ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ



Σχετικά έγγραφα
Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Το Πρόβλημα Μεταφοράς

Επιχειρησιακή Έρευνα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1, Δ3 1, ,200

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Πρόβλημα Μεταφοράς. Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης

Επιχειρησιακή Έρευνα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

Προβλήματα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation)

3.7 Παραδείγματα Μεθόδου Simplex

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Η άριστη λύση με τη μέθοδο simplex:

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΈΡΕΥΝΑ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΚΑΤΑΜΕΡΙΣΜΟΥ

Προσφορά Τροποποιηµένος πίνακας, όπου προσφορά ίση µε τη ζήτηση µε την προσθήκη εικονικού προορισµού *

Η άριστη λύση με τη μέθοδο simplex:

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Γραμμικός Προγραμματισμός

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017

ιοίκηση Παραγωγής και Υπηρεσιών

Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Επιχειρησιακή Έρευνα I

Επιχειρησιακή Έρευνα I

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Διάλεξη #2 Παραδείγματα Μοντελοποίησης Γραμμικού Προγραμματισμού

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Μοντέλα Διανομής και Δικτύων

3.12 Το Πρόβλημα της Μεταφοράς

Πρόβληµα Μεταφοράς ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Επιχειρησιακή Έρευνα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX

Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί

Επιχειρησιακή Έρευνα I

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες

Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex ) 1

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα

Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks)

Επιχειρησιακή Έρευνα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

Γραμμικός Προγραμματισμός Πρόβλημα Αντιστοιχήσεως

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Επιχειρησιακή Έρευνα

Κανονική μορφή μοντέλου μεγιστοποίησης

Θεωρία Μεθόδου Simplex

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

z = c 1 x 1 + c 2 x c n x n

ΚΕΦΑΛΑΙΟ ΕΒΔΟΜΟ: Το Πρόβλημα της μεταφοράς και οι μέθοδοι επίλυσης του. Εφαρμογές χρησιμοποιώντας το R

Ακέραιος Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων

Κανονική μορφή μοντέλου μεγιστοποίησης


1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

Ακέραιος Γραμμικός Προγραμματισμός

2.4 Μια Πρώτη Προσέγγιση στην Ανάλυση Ευαισθησίας

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Διάλεξη #2 Παραδείγματα Μοντελοποίησης Γραμμικού Προγραμματισμού

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Άσκηση 21. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Παραδείγματα (2) Διανυσματικοί Χώροι

Επιχειρησιακή Έρευνα I

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα

Το µαθηµατικό µοντέλο του Υδρονοµέα

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού

Στοχαστικές Στρατηγικές. διαδρομής (1)

Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Διαχείριση Εφοδιαστικής Αλυσίδας

Case 11: Πρόγραμμα Παρακίνησης Πωλητών ΣΕΝΑΡΙΟ

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Μοντέλα Διαχείρισης Αποθεμάτων

Transcript:

(Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl

Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού τρόπου ικανοποίησης των απαιτήσεων n σημείων ζήτησης χρησιμοποιώντας τις δυναμικότητες m σημείων εφοδιασμού. Προσπαθώντας να βρεθεί ο καλύτερος τρόπος, πρέπει να ληφθεί υπόψη το μεταβλητό κόστος μεταφοράς του προϊόντος από ένα σημείο εφοδιασμού σε ένα σημείο ζήτησης ή κάποιος παρόμοιος περιορισμός.

Μοντέλο μεταφοράς Οι επιχειρήσεις παράγουν προϊόντα σε τοποθεσίες που λέγονται πηγές' και αποστέλλουν αυτά τα προϊόντα σε τοποθεσίες πελατών που λέγονται προορισμοί. Κάθε πηγή έχει περιορισμένο ποσότητα που μπορεί να αποστείλει και κάθε προορισμός (πελάτης) πρέπει να παραλάβει μία απαιτούμενη ποσότητα του προϊόντος. Τα μόνα πιθανά φορτία είναι εκείνα που μεταφέρονται απευθείας από μία πηγή σ έναν προορισμό. Τα προβλήματα με τα παραπάνω χαρακτηριστικά ονομάζονται «προβλήματα μεταφοράς». Αυτά τα προβλήματα περιλαμβάνουν την αποστολή ενός ομογενούς προϊόντος από ένα σύνολο σημείων παροχής σ ένα σύνολο σημείων ζήτησης. 3

