Όταν η s δεν συγκλίνει λέμε ότι η σειρά αποκλίνει.
Παρατήρηση: Το αντίστροφο του προηγουμένου θεωρήματος δεν ισχύει. Παράδειγμα η σειρά με νιοστό όρο α = +-. Τότε lim α =0. Όμως s =α +α + +α = - + 3- +...+ +- = +-. H τελευταία έχει όριο το. Παράδειγμα. Να εξετάσετε αν η σειρά + συγκλίνει. 3+ Απάντηση. Παρατηρούμε ότι το όριο της ακολουθίας = + lim + = lim 3+ = 3 0, άρα η σειρά αποκλίνει. 3+ του γενικού όρου της σειράς, είναι Ορισμός: Θα λέμε ότι η σειρά συγκλίνει απολύτως αν η σειρά συγκλίνει. Θεώρημα: Αν η σειρά συγκλίνει απολύτως τότε είναι συγκλίνουσα. Αν οι όροι μιας σειράς είναι μη αρνητικοί αριθμοί τότε ισχύει το παρακάτω θεώρημα: Αν παραλείψουμε ένα πεπερασμένο πλήθος όρων μιας σειράς, τότε η σειρά που προκύπτει έχει την ίδια συμπεριφορά ως προς τη σύγκλιση με την αρχική, ωστόσο το άθροισμά της θα είναι διαφορετικό. Υπόλοιπο (remider) σειράς (R ). Ας ξεκινήσουμε με τη σειρά και ας υποθέσουμε ότι η σειρά συγκλίνει στο s. Αυτό σημαίνει ότι αν πάρουμε τα μερικά αθροίσματα s, θα σχηματίσουν μια συγκλίνουσα ακολουθία με όριο το s. Αυτό
σημαίνει ότι τα μερικά αθροίσματα s πλησιάζουν το s όσο κοντά θέλουμε παίρνοντας το αρκετά μεγάλο. Με άλλα λόγια, αν πάρουμε το αρκετά μεγάλο, τότε μπορούμε να πούμε ότι, s s. Αυτή είναι μια μέθοδος για τον υπολογισμό του ορίου της σειράς. Μπορούμε να πάρουμε κάποιο μερικό άθροισμα και με αυτό να εκτιμήσουμε την τιμή της σειράς. Εγείρονται δύο ερωτήματα: Πρώτον, το πόσο καλή είναι η εκτίμηση; Δεύτερον, υπάρχει τρόπος να γίνει η εκτίμηση καλύτερη; Ας ξεκινήσουμε με μια γενική συζήτηση σχετικά με το πώς θα καθορίσουμε πόσο καλή είναι η εκτίμηση. Ας ξεκινήσουμε με όλη την σειρά και να απομακρύνουν τους πρώτους όρους (Το εδώ είναι σταθερό). Δηλαδή = + i () i= i=+ [ή + ν =( + )+( + + + ν ) υποθέτοντας ότι υπάρχουν τα όρια όταν το ν τείνει στο άπειρο). Τότε s=s +R όπου η σειρά στα δεξιά συμβολίζεται με R και καλείται υπόλοιπο. Ισχύει () R =s-s. Επομένως το υπόλοιπο μας λέει για την διαφορά ή το λάθος μεταξύ της ακριβούς τιμής της σειράς και του μερικού αθροίσματος που χρησιμοποιούμε για την εκτίμηση της σειράς. Φυσικά δεν μπορούμε α υπολογίσουμε την ακριβή τιμή του υπολοίπου γιατί δεν γνωρίζουμε την ακριβή τιμή της σειράς. Όμως υπάρχουν θεωρήματα τα οποία με προϋποθέσεις μας βοηθούν να εκτιμήσουμε το υπόλοιπο. Παράδειγμα: Δίνεται η σειρά ν. ν= Τότε s 3 = + + 4 8 και R 3= + +... 6 3. s = + +... και τo -στό υπόλοιπο είναι το R = + +... 4 8 + + 3
