ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

Σχετικά έγγραφα
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ

ιωνυµική Κατανοµή(Binomial)

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές

Θεωρητικές Κατανομές Πιθανότητας

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

Τυχαίες Μεταβλητές (τ.µ.)

Πανεπιστήμιο Πελοποννήσου

ρ. Ευστρατία Μούρτου

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

II. Τυχαίες Μεταβλητές

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

Τυχαία μεταβλητή (τ.μ.)

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

3. Κατανομές πιθανότητας

Βιομαθηματικά BIO-156

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΣΤΑΤΙΣΤΙΚΗ I: ΕΚΤΙΜΗΤΙΚΗ

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

Κατανομές Πιθανοτήτων. Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ.

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Δειγματικές Κατανομές

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12)

Συστήματα Αναμονής. Ενότητα 2: Τυχαίες Μεταβλητές. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Στατιστική Ι-Θεωρητικές Κατανομές Ι

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

Διωνυμική Κατανομή. x Αποδεικνύεται ότι για την διωνυμική κατανομή ισχύει: Ε(Χ)=np και V(X)=np(1-p).

Συνεχείς Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Συνεχείς Κατανομές. τεχνικές. 30 ασκήσεις.

Θεωρία Πιθανοτήτων & Στατιστική

P(200 X 232) = =

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις.

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

Θεωρία Πιθανοτήτων & Στατιστική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

P (M = 9) = e 9! =

Συνεχείς Τυχαίες Μεταβλητές

Τυχαίες Μεταβλητές. Ορισμός

= 14 = 34 = Συνδυαστική Ανάλυση

Στατιστική Συμπερασματολογία

3. Κατανομές πιθανότητας

Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

P (M = n T = t)µe µt dt. λ+µ

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.

IV ιακριτές Τυχαίες Μεταβλητές

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή:

Κανονική Κατανομή. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Κανονική Κατανομή. τεχνικές. 73 άλυτες ασκήσεις.

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ

Y = X 1 + X X N = X i. i=1

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

1 x-μ - 2 σ. e σ 2π. f(x) =

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

Σημειώσεις Στατιστική & Πιθανότητες

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ... 25

Ασκήσεις στην διωνυμική κατανομή

Είδη Μεταβλητών. κλίµακα µέτρησης

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης Φεβρουάριος, /50

p B p I = = = 5

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης

Transcript:

Τµ. Επιστήµης των Υλικών

Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας πιθανότητας, Ιδιότητες: (i) f(x i) 0, i = 1, 2,..., (ii) + i=1 f(x i) = 1. 2. Συνεχούς τύπου X ονοµάζεται συνεχής τ.µ. αν υπάρχει f : R R, τέτοια ώστε P(X B) = f(x)dx B f(x) ονοµάζεται συνάρτηση πυκνότητας πιθανότητας, Ιδιότητες: (i) f(x) 0, x R, (ii) + f(x)dx = 1.

ιακριτές Κατανοµές ιωνυµική κατανοµή Η τυχαία µεταβλητή X ακολουθεί τη διωνυµική κατανοµή ή X είναι µια διωνυµική τυχαία µεταβλητή, εάν ( ) n f(x) = P(X = x) = p x (1 p) n x, x = 0, 1,...,n, 0 < p < 1. x Συµβολικά: X B(n, p). Περιγραφή Ενα διωνυµικό πείραµα ταυτίζεται µε ένα τυχαίο πείραµα το οποίο έχει δύο δυνατά αποτελέσµατα: Επιτυχία ή Αποτυχία. Παραδείγµατα 1 Ρίψη ενός νοµίσµατος 2 Επιλογή αντικειµένων σε ελαττωµατικά ή µη. 3 Αποτελέσµατα εξετάσεων (αποτυχία ή επιτυχία)

ιακριτές Κατανοµές Poisson κατανοµή Η τυχαία µεταβλητή X ακολουθεί τη Poisson κατανοµή ή X είναι µια Poisson τυχαία µεταβλητή, εάν f(x) = P(X = x) = e λλx x! Συµβολικά: X P(λ)., x = 0, 1,..., λ > 0. Παραδείγµατα 1 X µετράει το πλήθος των πελατών που ϕτάνουν σε ένα κατάστηµα. (λ: είναι το πλήθος των πελατών που ϕτάνουν στην µονάδα του χρόνου.) 2 X µετράει το πλήθος των τηλεφωνηµάτων που ϕτάνουν σε ένα τηλεφωνικό κέντρο. (λ: είναι το πλήθος των τηλεφωνηµάτων που ϕτάνουν στην µονάδα του χρόνου.)