Ένα τυπικό πρόβλημα μεταφοράς απαιτεί τρία σύνολα αριθμών: Δυναμικότητες (ή παροχές) Υποδηλώνουν το μέγιστο που μπορεί να αποστείλει κάθε θέση παραγωγής σε ένα δεδομένο χρονικό διάστημα. Ζητήσεις (ή απαιτήσεις) Τυπικά εκτιμώνται από κάποιο τύπο μοντέλου πρόβλεψης. Συνήθως οι ζητήσεις βασίζονται σε ιστορικά δεδομένα της ζήτησης των πελατών. Μοναδιαίο κόστος αποστολής Προσδιορίζεται από ανάλυση του κόστους μεταφοράς. 4

Το πρόβλημα μεταφοράς ή αποστολής περιλαμβάνει τον καθορισμό της ποσότητας των αγαθών ή τεμαχίων που θα μεταφερθούν από ένα σύνολο πηγών σ ένα σύνολο προορισμών. Ο συνήθης αντικειμενικός στόχος είναι η ελαχιστοποίηση του συνολικού κόστους μεταφοράς ή του συνόλου των αποστάσεων που πρέπει να διανυθούν. Τα προβλήματα μεταφοράς είναι μία ειδική περίπτωση προβλημάτων Γραμμικού Προγραμματισμού. Για την επίλυσή τους έχει αναπτυχθεί ένας ειδικός αλγόριθμος. Το πρόβλημα: Δεδομένων των αναγκών στις τοποθεσίες ζήτησης, πώς θα έπρεπε να εκλάβουμε την περιορισμένη παροχή στις τοποθεσίες παροχής και να μετακινήσουμε τα αγαθά. Ο στόχος είναι η ελαχιστοποίηση του συνολικού κόστους μεταφοράς. 5

Βασική ιδέα Στόχος: Η ελαχιστοποίηση του κόστους Μεταβλητές: Οι ποσότητες των προϊόντων που μεταφέρεται από κάθε σημείο παροχής σε κάθε σημείο ζήτησης. Περιορισμοί: - Μη αρνητικά φορτία - Διαθεσιμότητα φορτίων σε κάθε σημείο παροχής - Ανάγκη ζήτησης σε κάθε σημείο ζήτησης 6

Βασικά μεγέθη προβλημάτων μεταφοράς Συμβολισμός Μεταβλητή m n a i b j c ij x ij C Πηγές (θέσεις παραγωγής) Προορισμοί (θέσεις κατανάλωσης) Δυναμικότητα (ή ικανότητα παραγωγής) της πηγής i Ανάγκες (ζήτηση ή κατανάλωση) του προορισμού j Μοναδιαίο κόστος μεταφοράς από την πηγή i στον προορισμό j Ποσότητα μονάδων που αποστέλλεται από την πηγή i στον προορισμό j Συνολικό κόστος μεταφοράς 7

Μαθηματικό μοντέλο min C = c x + c x +... + c n x n + c x + c x +... + c n x n +... + c m x m + c m x m +... +c mn x mn με τους περιορισμούς δυναμικότητας: x + x +... + x n = a x + x +... + x n = a... x m + x m +... +x mn = a m τους περιορισμούς αναγκών: x + x +... + x m = b x + x +... + x m = b... x n + x n +... +x mn = b n καθώς και τους περιορισμούς μη αρνητικότητας x ij 0, i,j 8

Το πρότυπο μοντέλο του προβλήματος μεταφοράς min C = m i n j c ij x ij με τους περιορισμούς n j x ij = a i m i x ij = bj και x ij 0, όπου i =,,..., m και j =,,..., n 9

Το πρόβλημα αυτό έχει δυνατές λύσεις μόνο αν το σύνολο των δυναμικοτήτων των πηγών είναι ίσο προς το σύνολο των αναγκών των προορισμών, όταν δηλαδή: n j ai m n m = b i = x ij i j i 0