Έτσι για =4 έχουμε s 4 = + + + = 5 4 8 6 6, ν = και R 4= 4+ν = ν= ν= 6. Πρόταση: Αν η σειρά συγκλίνει σε ένα αριθμό s, τότε και η σειρά c όπου c σταθερός πραγματικός αριθμός συγκλίνει και μάλιστα στον αριθμό cs. Πρόταση: Αν οι σειρές και b συγκλίνουν στους αριθμούς s και r αντιστοίχως, τότε και η σειρά ( + b ) συγκλίνει και μάλιστα στον αριθμό s+r. Κριτήρια σύγκλισης (για σειρές με μη αρνητικούς όρους) o : Το Κριτήριο της Σύγκρισης (compriso test) Έστω ότι για τις ακολουθίες, b ισχύει 0 b. (α) Αν η σειρά (β) Αν η σειρά b συγκλίνει, τότε και η σειρά αποκλίνει, τότε και η σειρά b συγκλίνει. αποκλίνει. Παράδειγμα: Να εξετάσετε αν η σειρά συγκλίνει. ++5 Απάντηση. Παρατηρούμε ότι ++ < + = +. Όμως, έχουμε ήδη δει ότι η σειρά συγκλίνει στον αριθμό (σελ., παρ. 3). Αρα από το κριτήριο σύγκρισης συμπεραίνουμε + ότι η σειρά συγκλίνει. ++5 ο : Το Κριτήριο του Λόγου Έστω η σειρά με 0. 4
+ (α) Αν το lim =<, τότε η σειρά συγκλίνει. + (β) Αν το lim => τότε η σειρά αποκλίνει. + (γ) Αν το lim =, τότε δεν έχουμε κανένα συμπέρασμα για τη σύγκλιση της σειράς. Παράδειγμα: Να εξετάσετε αν η σειρά! συγκλίνει. Λύση. Χρησιμοποιώντας το κριτήριο του λόγου έχουμε: lim +! = lim =0<, άρα η σειρά συγκλίνει. +! 3 ο : Το Κριτήριο του Ολοκληρώματος. Έστω f(x) μια μη αρνητική, συνεχής και φθίνουσα συνάρτηση με πεδίο ορισμού το διάστημα [, +). (α) Το ολοκλήρωμα (β) Το ολοκλήρωμα f(x)dx συγκλίνει, αν και μόνο αν η σειρά f(x)dx αποκλίνει, αν και μόνο αν η σειρά f() συγκλίνει. f() αποκλίνει. Προσοχή! Αν το ολοκλήρωμα και η σειρά συγκλίνουν δεν σημαίνει, ότι συγκλίνουν απαραίτητα στον ίδιο αριθμό. Παράδειγμα: Να εξετάσετε αν η σειρά p με p> συγκλίνει. Απάντηση. Θεωρούμε τη συνάρτηση f(x) = x p διάστημα [, )., p>. H συνάρτηση αυτή είναι θετική και φθίνουσα στο 5
Ισχύει dx x = p t t lim p dx = lim - p- x t p- t = p- Άρα το γενικευμένο ολοκλήρωμα συγκλίνει και επομένως και η αντίστοιχη σειρά. Εναλλάσσουσες σειρές Μια σειρά στην οποία οι διαδοχικοί όροι της αλλάζουν πρόσημο λέγεται εναλλάσσουσα. Σε μια εναλλάσουσα σειρά ο γενικός της όρος θα έχει την μορφή =(-) b ή =(-) + b, όπου b 0. Κριτήριο Εναλλασσουσών σειρών. Αν σε μία εναλλάσσουσα σειρά ισχύει + και η είναι μια μηδενική ακολουθία τότε η σειρά συγκλίνει. Παράδειγμα: Η σειρά είναι συγκλίνουσα. Απάντηση. Πράγματι η σειρά αυτή είναι εναλλάσσσουσα και η ακολουθία είναι φθίνουσα και τείνει στο 0, συνεπώς η σειρά