ιακριτές Κατανοµές Υπεργεωµετρική κατανοµή Η τυχαία µεταβλητή X ακολουθεί τη υπεργεωµετρική κατανοµή ή X είναι µια υπεργεωµετρική τυχαία µεταβλητή, εάν ( m ( n ) f(x) = P(X = x) = x) ), x = 0, 1,... min{m, r}, m, n, r Z +. r x ( m+n r Συµβολικά: X H(x : n, m, r). Περιγραφή κατανοµής Μέσα σε ένα σφαιρίδιο υπάρχουν m µαύρα και n άσπρα σφαιρίδια. Παίρνουµε r σφαιρίδια χωρίς επανατοποθέτηση, τότε η τ.µ. X µετράει τον αριθµό των µαύρων σφαιριδίων από τα r. Παρατήρηση min{m,r} ( ) ( ) ( ) m n m + n =. x r x r x=0

ιακριτές Κατανοµές Αρνητική ιωνυµική κατανοµή Η τυχαία µεταβλητή X ακολουθεί την αρνητική διωνυµική κατανοµή ή X είναι µια αρνητική διωνυµική τυχαία µεταβλητή, εάν ( ) r + x 1 f(x) = P(X = x) = p r (1 p) x, x = 0, 1,..., 0 < p < 1. x Συµβολικά: X NB(r, p). Περιγραφή Εκτελούµε ένα διωνυµικό τυχαίο πείραµα, τόσες ϕορές, όσες για να εµφανιστούν οι r επιτυχίες, τότε η τ.µ. X µετράει το πλήθος των αποτυχιών του πειράµατός µας. Παρατήρηση Για r = 1, P(X = x) = p(1 p) x, x = 0, 1, 2,... και η κατανοµή ονοµάζεται γεωµετρική κατανοµή ή κατανοµή του Pascal. Συµβολικά: X Ge(p).

Συνεχείς Κατανοµές Κανονική κατανοµή ή κατανοµή του Gauss Η τυχαία µεταβλητή X ακολουθεί την κανονική κατανοµή ή X είναι µια κανονική τυχαία µεταβλητή, εάν f(x) = 1 2πσ 2 e (x µ)2 2σ 2, x R, µ R, σ > 0. Συµβολικά: X N(µ,σ 2 ). Παραδείγµατα Μέτρηση ύψους, ϐάρους, ϐαθµολογίας κ.λ.π. Παρατήρηση Για µ = 0, σ 2 = 1 f(x) = 1 2π e x2 /2, x R ονοµάζεται τυπική κανονική κατανοµή. Συµβολικά: X N(0, 1). και η κατανοµή

Συνεχείς Κατανοµές Οµοιόµορφη κατανοµή Η τυχαία µεταβλητή X ακολουθεί την οµοιόµορφη κατανοµή ή X είναι µια οµοιόµορφη τυχαία µεταβλητή, εάν 1, x [a,β] f(x) = β a 0, x [a,β] Συµβολικά: X U(a,β).

Συνεχείς Κατανοµές Γάµµα κατανοµή Η τυχαία µεταβλητή X ακολουθεί την Γάµµα κατανοµή ή X είναι µια Γάµµα τυχαία µεταβλητή, εάν f(x) = Συµβολικά: X G(a,β). 1 Γ(a)β a xa 1 e x/β, x > 0, a,β > 0. Παρατήρηση + Γ(a) = x a 1 e x dx συνάρτηση Γάµµα. 0 Ιδιότητες: 1 Γ(a) = (a 1)Γ(a 1), 2 Γ(n) = (n 1)!, n Z +, 3 Γ(1) = 1, Γ(1/2) = π.