Παραδοχές Το μοναδιαίο κόστος μεταφοράς είναι ανεξάρτητο από τη μεταφερόμενη ποσότητα Η παροχή και ζήτηση είναι γνωστές και ανεξάρτητες από την τιμή χρέωσης του προϊόντος Η διαθέσιμη χωρητικότητα των μεταφορικών μέσων για αποστολή σε οποιαδήποτε διαδρομή είναι απεριόριστη Μεταφέρεται ένα μόνο είδος εμπορεύματος

Τυποποιημένη μορφή πίνακα μεταφοράς j i () () (n) a i () x () x...... (m) c c... x m c m x c x c...... x m c m........................ x n c n x n c n...... x mn c mn a a... a m b j b b b n Σa i = Σ b j

Παράδειγμα προβλήματος μεταφοράς Μία μεταλλευτική εταιρεία εξορύσσει το βασικό προϊόν που εμπορεύεται από τρία λατομεία, έστω Λ, Λ και Λ 3. Η εβδομαδιαία παραγωγή του κάθε λατομείου είναι 75, 50 και 75 τόνοι χαλικιού αντίστοιχα. Το προϊόν που εξορύσσεται πρέπει να μεταφερθεί σε πέντε κύριους καταναλωτές, έστω Κ, Κ, Κ 3, Κ 4 και Κ 5, οι οποίοι χρειάζονται για τις ανάγκες τους 00, 60, 40, 75 και 5 τόνους χαλικιού ανά εβδομάδα αντίστοιχα. Το πρόβλημα που απασχολεί τη διοίκηση της εταιρείας είναι η ελαχιστοποίηση του απαιτούμενου κόστους για τη μεταφορά της ποσότητας του προϊόντος στους καταναλωτές. Για το σκοπό αυτό έγινε αναλυτική κοστολόγηση, η οποία έδωσε τα αποτελέσματα του ακόλουθου πίνακα (τα αριθμητικά δεδομένα συμβολίζουν το κόστος μεταφοράς σε ανά τόνο χαλικιού). 3

Πίνακας κόστους μεταφοράς χαλικιού Καταναλωτές Κ Κ Κ 3 Κ 4 Κ 5 Λ 3 3 4 Λατομεία Λ 4 4 Λ 3 0 5 3 4

Μέθοδοι εύρεσης αρχικής βασικής δυνατής λύσης. Μέθοδος βορειοδυτικής γωνίας (Northwest corner method). Μέθοδος ελάχιστου κόστους (Minimum cost method) 3. Μέθοδος Vogel (Vogel method) 5

Μέθοδος της βορειοδυτικής γωνίας. Εκχωρείται στο βορειοδυτικό (επάνω αριστερό) κελί η μέγιστη δυνατή ποσότητα ανάλογα με την προσφορά και τη ζήτηση της αντίστοιχης γραμμής ή στήλης. Η προσφορά της γραμμής και η ζήτηση της στήλης προσαρμόζονται κατάλληλα.. Διαγράφεται είτε η γραμμή της οποίας η προσφορά έχει εξαντληθεί είτε η στήλη της οποίας η ζήτηση έχει ικανοποιηθεί. 3. Αν έχουν εξαντληθεί όλες οι προσφορές και έχουν ικανοποιηθεί όλες οι ζητήσεις τότε ΤΕΛΟΣ, διαφορετικά: μεταφορά στο βήμα. 6

Πιο αναλυτικά: Ξεκινώντας από το κελί (, ) δίνεται στη μεταβλητή x ij η μέγιστη δυνατή τιμή, η οποία είτε ικανοποιεί τις ανάγκες του προορισμού j είτε εξαντλεί την υπόλοιπη δυναμικότητα της πηγής i, και συγκεκριμένα τη μικρότερη από τις δύο ποσότητες. Κατόπιν δίνεται τιμή στη μεταβλητή x ij+ στην πρώτη περίπτωση ή στη μεταβλητή x i+j στη δεύτερη περίπτωση. Προφανώς, λόγω των ιδιοτήτων του προβλήματος μεταφοράς, με την τιμή της τελευταίας μεταβλητής x mn ικανοποιούνται ταυτόχρονα η δυναμικότητα της πηγής m και οι ανάγκες του προορισμού n. Η μέθοδος της βορειοδυτικής γωνίας είναι απλή στη χρήση της, ωστόσο δε χρησιμοποιεί καθόλου τις δαπάνες αποστολής. Μπορεί να δώσει εύκολα μια αρχική βασική δυνατή λύση, αλλά το αντίστοιχο συνολικό κόστος αποστολής μπορεί να είναι υψηλό. 7