συγκλίνει. Παρατηρείστε ότι η σειρά αυτή δε συγκλίνει απόλυτα αφού η αρμονική σειρά δεν συγκλίνει. Δυναμοσειρές Έστω, N μια ακολουθία πραγματικών αριθμών. Μια σειρά της μορφής ( x-c) λέγεται =0 δυναμοσειρά με κέντρο το c και συντελεστές. Παρατηρήσεις: ) Μια δυναμοσειρά είναι πιθανόν να συγκλίνει για κάποιες τιμές του x, ενώ να αποκλίνει για άλλες. Για κάθε x που συγκλίνει ορίζεται μια συνάρτηση f(x). 6
) Όλες οι δυναμοσειρές με κέντρο το c συγκλίνουν για x=c. (θεωρούμε ότι 0 0 =) Παράδειγμα: Ισχύει x = =0 -x για x <. (γεωμετρική σειρά παρ.4 σελ.). Σε κάθε δυναμοσειρά ενδιαφέρον έχει το σύνολο των πραγματικών αριθμών x για τους οποίους η σειρά συγκλίνει. Ισχύει σχετικά η παρακάτω πρόταση: Πρόταση: Το σύνολο σύγκλισης μιας δυναμοσειράς είναι το σύνολο {xr : x-c <r}, όπου r - = lim +. Αν x-c >r η σειρά αποκλίνει. Αν x-c =r δεν μπορούμε εν γένει να αποφανθούμε. To r ονομάζεται ακτίνα σύγκλισης της δυναμοσειράς. Παράδειγμα: Η δυναμοσειρά έχει ακτίνα σύγκλισης r=, δηλαδή συγκλίνει σε όλο το R. Πράγματι + = + 0, άρα r=. Ισχύει το παρακάτω θεώρημα: Θεώρημα: Έστω f(x)= =0 ( x-c) - α) f (x)= ( x-c) = ( + +) ( x-c). = για κάθε x στο διάστημα σύγκλισής της. Τότε ισχύει: =0 + x-c - x-c β) f(x)dx = +λ= +λ, όπου λ είναι μια σταθερά. + =0 = 7
Σειρές Tylor-Mcluri Η σειρά Τέιλορ (Tylor) μίας πραγματικής συνάρτησης f(x) η οποία είναι απείρως παραγωγίσιμη σε ένα διάστημα ενός πραγματικού αριθμού α είναι η δυναμοσειρά: f()+ f ()! (x-)+ f ()! (x-) + f () 3! (x-) 3 + ή σε συμπαγή μορφή =0 f! x- Η παράγωγος τάξης μηδέν της f ορίζεται να είναι η ίδια η f. Στην περίπτωση που =0, η σειρά ονομάζεται και σειρά Mcluri. Λέμε ότι η f αναπτύσσεται σε σειρά Tylor ή Mcluri. Είναι κοινή πρακτική να χρησιμοποιείται πεπερασμένος αριθμός από τους όρους της σειράς Τέιλορ για να προσεγγίσουμε μια συνάρτηση. Η εκθετική συνάρτηση (μπλε), και το άθροισμα των πρώτων + (=0,,,3,4,5,6,7) όρων της οικείας σειράς Τέιλορ στο 0 (κόκκινο). 8
Μερικές σημαντικές σειρές Mcluri Στη συνέχεια δίνουμε μερικές εξαιρετικά χρήσιμες σειρές μαζί με τα διαστήματα σύγκλισής τους. Οι σειρές αυτές θα αποτελέσουν το πρότυπο για τον υπολογισμό συνθετότερων μορφών τέτοιων συναρτήσεων. e x = + x + x + x3 + + x + x R! 3!! l( + x) = x x + x3 x + ( )+ 3 + < x l( x) = x x x3 3 x x < συνx = cosx = x + x4! 4! x + + ( ) + x R ()! ημx = six = x x3 3! + x5 5! + x + ( ) + x R ( + )! x = + x + x + x 3 + + x + x < +x = x + x x 3 + + ( ) x + x < 9