,,, και τα ενδεχόμενα

Σχετικά έγγραφα
Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 20 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

P(A ) = 1 P(A). Μονάδες 7

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 20 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

P A B P(A) P(B) P(A. , όπου l 1

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

x. Αν ισχύει ( ) ( )

1) ( ) ω Α άρα έχουμε: P( ω ) ( ' ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 20 ΜΑΪΟΥ 2013

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

Μαθηµατικά και στοιχεία Στατιστικής

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

Χρόνια υπηρεσίας [ - )

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

( ) ( ) ( ) ( ) Α2. Έστω μια συνάρτηση f με πεδίο ορισμού A. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό μέγιστο στο x1 Μονάδες 4.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 B ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ / ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις θεμάτων πανελληνίων εξετάσεων. Στο μάθημα: «Μαθηματικά και Στοιχεία Στατιστικής» Γ Λυκείου Γενικής Παιδείας. Δευτέρα, 20 Μαΐου 2013

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

Μονάδες 2 β. αν Α Β τότε Ρ(Β)... Ρ(Α). Μονάδες 2 Β.1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΘΕΜΑ 1ο. Στήλη ΙΙ Παράγωγος f (x) 1. -ημx. 2. x ρ-1 3. συνx 4. 1 Γ. x ρ, x > 0 και ρ ρητός. Β. x, x > ρ x ρ-1. Δ. ημx. Ε. συνx. 8.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

Transcript:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) 0 ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f(x)=x είναι f( x=, ) για κάθε x Α. Έστω μια συνάρτηση f με πεδίο ορισμού Α. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό ελάχιστο στο x Α ; 0 Μονάδες Α. Να δώσετε τον ορισμό της διαμέσου (δ) ενός δείγματος ν παρατηρήσεων. Μονάδες Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Για τη συνάρτηση f( x) =, x 0 x ισχύει ότι f ( x) = x (μονάδες ) β) Για το γινόμενο δύο παραγωγίσιμων συναρτήσεων f,g ισχύει ότι f( x) g( x) = f ( x) g( x) + f( x) g( x ) ( ) (μονάδες ) ΘΕΜΑ Β γ) Το ραβδόγραμμα χρησιμοποιείται για τη γραφική παράσταση των τιμών μιας ποσοτικής μεταβλητής. (μονάδες ) δ) Η διάμεσος είναι ένα μέτρο θέσης, το οποίο επηρεάζεται από τις ακραίες παρατηρήσεις. (μονάδες ) ε) Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω με Α Β, ισχύει ότι Ρ ( Α) > Ρ( Β) (μονάδες ) Δίνεται ο δειγματικός χώρος Ω= { ω ω ω ω},,, και τα ενδεχόμενα {, } και Β = { ω, ω } Α= ω ω Μονάδες 0

Για τις πιθανότητες των απλών ενδεχομένων { ω } και { } x + x+ P( ω ) = lim x x + x ω του Ω ισχύει ότι: H P( ω ) είναι ίση με το ρυθμό μεταβολής της f( x ) ως προς x, όταν x=, όπου x f (x) = lnx, x > 0 Β. Να αποδείξετε ότι P( ω ) = και ω = P( ) Μονάδες 0 Β. Να αποδείξετε ότι P(A ), όπου A το συμπληρωματικό του A. Β. Αν P(A ) =, τότε να βρείτε τις πιθανότητες P( ω ), P( ω ), P(A [ B) (B A) ] και P(Α -Β ), όπου Β το συμπληρωματικό του Β. Μονάδες 8 ΘΕΜΑ Γ Θεωρούμε ένα δείγμα ν παρατηρήσεων μιας συνεχούς ποσοτικής μεταβλητής X, τις οποίες ομαδοποιούμε σε ισοπλατείς κλάσεις. Δίνεται ότι: η μικρότερη παρατήρηση είναι 50 η κεντρική τιμή της τέταρτης κλάσης είναι x = 85 η σχετική συχνότητα της τέταρτης κλάσης είναι διπλάσια της σχετικής συχνότητας της τρίτης κλάσης η διάμεσος των παρατηρήσεων του δείγματος είναι δ = 75 και η μέση τιμή των παρατηρήσεων του δείγματος είναι x = 7 Γ. Να αποδείξετε ότι το πλάτος είναι c = 0 Μονάδες Γ. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα συμπληρωμένο σωστά Kλάσεις Κεντρικές Τιμές Σχετική Συχνότητα x i f i [, ) [, ) [, ) [, ) Σύνολο Μονάδες 8