Αρχική δυνατή λύση με τη μέθοδο της βορειοδυτικής γωνίας Κ Κ Κ 3 Κ 4 Κ 5 Λ 75 3 3 4 75 Λ 5 60 40 5 50 4 4 Λ 3 50 5 75 0 5 3 00 60 40 75 5 K min = 765 8

Μέθοδος ελάχιστου κόστους Η μέθοδος του ελάχιστου κόστους χρησιμοποιεί τα κόστη αποστολής, έτσι ώστε να καταλήξει σε μία βασική δυνατή λύση που έχει χαμηλότερο κόστος. Για να ξεκινήσει η μέθοδος εντοπίζεται αρχικά η μεταβλητή x ij με το μικρότερο κόστος αποστολής. Κατανέμεται στη μεταβλητή x ij η μεγαλύτερη δυνατή τιμή που είναι το ελάχιστο από τα αντίστοιχα a i και b j. Κατόπιν, όπως στη μέθοδο της βορειοδυτικής γωνίας, διαγράφεται η γραμμή i ή η στήλη j και ελαττώνεται η παροχή ή η ζήτηση της μη διαγραφείσας γραμμής ή στήλης κατά την ποσότητα x ij. Το επόμενο κελί με το ελάχιστο κόστος αποστολής επιλέγεται ανάμεσα από αυτά που δε βρίσκονται στη διαγραφείσα γραμμή ή στήλη. Αυτή η διαδικασία επαναλαμβάνεται έως ότου εξαντληθούν όλες οι δυναμικότητες και ικανοποιηθούν όλες οι ζητήσεις. 9

Αρχική δυνατή λύση με τη μέθοδο του ελάχιστου κόστους Κ Κ Κ 3 Κ 4 Κ 5 Λ 50 5 75 3 3 4 Λ 35 40 75 50 4 4 Λ 3 5 60 75 0 5 3 00 60 40 75 5 K min = 70 0

Μέθοδος Vogel Βήματα μεθοδολογίας. Προσθήκη - κάτω και δεξιά του πίνακα μεταφοράς - μίας νέας γραμμής και μίας νέας στήλης με στοιχεία τη διαφορά των δύο μικρότερων στοιχείων κόστους κάθε γραμμής και κάθε στήλης αντίστοιχα.. Επιλογή του μεγαλύτερου στοιχείου των δύο νέων ευθειών που προστέθηκαν στον πίνακα μεταφοράς. 3. Εύρεση του μικρότερου στοιχείου της γραμμής i ή της στήλης j, στην οποία ανήκει το στοιχείο που προσδιορίσθηκε στο βήμα. 4. Κατανομή της τιμής x ij = min(a i, b j ) στο δρομολόγιο που αντιστοιχεί στη θέση του μικρότερου στοιχείου, προκειμένου να ικανοποιηθεί η δυναμικότητα μίας πηγής ή η ζήτηση ενός προορισμού.

5. Αν εξαντλείται η δυναμικότητα μίας πηγής, τότε η ζήτηση b j του αντίστοιχου προορισμού μειώνεται κατά την ποσότητα a i. Αντίθετα, εάν ικανοποιείται η ζήτηση ενός προορισμού, τότε η δυναμικότητα a i της αντίστοιχης πηγής μειώνεται κατά b j. Η πηγή (γραμμή) ή ο προορισμός (στήλη) που ικανοποιήθηκε διαγράφεται και δε λαμβάνεται υπόψη στη συνέχεια. Κάθε φορά που επαναλαμβάνεται η παραπάνω διαδικασία εξαντλείται η δυναμικότητα μίας πηγής ή ικανοποιούνται οι ανάγκες ενός προορισμού. Η εφαρμογή της μεθόδου τερματίζεται όταν ικανοποιηθούν ταυτόχρονα η δυναμικότητα της τελευταίας γραμμής και οι ανάγκες της τελευταίας στήλης. Η λύση που προκύπτει με τον τρόπο αυτό είναι δυνατή, διότι ικανοποιεί όλες τις δυναμικότητες και όλες τις ανάγκες.

