Dimesio Copyrigh 8 by auhors ad Scieific Research Publishig Ic This work is licesed uder he Creaive Commos Aribuio Ieraioal Licese CC BY 4 hp://creaivecommosorg/liceses/by/4/ Ope Access Iroducio Guohuag Li Mig Zhag [] sudied he iiial boudary value problem for a class of Kirchhoff-ype coupled equaios ad obaied he exisece of he global aracor Nex i his paper we cosider he Hausdorff dimesios for he global aracor for he followig Kirchhoff-ype equaios: β β u M u + v u u+ g uv = f x v M u + v v v+ g uv = f x u x = u x u x = u x x Ω 3 v x = v x v x = v x x Ω 4 u Ω = v = 5 Ω where Ω is a bouded domai i R wih he smooh boudary Ω β > DOI: 436/apm88 Ja 9 8 Advaces i Pure Mahemaics

is a cosa M s is a oegaive ly dampig erms g uv ad ad f Jigzhu Wu Guoguag Li [] cosider a class of damped Bossiesq equaio: C fucio x are give forcig fucio u ad v are srog- g uv are oliear source erms f x where k+ u αu uxx u f x x + + = Ω > 6 u x = u x 7 u x = u x+ 8 Ω R α > he hey obai he exisece of he global aracor ad he limied of Hausdorff dimesio ad he limied of Fracal dimesio Xiaomig Fa Shegfa Zhou [3] cosider he followig o-auoomous srogly damped wave equaio of o-degeerae Kirchhoff-ype: p u α u β + γ u d x u+ h u + f u = g x x Ω > τ 9 Ω u x = τ x Ω τ τ u x = u x u x = u x x Ω τ τ where u= u x is a real-valued fucio o [ τ ope bouded se of Ω + τ R Ω is a R = 3 wih a smooh boudary Ω α > is C RL Ω is he se of coi- called he srog dampig β > ρ > γ h C RR ; f C R RR ; g Cb RL Ω b uous bouded fucios from R io L Ω Ad he hey obaied a precise esimae of upper boud of Hausdorff dimesio of kerel secios which decreases as he srog dampig grows for large srog dampig uder some codiios paricularly i he auoomous case Guoguag Li Yulog Gao [4] cocered he followig oliear Higher-order Kirchhoff-ype equaios: q m m m α β [ u + u + + u u+ g u = f x x Ω + u x = u x u x = u x x Ω 3 i u u x = = i= m x Ω [ + i 4 v where m > is a ieger cosa α > β > are cosas ad q is a real umber Ω is a bouded domai of R wih a smooh boudary Ω ad v is he ui ouward ormal o Ω g u is a oliear fucio specified laer Ad hey obaied he exisece of he global aracor I his case hey cosidered ha he esimaio of he upper bouds of Hausdorff for he global aracors is obaied Hausdorff Dimesios of he Global Aracor I his paper some ier produc orms abbreviaios ad some assumpios DOI: 436/apm88 Advaces i Pure Mahemaics

H - H 4 ad oaios eeds i he proof of our resuls i refer o [] Differeiabiliy of he Semigroup I order o esimae dimesios we suppose: H 5 For every k = k L such ha: iu L > here exis iu γ γ L Ω δ δ g u v g u+ u v k u u + k v v iv iv γ γ L Ω δ δ g u v g u v+ v k u u + k v v where uuvv H Ω ; u u v v L ; i = H 6 There exiss cosa µ µ µ such ha d µ θ + ω > d < µ M s µ µ = d µ θ + ω < d We defie A = E H H L L λ ; δ > ; 3 = Ω Ω Ω Ω The ier produc ad orm i E space are defied as follows: ϕ = u v p q E i = we have i i i i i ϕ ϕ = + + + Au Au Av Av p p q q E 4 ϕ ϕ Au E E Av p q ϕ = = + + + 5 Seig ϕ = uvpq T E p= u + εu q = v + εv he Equaios -5 is equivale o where ϕ + H ϕ = F ϕ 6 H ϕ εu p εv q = ε p + β Ap + ε u + εβ Au εq + β Aq + ε v + εβ Av F ϕ = M u + v Au g u v + f x M u + v Av g u v + f x 7 8 Lemma For ay uvpq T E ϕ = we have DOI: 436/apm88 3 Advaces i Pure Mahemaics

