ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κυριακή 6 Απριλίου 05 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σχολικού βιβλίου, σελίδα. Α. Θεωρία σχολικού βιβλίου, σελίδα, ορίζουµε α β = 0. Α. α) (Λ), β) (Σ), γ) (Λ), δ) (Σ), ε) (Σ). ΘΕΜΑ B Β. Ο συντελεστής διεύθυνσης της ευθείας ε είναι λ ε =. εδοµένου ότι ε / / ζ έχουµε: λ ε = λ ζ =. Εποµένως η εξίσωση ευθείας ζ η οποία διέρχεται από 9 το Α, και έχει συντελεστή διεύθυνσης λ =, είναι: 9 y = ( x ), 9 οπότε ισοδύναµα y+ = x+ y + 8 = x + 6 x+ y=. Β. Ένα τυχαίο σηµείο Μ ( x, y) ανήκει στη µεσοπαράλληλη ευθεία η των ε, ζ αν ÈÅÌÁÔÁ 05 και µόνο αν: x + y + x + y d( M, ζ ) = d( M, ε) = + + x + y + = x + y x + y + = x + y 0x + 0y =, αδύνατη ή ή x y x y + + = + x + y = 0. ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 6
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α) Η εξίσωση x+ y= 0 επαληθεύεται µόνο από τα σηµεία του επιπέδου για τα οποία ισχύει: d( M, ζ ) = d( M, ε ). Άρα η x+ y= 0 είναι η εξίσωση της µεσοπαράλληλης ευθείας η. B - Τρόπος Ισχύει: η / / ε / / ζ, άρα λ η =. Οπότε η εξίσωση της µεσοπαράλληλης έχει τη µορφή y = x + κ, κ R, η οποία γράφεται ισοδύναµα x+ y= κ. Αν Κ, Λ, Μ τα σηµεία όπου οι ευθείες ε, ζ και η αντίστοιχα, τέµνουν τον άξονα x x, τότε το Μ είναι µέσο του ΚΛ. x + y = x = Εύρεση του Κ :. y = 0 y = 0 x + y = x = Εύρεση του Λ:. y = 0 y = 0 Οπότε (,0) x y κ + = κ x = Εύρεση του Μ:. Οπότε y = 0 y = 0 x K + xλ x M = = x M = 0 M µέσο ΚΛ: yk + yλ ym = 0 y M = Κ. Οπότε Λ(,0). κ Μ,0., άρα ( 0,0) Μ. Οπότε 0 0 κ = κ =, εποµένως η εξίσωση της µεσοπαράλληλης η είναι: x y 0 + =. ÈÅÌÁÔÁ 05 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 6
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α) Β. Σηµείο τοµής της ε : x + y = µε τον άξονα y y : ΘΕΜΑ Γ εποµένως B( 0, ). Σηµείο τοµής της : x y x = 0 x = 0, x + y = y = ζ + = µε τον άξονα x x : y = 0 y = 0, εποµένως Γ(,0) (είναι το Λ στον Β τρόπο x + y = x = λύσης του Β ερωτήµατος). Υπολογίζουµε τις συντεταγµένες των διανυσµάτων ΑΒ 5 9 και ΑΓ. Είναι ΑΒ =, και ΑΓ = 6,. Άρα το εµβαδόν του 5 τριγώνου είναι: ( ΑΒΓ ) = det( AB,AΓ ) = = 9 + 5 = 8 τ. µ. 9 6 α β α β = 0 x,y x, = 0 x + 8y = 0 x = 8y. Η τελευταία εξίσωση είναι εξίσωση παραβολής µε άξονα συµµετρίας τον y y, Γ. Ισχύει ( ) ( ) κορυφή την αρχή Ο( 0,0) και παράµετρο p=. Εποµένως και p δ : y = y =. Γ. i) Παρατηρούµε ότι το σηµείο p Ε 0, ή Ε ( 0,) x Ν x,, x 0, ανήκει στην παραβολή. 8 x x = y + y, όπου Η εξίσωση της εφαπτοµένης ε στη παραβολή είναι: ( ) ( x, y ) το σηµείο επαφής. To Α(, ) ε, οπότε ισχύ ει : x = ( y ) x = y, () x Όµως y=, άρα η () γίνεται: 8 x x x = x = x = x 8 8 x x 8= 0, η οποία έχει λύσεις x=, x=. Για x= είναι y=, ενώ για x= είναι y=. Στο(, ) η εξίσωση εφαπτοµένης είναι ε : x = ( y + ) x y = 0. ÈÅÌÁÔÁ 05 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 6