Επαναληπτικά βήματα μεθόδου Vogel ος κύκλος Κ Κ Κ 3 Κ 4 Κ 5 Διαφορά Κ Κ Κ 3 Κ 4 Κ 5 Λ 3 3 4 Λ 75 Λ 4 4 Λ 50 Λ 3 0 5 3 Λ 3 75 75 0 Διαφορά 00 5 60 40 75 5 ος κύκλος Κ Κ Κ 3 Κ 4 Κ 5 Διαφορά Κ Κ Κ 3 Κ 4 Κ 5 Λ 3 3 4 Λ 5 75 50 Λ 4 4 Λ 50 Λ 3 Λ 3 75 0 Διαφορά 0 5 60 40 75 5 0 3

3 ος κύκλος Κ Κ Κ 3 Κ 4 Κ 5 Διαφορά Κ Κ Κ 3 Κ 4 Κ 5 Λ 3 3 4 Λ 5 5 50 5 Λ 4 4 Λ 50 Λ 3 Λ 3 75 0 Διαφορά 0 5 0 60 40 75 0 4 ος κύκλος Κ Κ Κ 3 Κ 4 Κ 5 Διαφορά Κ Κ Κ 3 Κ 4 Κ 5 Λ 3 4 Λ 5 5 5 5 0 Λ 4 Λ 50 Λ 3 Λ 3 75 0 Διαφορά 0 0 60 35 40 75 0 5 ος κύκλος Κ Κ Κ 3 Κ 4 Κ 5 Διαφορά Κ Κ Κ 3 Κ 4 Κ 5 Λ Λ 5 5 5 5 Λ 4 Λ 35 50 5 Λ 3 Λ 3 75 0 Διαφορά - - - 0 35 0 40 75 0 4

6 ος κύκλος Κ Κ Κ 3 Κ 4 Κ 5 Διαφορά Κ Κ Κ 3 Κ 4 Κ 5 Λ Λ 5 5 5 5 Λ 4 Λ 35 40 5 75 Λ 3 Λ 3 75 0 Διαφορά - - 0 0 40 0 75 0 5

Αρχική βασική δυνατή λύση (μέθοδος Vogel) Κ Κ Κ 3 Κ 4 Κ 5 Λ 5 5 75 3 3 4 Λ 35 40 75 50 4 4 Λ 3 75 0 5 3 75 00 60 40 75 5 K min = 640 6

Εκφυλισμένη αρχική λύση Κ Κ Κ 3 Κ 4 Κ 5 Λ 00 3 3 4 00 Λ 60 40 5 5 4 4 Λ 3 50 5 75 0 5 3 00 60 40 75 5 7

Αρχική λύση που δεν είναι πλέον εκφυλισμένη Κ Κ Κ 3 Κ 4 Κ 5 Λ 00 ε 00+ε 3 3 4 Λ 60 40 5 5 4 4 Λ 3 50 5 75 0 5 3 00 60+ε 40 75 5 8

Μεθοδολογία επίλυσης προβλημάτων μεταφοράς Αρχικό βήμα Δημιουργία μίας αρχικής βασικής δυνατής λύσης χρησιμοποιώντας μία από τις μεθόδους προσδιορισμού αρχικής λύσης. Μεταφορά στον κανόνα τερματισμού. Επαναληπτικό βήμα. Καθορισμός της μεταβλητής που θα εισέλθει στη βάση: Επιλογή της μη βασικής μεταβλητής x ij με τη μεγαλύτερη αρνητική διαφορά c ij - u i - v j. Καθορισμός της μεταβλητής που θα εξέλθει από τη βάση: Αναγνώριση του βρόχου που έχει ως κορυφές βασικές μόνο μεταβλητές. Κατανομή στην εισερχόμενη μεταβλητή της μεγαλύτερης δυνατής ποσότητας. Για τον προσδιορισμό της επιλέγεται μεταξύ των δρομολογίων-δοτών εκείνο που έχει τη μικρότερη τιμή. Η αντίστοιχη μεταβλητή εξέρχεται από τη βάση. 9