Proof By 3 we ge ϕ ϕ ϕ E E H ε β 4 4 Ap β + + 4 Aq 9 H A u p Au A v q A v E ϕ ϕ = ε + ε ε p β Ap ε u εβ Au p εq β Aq ε v εβ Av q + + + + + + + + = ε Au ε p + β A p + ε up εβ AuA p + ε Av ε q + β Aq + ε vq εβ AvAq By usig holder iequaliy ad Youg s iequaliy ad Poicare iequaliy we deal wih he erms i 9 by as follows: ε ε ε up Au p λ ε β β εβ AuA p Au A p ε ε ε vq Av q 3 λ ε β β εβ AvAq Av Aq 4 3 λ 5 + 5 + 8λβ By < ε < mi 4 + βλ 4 io we obai ad subsiuig -4 H ϕ ϕ ε Au + Av E ε ε β λ ε β + ε p + q + Ap + Aq ε ε β ε Au Av ε + + ε p + q λ β β + Ap + Aq + Ap + Aq 4 4 DOI: 436/apm88 4 Advaces i Pure Mahemaics

+ ε ε β ε Au Av λ λβ ε β + ε p + q + Ap + Aq 4 4 ε β Au + Av + p + q + Ap + Aq 4 4 Proof fiished The liearized equaios of -5 he above equaios as follows: β u v β u v U + M u + v u U + v V Au + M u + v AU + AU + g u v U + g u v V = V + M u + v u U + v V Av + M u + v AV + AV + g u v U + g u v V = 5 6 7 U x = V x = > 8 x Ω x Ω ξ ζ U x = U x = ξ 9 V x = V x = ζ ξ ζ ξ ζ he liear iiial boudary value problem 6- pos- where ξ ζ ξ ζ E u v u v S u v u v wih u v u v Α Give u v u v Α ad S : E E he soluio S u v u v E by sad mehods we ca show ha for ay E sess a uique soluio U V U V L + ; E Theorem For ay > R > he mappig S : E E differeiable o Is differeial a T = is he soluio of where U Proof is Freche ϕ = u v u v is he liear operaor o ξ T T ζ ξ ζ E: U V P Q V is he soluio of 6- Le ϕ = u v u v T E ϕ ξ ζ ξ ζ T ϕ R E ϕ we deoe R E = u + v + u + v + E wih T T uu = S ϕ uu Sϕ = We ca ge he Lipchiz propery of S o he bouded ses of E ha is E E C ϕ S ϕ e ξ ζ ξ ζ S Le θ = u u U ω = v v V is he soluio of problem θ + M u + v Aθ + βaθ = h ω + M u + v Aω+ βaω = h 3 DOI: 436/apm88 5 Advaces i Pure Mahemaics

where Le θ = θ = 4 ω = ω = 5 h = M u + v M u + v Au + M u + v u U + v V Au g uv + g uv + g uvu + g uvv 6 u v h = M u + v M u + v Av s = u + v + M u + v u U + v V Av g uv + g uv + g uvu + g uvv u v s = u + v so we ca ge + + + M s M s Au M u v u U v V Au ξ γ θ ω = M u + u u u + v + v v v Au Ad M s u + u u u + v + v v v A u u M s u u u u + v v v v Au M s u + v Au The we have + u + v g uv g uv g u uv u u g u uv + g uv g uv + g uv v v g uv g uv g uv g uvu g uvv = + ω v v M s γ u + u u u + v + v v v Au θ C u u + v v A θ θ 7 8 9 3 M u + v u u u + u + v v v + v A u u θ C u u + v v A θ M u + v u u u u + v v v v Au θ 3 C u u + v v A θ M u + v u θ + v ω Au θ 4 C θ + ω A θ 3 3 33 DOI: 436/apm88 6 Advaces i Pure Mahemaics

By usig 3-33 we have M s M s Au + M s u U + v V Au θ 5 4 C u u + v v A θ + C θ + ω A θ Similarly M s M s Av + M s u U + v V Av ω 6 7 C u u + v v A ω + C θ + ω A ω Ad by usig H 5 g uv g uv + g u uv u u g u uv θθ + g uv g uv + g v uv v v g v uv ωθ δ+ δ θ θ θ ω θ δ δ+ 9 θ δ+ δ+ θ θ ω θ θ C u u + v v u u + C + 8 + C u u v v + v v C + + C u u + v v Similar gu uv gu xv u u gu uv θω + g u v g u y v v g u v v v v ωω δ+ δ+ ω θ ω ω ω C u u + v v + C + 3 So we ca ge 5 + + + δ+ δ+ 4 4 θ ω µ θ ω d θ ω µ θ ω d C u u + v v + u u + v v + C + + + 4 34 35 36 37 38 ϕ The by usig Growall s iequaliy ad we obai + + 3 + θ ω β θ ω C4 δ+ δ+ 4 4 5e d 39 C u u + v v + u u + v v 4 δ+ ξ ζ ξ ζ ξ ζ ξ ζ E E C e + C6 7 The we ge ϕ U ξ ζ ξ ζ E δ ξ ζ ξ ζ ξ ζ ξ ζ E E E C6 C7 e + 4 as ξ T ζ ξ ζ i E The proof is compeed DOI: 436/apm88 7 Advaces i Pure Mahemaics

