ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

Σχετικά έγγραφα
v Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β

3 η δεκάδα θεµάτων επανάληψης

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

Γ5. Αν για τα α, β έχουµε α β= 0, ισχύει πάντα ότι α = 0 ή β= 0. Μονάδες 10

1 η δεκάδα θεµάτων επανάληψης

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

1,y 1) είναι η C : xx yy 0.

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ÑÏÌÂÏÓ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

4 η δεκάδα θεµάτων επανάληψης

ΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)

2 η δεκάδα θεµάτων επανάληψης

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ

Kόλλιας Σταύρος 1

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΤΑΞΗ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

Μαθηματικά Κατεύθυνσης (Προσανατολισμού)

. Μονάδες 3 β) Τα διανύσματα και. τότε x1x2 y1y2. είναι κάθετα αν και μόνο αν 0 Μονάδες 3 γ) Το διάνυσμα,

ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ. Ηµεροµηνία: Πέµπτη 7 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a.

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου (Σεπτέµβριος 1999)

Επαναληπτικά Θέµατα Εξετάσεων

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος

Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ)

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

ΘΕΜΑ 1. Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο. (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ

( ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΗΣ Β ΛΥΚΕΙΟΥ ( ) ( ) λx + 2 λ y + λ + 4 = 0. Α Βαθ. Β Βαθ. Μ.Ο. Ενδεικτικές Λύσεις

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ ΣΥΝΕΙΡΜΟΣ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Επαναληπτικά συνδυαστικα θέµατα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα

Επαναληπτικά συνδυαστικα θέµατα

5 Γενική µορφή εξίσωσης ευθείας

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων

ΚΥΚΛΟΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΞΑΣΚΗΣΗ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ. 2. Έστω Κ (α, β) το κέντρο και ρ η ακτίνα του ζητούμενου κύκλου C. οπότε:

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

= π 3 και a = 2, β =2 2. a, β

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ

(x - 1) 2 + (y + 1) 2 = 8.

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Η εξίσωση του ύψους Γ του τριγώνου θα είναι:

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

Θέματα εξετάσεων στα Μαθηματικά προσανατολισμού της Β Λυκείου παλαιοτέρων ετών

Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {

Μαθηματικά προσανατολισμού Β Λυκείου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ α φάση. Διανύσματα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ. Επανάληψη Επιμέλεια Αυγερινός Βασίλης. Επιμέλεια : Αυγερινός Βασίλης

Ερωτήσεις αντιστοίχισης

Transcript:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ o Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων α, β. Μονάδες 4 Β. Να αποδείξετε ότι το εσωτερικό γινόµενο δύο διανυσµάτων είναι ίσο µε το άθροισµα των γινοµένων των οµώνυµων συντεταγµένων τους. Μονάδες 9 Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α. Ένα διάνυσµα και µία ευθεία, αν έχουν τον ίδιο συντελεστή διεύθυνσης είναι παράλληλα. β. Αν det (,β) α είναι η ορίζουσα των διανυσµάτων τότε ισχύει η ισοδυναµία: α // β det ( α,β). α, β γ. Αν α, β είναι θετικοί ακέραιοι, τότε πάντα ισχύει: α β [α, β] (α, β) όπου [α, β] είναι το ελάχιστο κοινό πολλαπλάσιο των α, β και (α, β) είναι ο µέγιστος κοινός διαιρέτης των α, β. δ. Η εξίσωση x + y + Ax + By +Γ 0 µε Α +Β 4Γ >0 παριστάνει κύκλο µε κέντρο A B K,., Μονάδες 8. Στη Στήλη Α δίνονται εξισώσεις κωνικών τοµών και στη Στήλη Β εξισώσεις εφαπτοµένων κωνικών τοµών στο σηµείο επαφής (x,y ). Να γράψετε στο τετράδιό σας το γράµµα της Στήλης Α και δίπλα σε κάθε γράµµα, τον αριθµό της Στήλης Β που αντιστοιχεί πάντα στη σωστή εξίσωση εφαπτοµένης.

Στήλη Α Στήλη Β α. x + y ρ. yy p(x + x ) β. x y +. xx + yy ρ γ. y px δ. x y 3. xx yy + 4. xx + yy 5. xx yy ρ 6. xx yy Μονάδες 4 Α. Ονοµάζουµε εσωτερικό γινόµενο δύο µη µηδενικών διανυσµάτων α και β και το συµβολίζουµε µε τον πραγµατικό αριθµό: α β α β συνφ όπου φ η γωνία των διανυσµάτων α και β. Αν α 0 ή β 0 τότε ορίζουµε α β 0. Β. Έστω α(x,ψ) και β(x,ψ ). Με αρχή το Ο παίρνουµε τα διανύσµατα OA α και OB β. Από τον νόµο των συνηµιτόνων στο τρίγωνο OAB έχουµε: (AB) (OA) + (OB) (OA)(OB)συνAÔB Όµως είναι: (ΑΒ) (x - x ) +(ψ - ψ ) (ΟΑ) x +ψ και (ΟΒ) x +ψ