3. Προσδιορισμός της νέας βασικής δυνατής λύσης: Πρόσθεση της ποσότητας θ σε κάθε δρομολόγιο-λήπτη και αφαίρεσή της από κάθε δρομολόγιο-δότη, έτσι ώστε να μη παραβιάζονται οι περιορισμοί πηγών και προορισμών. Κανόνας τερματισμού Υπολογισμός των στοιχείων u i και v j. [Συνιστάται η επιλογή της ευθείας με το μεγαλύτερο πλήθος βασικών δρομολογίων, κατανομών, δίνοντας στο αντίστοιχο u i (v j ) την τιμή μηδέν και λύνοντας το σύστημα των εξισώσεων c ij = u ι + v j για κάθε βασικό δρομολόγιο (i,j)] Έλεγχος αριστότητας της λύσης: Αν για κάθε μη βασικό δρομολόγιο (i,j), ισχύει η σχέση u i + v j <= c ij τότε η λύση είναι άριστη Τέλος. Σε αντίθετη περίπτωση, μεταφορά στο επαναληπτικό βήμα. 30

Λ - Λ -0 Λ 3 - Διαδοχικά βήματα εύρεσης της άριστης λύσης η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 4 4 3 u i 75 * 75 3 3 4 5-θ 60 40 5+θ * 50 4 4 θ * 50-θ 5 75 0 5 3 00 60 40 75 5 3

Η μεγαλύτερη ποσότητα που μπορεί να μετακινηθεί από το δρομολόγιο Λ - Κ (εξερχόμενη μεταβλητή) στο δρομολόγιο Λ3 - Κ (εισερχόμενη μεταβλητή επειδή c 3 = u 3 - v = -(-)-4 = - < 0) είναι η θ max = 5. 3

Λ Λ 3 - η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 4 3 u i 75-θ * θ * 75 3 3 4 Λ -0 4 60 40 50 * 50 4 5+θ 5 5-θ 75 0 5 3 00 60 40 75 5 33

Συνολικό κόστος μεταφοράς: 75 Εισερχόμενη μεταβλητή : x 5 (c 5 -u -v 5 = -) Εξερχόμενη μεταβλητή : x 35 Μεταφερόμενη ποσότητα : θ max = 5 34

Λ Λ 3-3η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 4 3 u i 50-θ θ * 5 75 3 3 4 Λ -0 4 60 40 50 50 4 50+θ 0 5 5-θ 3 75 00 60 40 75 5 35

Συνολικό κόστος μεταφοράς : 640 (ίσο με εκείνο της μεθόδου Vogel) Εισερχόμενη μεταβλητή : x 4 (c 4 -u -v 4 = -) Εξερχόμενη μεταβλητή : x 34 Μεταφερόμενη ποσότητα : θ max = 5 36

Λ Λ 3-4η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 4 3 u i 5 5 5 75 3 3 4 Λ -0 4 60 40 50 50 4 75 0 5 3 75 00 60 40 75 5 37

Η λύση αυτή είναι η άριστη, εφόσον για κάθε μη βασική μεταβλητή x ij ισχύει η συνθήκη αριστότητας u i + v j c ij. Το ελάχιστο συνολικό κόστος μεταφοράς είναι 65. Επομένως το καλύτερο πρόγραμμα μεταφοράς και διανομής των 300 τόνων του παραγόμενου χαλικιού είναι το ακόλουθο: 5 τόνοι στον καταναλωτή Κ από το λατομείο Λ 5 - " - Κ 4 5 - " - Κ 5 60 τόνοι στον καταναλωτή Κ από το λατομείο Λ 40 - " - Κ 3 50 - " - Κ 4 από το λατομείο Λ 3 75 τόνοι στον καταναλωτή Κ 38

Εκφυλισμένη λύση Κ Κ Κ 3 Κ 4 Κ 5 Λ 00 ε 00+ε 3 3 4 Λ 4 60 40 5 5 4 Λ 3 θ 50 5 75 0 5 3 00 60+ε 40 75 5 39

Λ η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 4 3 u i 00 ε-θ * θ* 00+ε 3 3 4 Λ 0 4 60-θ 40 5-θ * 5 4 Λ 3-0 5 50-θ 5-θ 75 3 00 60+ε 40 75 5 Με αστερίσκο (*) σημειώνονται όλα τα μη βασικά δρομολόγια, για τα οποία η διαφορά c ij -u i -v j είναι αρνητική. 40