The Upper Bouds of Hausdorff Dimesios for he Global Aracor Cosider he firs variaio of 6 wih iiial codiio: T ψ + ϕψ=γ ϕψ+γ ϕψψ = ξ ζ ξ ζ > 4 P E where UV PQ T E uvpq T E ψ = P= U + εu Q= V + εv ad ϕ = is a soluio of 4 P ϕ ϕ ε I I ε I I = ε I εβ ε I β ε I εβ ε I β ϕ Γ = g u uv g uv v gu uv gv uv 4 43 Γ = M u v u M + + u + v u U + v V u M u + v v+ M u + v u U + v V v 44 I is easy o show form Theorem ha 4 is a well-posed problem i E u v p = u + εu q = v + εv he mappig S ε τ : { } { u τ v τ p τ u τ εu τ q τ v τ εv τ } E for ay is differeial a u v p q T ϕ = is he liear opera- o or o = + = + is freche differeiable ξ ζ ξ ζ T E : U V P Q where T U V P Q is he soluio of 4 Lemma [5] For ay orhoormal family of elemes of E T ξ ζ ξ ζ = we have ν ν ν ν ξ ζ λ + + λ ν [ = = E 45 Proof This is a direc cosequece of Lemma VI 63 of [5] Theorem If H -H 6 hold saisfyig he here exiss β > such ha he Hausdorff dimesio of global aracor Α i E saisfies ε dh Α mi N λ λ + < 46 = 6 C 4 where R is as i Lemma 6 i [] Proof Le N be fixed Cosider m soluios ψ ψ ψ of 4 DOI: 436/apm88 8 Advaces i Pure Mahemaics

A a give ime τ le B τ deoe he orhogoal proecio i E oo spa ψ s ψ s ψ s { } Le y T s = ξ ζ ξ ζ E B s E spa{ ψ s ψ s ψ s } wih respec o he ier produc ad orm E Suppose he ϕτ M s > τ By E = be a orhoormal basis of = 47 u v p q T E ϕτ = τ τ τ τ Α 48 y = ad Lemma we have E ε β β P ϕ s y s y s ξ E ζ 49 4 4 4 Γ ϕ s y s y s E C ξ ξ + C ζ ξ 8 9 + C ξ ζ + C ζ ζ The by he Sobolev embeddig heorem: 5 H Ω H Ω H Ω 5 Therefore Γ ϕ s y s y s E C ξ ξ + C ζ ξ 3 + C ξ ζ + C ζ ζ 4 5 β β C ξ + ζ + ξ + ζ 8 8 6 5 By Youg s iequaliy we have Γ ϕ s y s y s E µ ξ ξ + Rk ξ ξ + Rk ζ ξ + µ ζ ζ + Rk ξ ζ + Rk ζ ζ λ Rk λ Rk λ µ λ µ + + + So exis β saisfyig We obai λ µ λ Rk 53 β ε ξ + + 54 8 6 λ µ λ Rk β ε ζ + + 55 8 6 DOI: 436/apm88 9 Advaces i Pure Mahemaics

= ϕ +Γ ϕ +Γ ϕ p s P s s s y s y s = ε β β β β ξ ζ + ξ + ζ = 4 4 4 8 8 = ξ ζ E λ µ λ µ + + + + = λ Rk λ Rk + C + 6 ε + C λ + λ 8 If λ λ 7 = ε C + 6 = 7 he τ + q s = lim if sup sup sup p s ds R E τ τ φ ϕτ Α ε C 7 λ + λ < 6C7 = 56 57 Proof fiish Refereces [] Li GG ad Zhag M 7 The Global Aracors for a Class of Noliear Coupled Kirchhoff-Type Equaios Europea Joural of Mahemaics ad Compuer Sciece 4 [] Wu JZ ad Li GG 9 The Global Aracor ad Is Dimesios Esimaio of Bossiesq Equaio wih Dampig Term Joural of Yua Uiversiy 3 335-34 [3] Fa XM ad Zhou SF 4 Kerel Secios for No-Auoomous Srogly Damped Wave Equaios of No-Degeerae Krichhoff-Type Applied Mahemaics ad Compuaio 58 53-66 hps://doiorg/6/amc3847 [4] Li GG ad Gao YL 7 The Global ad Expoeial Aracors for he Higher-Order Kirchhoff-Type Equaio wih Srog Liear Dampig Joural of Mahemaics Research 9 [5] Tema R 988 Ifiie-Dimesioal Dyamical Sysems i Mechaics ad Physics Applied Mahemaical Scieces 68 Spriger-Verlag New York hps://doiorg/7/978--4684-33-8 DOI: 436/apm88 Advaces i Pure Mahemaics