Συνεχείς Κατανοµές Εκθετική κατανοµή Η τυχαία µεταβλητή X ακολουθεί την εκθετική κατανοµή ή X είναι µια εκθετική τυχαία µεταβλητή, εάν Συµβολικά: X E(λ). f(x) = λ e λx, x > 0, λ > 0. Παρατήρηση E(λ) G(a = 1,β = 1/λ). Παραδείγµατα 1 Προβλήµατα αναµονής (π.χ. σε ουρά τράπεζας) 2 Προβλήµατα διάρκειας Ϲωής (π.χ. µηχανηµάτων)

Παραδείγµατα Παράδειγµα 1 Εστω ότι η διάρκεια Ϲωής X των κατοίκων µιας χώρας είναι µια τυχαία µεταβλητή που έχει την Εκθετική κατανοµή µε παράµετρο λ = 1/50. 1 Ποιο ποσοστό του παραπάνω πληθυσµού συνταξιοδοτείται, όταν η συνταξιοδότηση αρχίζει µόλις συµπληρωθεί η ηλικία των 65 χρόνων; 2 Ποια είναι η πιθανότητα για ένα άτοµο από τον παραπάνω πληθυσµό να Ϲήσει τουλάχιστον 70 χρόνια, δοθέντος ότι µόλις γιόρτασε την 40η επέτειο των γενεθλίων του;

Παραδείγµατα Παράδειγµα 2 Ο χρόνος άφιξης ενός ϕοιτητή στην κεντρική ϐιβλιοθήκη κατά τις ώρες 12:00 14:00 είναι µία οµοιόµορφη τ.µ. στο διάστηµα [12, 14] (U(12, 14)). 1 Υπολογίστε την πιθανότητα, ένας ϕοιτητής να ϕτάσει στην κεντρική ϐιβλιοθήκη µεταξύ 13:30 14:00. 2 Αν µεταξύ 12:00 14:00 έχουν ϕτάσει στην κεντρική ϐιβλιοθήκη 40 ϕοιτητές, ποια είναι η πιθανότητα οι 10 από αυτούς να έχουν ϕτάσει µεταξύ 13:30 14:00; 3 Αν είναι γνωστό ότι από τους 100 ϕοιτητές που ϕτάνουν µεταξύ 12:00 14:00 στην κεντρική ϐιβλιοθήκη, οι 20 ϕτάνουν µεταξύ 13:30 14:00 και πάρουµε τυχαία 30 (από τους 100) ϕοιτητές, ποια είναι η πιθανότητα 5 (από τους 30) να έχουν ϕτάσει στη ϐιβλιοθήκη µεταξύ 13:30 14:00;

Παραδείγµατα Παράδειγµα 3 Σε µία αίθουσα υπάρχουν 60 άτοµα, όπου τα 15 από αυτά ψήφισαν το κόµµα Α. Παίρνουµε τυχαία 5 άτοµα. Να ϐρεθεί η πιθανότητα ότι δύο άτοµα ψήφισαν το κόµµα Α, όταν η δειγµατοληψία γίνεται, α) µε επανατοποθέτηση και ϐ) χωρίς επανατοποθέτηση.

Οριακές σχέσεις µεταξύ κατανοµών Θεώρηµα 1 Εστω X B(n, p) και έστω ότι η πιθανότητα επιτυχίας p εξαρτάται από το n µε τον ακόλουθο τρόπο, p n 0 έτσι ώστε λn = npn λ, για κάποιο λ > 0. n + n + Τότε, ( ) n pn(1 p x n) n x λ x n + x e λ x!, x = 0, 1, 2,... Απόδειξη. Εφ όσον np n λ p n λ n, εποµένως, ( n x) p x n (1 pn)n x ( n = n(n 1)(n x+1) n x λ x x! λ x)( n ( 1 λ n ) x ( ) 1 λ n x = n ) n ( ) 1 λ x n n + 1 λx x! e λ 1 = e λλx x!. Παρατήρηση Αν το n είναι αρκετά µεγάλο (και το p αρκετά µικρό), τότε οι διωνυµικές πιθανότητες δεν είναι εύκολο να υπολογιστούν, παρά µόνο προσεγγιστικά από τις Poisson πιθανότητες µε λ = np.

Οριακές σχέσεις µεταξύ κατανοµών Θεώρηµα 2 Εστω X H(x; n, m, r) και έστω m, n +, Τότε, ( m x) ( n ) r x ( m+n ) m,n + r m m + n = p m,n m,n + p ( ) r p x (1 p) r x x = 0, 1, 2,...,r. x