Συνολικό κόστος μεταφοράς : 740 Εισερχόμενη μεταβλητή : x 5 (c 5 -u -v 5 = -3) Εξερχόμενη μεταβλητή : x Μέγιστη μεταφερόμενη ποσότητα : θ max = ε 4

Λ Λ 0 Λ 3 - η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 5 4 3 u i 00-θ ε+θ 00+ε 3 3 4 * 60+ε 40 50-ε * 5 4 4 θ* 50+ε 5-ε-θ 75 0 5 3 00 60+ε 40 75 5 4

Συνολικό κόστος μεταφοράς : 740 Εισερχόμενη μεταβλητή : x 3 (c 3 -u 3 -v = -) Εξερχόμενη μεταβλητή : x 35 Μέγιστη μεταφερόμενη ποσότητα : θ max = 5-ε 43

Λ 3-3η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 4 3 u i Λ 75-θ 3 3 θ* 4 5 00+ ε Λ 0 4 60+ε 40 5-ε 5 4 5-ε+θ 0 5 50+ε-θ 3 75 00 60+ε 40 75 5 44

Συνολικό κόστος μεταφοράς : 665 Εισερχόμενη μεταβλητή : x 4 (c 4 -u -v 4 = -) Εξερχόμενη μεταβλητή : x 34 Μέγιστη μεταφερόμενη ποσότητα : θ max = 50+ε 45

Λ 0 Λ 3-4η επανάληψη Κ Κ Κ 3 Κ 4 Κ 5 v j 3 4 u i 5 50+ε 5 00+ε 3 3 4 Λ 0 4 60+ε 40 5-ε 50 4 75 0 5 3 75 00 60+ε 40 75 5 46

Για όλα τα μη βασικά δρομολόγια του τελευταίου πίνακα ισχύει η συνθήκη ui + vj cij, επομένως η τρέχουσα λύση είναι άριστη. Προκειμένου να αναγνωρισθεί αυτή η λύση, αρκεί η απαλοιφή της βοηθητικής μεταβλητής ε, η συνεισφορά της οποίας έχει πλέον ολοκληρωθεί. Μπορεί πλέον να προσδιοριστεί το συνολικό κόστος μεταφοράς ( 65) και το αναλυτικό πρόγραμμα μεταφοράς και διανομής των 300 τόνων του χαλικιού. 47

Άριστη λύση Κ Κ Κ 3 Κ 4 Κ 5 Λ 5 50 5 00 3 3 4 Λ 4 60 40 5 5 3 Λ 3 75 0 5 3 75 00 60 40 75 5 48

Έλλειψη ισορροπίας. Πλεονάζουσα παραγωγή m x ij j n x ij i a i b i (όπου i =,,...,m) (όπου j =,,...,n) m j i n a i b j i i Δημιουργία φανταστικού προορισμού (θέσης κατανάλωσης) Οι τιμές των στοιχείων της πρόσθετης στήλης που δημιουργείται εξαρτώνται από την τύπο και τα χαρακτηριστικά του εκάστοτε προβλήματος. 49

. Ελλειμματική παραγωγή m x ij j i n x ij i i b a i i (όπου i =,,...,m) (όπου j =,,...,n) m j i n a i b j i i Δημιουργία φανταστικής πηγής (θέσης παραγωγής) 50

Όσον αφορά στα στοιχεία της πρόσθετης γραμμής που δημιουργείται: Αν το κόστος έλλειψης της ποσότητας που πρέπει να μεταφερθεί σε έναν προορισμό είναι μηδενικό, το αντίστοιχο στοιχείο κόστους τίθεται ίσο με μηδέν. Αν η αδυναμία ικανοποίησης της ζήτησης συνεπάγεται ορισμένες οικονομικές επιπτώσεις (ποινικές ρήτρες, εκπτώσεις, κόστος καλής φήμης κλπ), τότε το κόστος σε κάθε θέση της πρόσθετης γραμμής ισούται με το αντίστοιχο μοναδιαίο κόστος έλλειψης. 5