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α) Στο, η εξίσωση εφαπτοµένης είναι ε : x = y + x + y + = 0. ii) Βρίσκουµε τα διανύσµατα δ = ( ) δ δ ( ) +, / / ε, δ = ( ) 0 συνω = = = =. δ δ 5 0 0, / / ε. Είναι: Γ. Το σηµείο Β ( x, y ) ανήκει στη παραβολή άρα ισχύει: = ( ) ΘΕΜΑ. Επίσης ( ) 0 0 0 d B, 0 0 Για y0= η ( ) x 8y,. 0 0 y + δ = = y0 + = 0 y0 = 8 ή y0=. 0 + γίνεται x = 96, αδύνατη. Για y0= 8 η ( ) γίνεται 0 x0 = 6 x0 = 8 ή x0= 8. εκτή η x0= 8 λόγω της υπόθεσης ότι x0< 0. Άρα Β( 8,8). Έστω Κ το κέντρο του ζητούµενου κύκλου. Επειδή ΒΕ διάµετρος, τότε το Κ µέσο του ΒΕ. Συνεπώς: x B + x E 8 + 0 x K = = =. Άρα Κ(,5). Αν ρ η ακτίνα του ζητούµενου yb + ye 8 + yk = = = 5 ρ = ΚΒ = 8 + + 8 5 = 6 + 9 = 5 = 5. κύκλου τότε: ( ) ( ) ( ) C : x+ + y 5 = 5. Εποµένως η εξίσωση του κύκλου είναι: ( ) ( ) ( ) ÈÅÌÁÔÁ 05 x + y λy = 0 x + y λ y + λ = + λ x + (y λ ) = + λ, (). Η () παριστάνει κύκλο µε κέντρο Κ(0,λ) και ακτίνα ρ = λ +, για κάθε λ R. Σηµείωση: Το ερώτηµα θα µπορούσε να λυθεί µε την συνθήκη: A + B Γ > 0, µε A = 0, B = λ, Γ =. ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 6
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α). i) Για λ = 0, η () γράφεται η () γράφεται x + y 0 y = 0 x + y =. Για λ =, x + y y = 0 x + y = + y. Θεωρούµε το x + y = σύστηµα:, οπότε: x + y = + y x + y = x + y = x = x = x = ηɺ. 0 = y y = 0 y = 0 y = 0 y = 0 Θα αποδείξουµε ότι όλοι οι κύκλοι που παριστάνει η (), διέρχονται από τα σηµεία Α(,0) και Β(-,0). Πράγµατι, αν θέσουµε x =, y = 0 ή x = -,y = 0 η () επαληθεύεται για κάθε λ R. ii) Έστω M(x,y) τυχαίο σηµείο της ζητούµενης εφαπτοµένης ε, τότε: AM = (x, y 0) = (x, y), KA = ( 0, 0 λ ) = (, λ) KA AM = 0 (, λ) (x, y) = 0 x λ y = 0. Σηµείωση: Το ερώτηµα θα µπορούσε να λυθεί βρίσκοντας την εφαπτοµένη ως ευθεία κάθετη στην ευθεία ΚΑ, που διέρχεται από το σηµείο Α. Ο τρόπος αυτός έχει το µειονέκτηµα ότι χρειάζεται περιορισµός λ 0, όταν υπολογίζουµε τον συντελεστή διεύθυνσης της εφαπτοµένης. ÈÅÌÁÔÁ 05. Η έλλειψη έχει εστίες Α(,0) και Β(,0), άρα γ = ή γ =. γ = = α = α = α α x y x y C : α + β = + =. και β = α γ = =. ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 5 ΑΠΟ 6
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α). Το Μ είναι κοινό σηµείο του κύκλου και της έλλειψης. Το Μ είναι σηµείο της έλλειψης, άρα, σύµφωνα µε τον ορισµό ισχύει:(ma) + (MB) = α =. Το Μ είναι σηµείο του κύκλου, άρα η απόστασή του από το κέντρο Κ θα ισούται µε την ακτίνα ρ του κύκλου, εποµένως Έχουµε: (MA) + (MB) = (MK) = λ + λ = λ= ή λ=. (MK) = ρ = λ +. = λ + = λ + ÈÅÌÁÔÁ 05 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 6 ΑΠΟ 6