Γ.. Εποµένως έχουµε διαδοχικά: (x - x ) +(ψ - ψ ) x +ψ +x +ψ - (ΟΑ)(ΟΒ) συνa ÔB ή µετά από πράξεις: x x +ψ ψ +(ΟΑ)(ΟΒ) συνa ÔB και επειδή: (ΟΑ)(ΟΒ) συν(aôb) α β Προκύπτει τελικά ότι: x x +ψ ψ γ δ Σ Λ Λ Σ Στήλη Α Στήλη Β α β 3 γ δ 6 ΘΕΜΑ ο Α. Να αποδείξετε ότι το γινόµενο δύο περιττών ακεραίων αριθµών είναι περιττός ακέραιος αριθµός. Μονάδες 5 Β. Να αποδείξετε ότι αν ο α είναι ακέραιος, τότε και ο α ( α + ) είναι ακέραιος. Μονάδες 0 Γ. Αν ο α είναι περιττός ακέραιος, να αποδείξετε ότι ο α ( α + ) είναι επίσης περιττός ακέραιος. Μονάδες 0 Α. Έστω α κ+ και β λ+ µε κ,λ Ζ δύο περιττοί ακέραιοι αριθµοί. Τότε: α β (κ+)(λ+) 4κλ+κ+λ+ (κλ+κ+λ)+ ρ+ όπου ρ κλ+κ+λ ακέραιος αριθµός. Άρα το γινόµενο α β περιττός αριθµός. 3

Β. (i) Αν α άρτιος ακέραιος αριθµός, δηλαδή α λ µε λ Ζ τότε έχουµε: α(α + ) λ(4λ + ) [ λ(4λ + ) ] λ(4λ + ) Z (ii) Αν α περιττός ακέραιος αριθµός, δηλαδή α λ+ µε λ Ζ τότε έχουµε: α(α + ) (λ + ) [(λ + ) + ] (λ + ) [ 4λ + 4λ + + ] (λ + ) [ 4λ + 4λ + ] [(λ + )(λ + λ + ) ] (λ + )(λ + λ + ) Z () Γ. Από το συµπέρασµα () του ερωτήµατος Β έχουµε ότι: α (α + ) (λ+)(λ +λ+) (λ+)[(λ +λ)+] (λ+)(ρ+) : περιττός ακέραιος λόγω του ερωτήµατος Α µε ρ λ +λ Ζ ΘΕΜΑ 3ο ίνεται η παραβολή y 4x. Νρείτε: Α. την εστία και τη διευθετούσα της παραβολής Μονάδες 6 Β. τις ευθείες που διέρχονται από την εστία της παραβολής και απέχουν από την αρχή των αξόνων απόσταση ίση µε Μονάδες 0 Γ. την εξίσωση της εφαπτοµένης της παραβολής που είναι παράλληλη στην ευθεία y x. Μονάδες 9 A. Η εξίσωση y 4x γράφεται y x, οπότε είναι ρ. ρ Έτσι η εστία Ε έχει συντεταγµένες E,0 ή Ε(,0). Η ρ διευθετούσα είναι x ή x -. 4

B. Το σύνολο των ευθειών που διέρχονται από την εστία Ε(,0) περιγράφεται από τις εξισώσεις: (η λ ): y - 0 λ(x-) y λx - λ λx + (-)y - λ 0, λ IR (ε): x. d(0, ε) άρα η (ε) δεν είναι λύση. Αναζητούµε έτσι λ IR ώστε d(0,η ) λ 4λ (λ λ 0 + ( ) 0 λ λ + ( ) + ) λ λ ή λ -. Έτσι προκύπτουν δύο ευθείες: α) Για λ : y x -. β) Για λ - : y -x +. Γ. Αν (ε ) η ζητούµενη ευθεία και Α(x, y ) το σηµείο επαφής της (ε ) µε την παραβολή, η (ε ) έχει τη µορφή: yy ρ(x + x ) ή yy (x + x ). Επειδή y 0 η τελευταία γράφεται x y x +. y y Άρα ο συντελεστής διεύθυνσης προκύπτει λ. y Λόγω της παραλληλίας µε την y x - πρέπει: λ y. y Όµως Α(x, y ) είναι σηµείο της παραβολής, οπότε y 4x 4x x. Τελικά η ζητούµενη εξίσωση είναι: y (x + ) y x +. 5

ΘΕΜΑ 4ο ίνεται η εξίσωση x + y xσυνθ yηµθ 0, 0 θ<π. Α. Να αποδείξετε ότι για κάθε θ η εξίσωση αυτή παριστάνει κύκλο, του οποίου να προσδιορίσετε το κέντρο και την ακτίνα. Moνάδες 9 Β. Αν π θ, νρείτε την εξίσωση της εφαπτοµένης του κύκλου στο σηµείο Μ(,). Μονάδες 9 Γ. Να αποδείξετε ότι για τις διάφορες τιµές του θ τα κέντρα των παραπάνω κύκλων βρίσκονται σε κύκλο µε κέντρο Ο(0,0) και ακτίνα ρ. Μονάδες 7 Α. Η δοσµένη εξίσωση γράφεται: (x - xσυνθ) + (y - yηµθ) ή (x - xσυνθ + συν θ) + (y - yηµθ + ηµ θ) ή (x - συνθ) + (y - ηµθ) () Η τελευταία όµως παριστάνει κύκλο µε κέντρο Κ(συνθ, ηµθ) και ακτίνα ρ. π Β. Από την εξίσωση () για θ, προκύπτει ο κύκλος: (x - 0) + (y - ) του οποίου το κέντρο είναι Κ(0,). y M y K Είναι: λ ΚΜ. Επειδή η εφαπτοµένη ευθεία στο x x 0 M K Μ είναι κάθετη στην ευθεία ΚΜ, προκύπτει ότι θα έχει συντελεστή διεύθυνσης λ - και εξίσωση: y - -(x - ). Άρα y - x +3. Γ. Οι συντεταγµένες x, y των κέντρων των παραπάνω κύκλων είναι: x συνθ, y ηµθ. Έτσι προκύπτει x + y συν θ + ηµ θ ή x + y. Άρα τα κέντρα αυτά βρίσκονται στον κύκλο µε κέντρο Ο(0,0) και ακτίνα ρ. 6