3. Υποχρέωση ικανοποίησης Σε τέτοιες περιπτώσεις ο πίνακας μεταφοράς πρέπει να διαμορφωθεί με τρόπο ώστε το αντίστοιχο πρόσθετο δρομολόγιο της φανταστικής πηγής ή προορισμού να έχει οπωσδήποτε μηδενική τιμή (δηλ. δε θα συμμετέχει) στην τελική λύση. Για το σκοπό αυτό δίνεται στο στοιχείο κόστους αυτού του δρομολογίου μία πολύ μεγάλη θετική τιμή (Μ). Έτσι εξασφαλίζεται ότι αυτό το δρομολόγιο δεν πρόκειται να συμμετάσχει σε καμία περίπτωση στην τελική λύση. 5

4. Πλεονάζουσα ή ελλειμματική παραγωγή Είναι πιθανό σε ορισμένα προβλήματα μεταφοράς να μην είναι γνωστό εκ των προτέρων κατά πόσον η παραγωγή θα είναι πλεονάζουσα ή ελλειμματική. Αυτό μπορεί να συμβεί αν τα στοιχεία c ij της αντικειμενικής συνάρτησης παριστάνουν οικονομικά αποτελέσματα (κέρδος, ζημία ή κάποιο άλλο μέτρο αποτελεσματικότητας) από την ικανοποίηση των θέσεων κατανάλωσης. Κάποια απ' αυτά τα στοιχεία μπορεί να είναι αρνητικά. Ως εκ τούτου είναι ίσως πιο συμφέρον να μην ικανοποιηθεί καθόλου κάποια ζήτηση παρά το αντίστοιχο οικονομικό αποτέλεσμα να οδηγήσει σε ζημία. Για την αντιμετώπιση μίας τέτοιας κατάστασης προστίθενται στον αρχικό πίνακα μεταφοράς μία φανταστική πηγή (γραμμή) και ένας φανταστικός προορισμός (στήλη). Η δυναμικότητα και η ζήτηση των δύο πρόσθετων ευθειών πρέπει να είναι τέτοιες, ώστε να υπάρχει η δυνατότητα να μην είναι υποχρεωτική ούτε η ικανοποίηση όλων των αναγκών κατανάλωσης ούτε η χρησιμοποίηση όλων των δυναμικοτήτων. 53

Επίλυση προβλημάτων μεγιστοποίησης Σε μία τέτοια περίπτωση στόχος είναι η μεγιστοποίηση της αντικειμενικής συνάρτησης. Η μεθοδολογία εύρεσης της άριστης λύσης ενός τέτοιου προβλήματος είναι πολύ παρόμοια με αυτή των προβλημάτων ελαχιστοποίησης. Τα απαιτούμενα βήματα μετά τον προσδιορισμό μιας αρχικής βασικής λύσης μένουν αμετάβλητα. Η μόνη διαφορά αφορά στον κανόνα τερματισμού κατά τον έλεγχο αριστότητας της λύσης: Η τρέχουσα λύση είναι άριστη αν για κάθε μη βασικό δρομολόγιο ισχύει η σχέση: u i + v j c ij 54

Διαφοροποιήσεις στην εφαρμογή των μεθόδων εύρεσης αρχικής λύσης Μέθοδος βορειοδυτικής γωνίας: Καμία διαφορά. Μέθοδος ελάχιστου κόστους: Ουσιαστικά μετονομάζεται σε μέθοδο του μέγιστου κέρδους, οπότε διατηρώντας την ίδια λογική κατανέμεται κατά προτεραιότητα η μέγιστη δυνατή ποσότητα στο δρομολόγιο με το μέγιστο μοναδιαίο κέρδος. Μέθοδος Vogel: Οι διαφορές λόγω της συνθετότητάς της είναι περισσότερες: - Βήμα : Η πρόσθετη στήλη και γραμμή έχουν στοιχεία τις διαφορές των δύο μεγαλύτερων στοιχείων κέρδους κάθε γραμμής και κάθε στήλης αντίστοιχα. - Βήμα 3: Μέσα στον πίνακα μεταφοράς αναζητείται το μεγαλύτερο στοιχείο της κατάλληλης στήλης ή γραμμής. 55