Γ. Δίνεται ότι f = 0,, f = 0,, f = 0, και f = 0, Να αποδείξετε ότι η μέση τιμή των παρατηρήσεων, που είναι μικρότερες του 80, είναι 00 Γ. Επιλέγουμε κ παρατηρήσεις του αρχικού δείγματος με κ < ν, οι οποίες ακολουθούν κανονική κατανομή με το,5% των παρατηρήσεων αυτών να είναι τουλάχιστον 7 το 6% των παρατηρήσεων αυτών να είναι το πολύ 68 Να βρείτε τη μέση τιμή και την τυπική απόκλιση των παρατηρήσεων αυτών καθώς και να εξετάσετε αν το δείγμα των παρατηρήσεων αυτών είναι ομοιογενές. Μονάδες 6 ΘΕΜΑ Δ Θεωρούμε τη συνάρτηση f(x) = xlnx + κ, x > 0, όπου κ ακέραιος με κ > και την εφαπτομένη (ε) της γραφικής παράστασης της f στο σημείο (,f() ), η οποία σχηματίζει με τους άξονες, τρίγωνο εμβαδού E, με E < Δ. Να αποδείξετε ότι κ = Μονάδες 5 Δ. Έστω x, x,..., x 50 οι τετμημένες 50 σημείων της (ε) των οποίων οι αντίστοιχες τεταγμένες τους έχουν μέση τιμή y = α) Να αποδείξετε ότι x = 0 (μονάδες ) β) Για τις τετμημένες των παραπάνω σημείων θεωρούμε ότι : Κάθε μία από τις τετμημένες x, x,..., x 0 αυξάνεται κατά, οι επόμενες 5 τετμημένες παραμένουν σταθερές και κάθε μία από τις υπόλοιπες ελαττώνεται κατά λ με λ > 0. Να βρείτε το λ, ώστε η νέα μέση τιμή των τετμημένων να είναι ίση με (μονάδες ) Μονάδες 6 Δ. Αν < α < β < γ < μέση τιμή των τιμών α β γ 7 με α β γ =,τότε να βρείτε το εύρος R και τη f(α),f(β), f(γ),f(), f, όπου f(x) = xlnx +

Δ. Θεωρούμε τον δειγματικό χώρο Ω= t n, n =,,,...,0 : 0 < t < t <... < t0 < < t <... < t0 = με ισοπίθανα απλά ενδεχόμενα, καθώς και τα ενδεχόμενα Α={ t Ω: η εφαπτομένη της γραφικής παράστασης της f στο σημείο ( t,f(t) ), να σχηματίζει με τον άξονα xx οξεία γωνία }, { } Β = t Ω : f(t) > f (t) +, όπου f(t) = tlnt + Να βρεθούν οι πιθανότητες: α) να πραγματοποιηθεί το ενδεχόμενο Α (μονάδες ) β) να πραγματοποιηθούν συγχρόνως τα ενδεχόμενα Α και Β (μονάδες )

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία σελ. σχολ. βιβλίου 8. Α. Θεωρία σελ. σχολ. βιβλίου. Α. Θεωρία σελ. σχολ. βιβλίου 87. Α. α. Λ β. Σ γ. Λ δ. Λ ε. Λ. ΘΕΜΑ Β Β. x x x x 0 0 x x Pω lim lim x x x x x x x x x x x x lim lim x x x x x x x x x x lim x x x xx x x x x lim x x x lim x x x x f x xlnx x lnxx lnx lnxx lnx x Άρα fx lnx Pω f ln 0 B. Α Τρόπος : Έστω ω,ω,ω και PP PPω P P P A ω,ω APAP PA Β Τρόπος : PAPAPωP ω Pω Pω ω

Έστω E ω ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 EAP E P A P ω P A P A Από (), () : PA B. 5 PA PωPω Pω Pω Pω 5 PωP ωpωpω Pω 5 Pω Pω 0 PAPωP ω 0 7 PBPωP ω AB ω PABPω P AB BA P AB P BA P A P AB P B P AB A ω,ω 7 7 B ω,ω ΘΕΜΑ Γ ABω Άρα PA B Pω Γ. Οι κλάσεις είναι α,α c, α c,α c, α c, α c, α c, α c α 50 α c α c 50 c 50 c 00 7c 85 85 85 00 7c 70 7c 70 00 7c 70 c 0 Γ. Κλάσεις x i f i [50-60) 55 0, [60-70) 65 0, [70-80) 75 0, [80-90) 85 0, ΣΥΝ. f f f f f f f f f f f f f

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 f Η διάμεσος είναι 75 άρα : f f f f ff f ff f ff 5f f f 0, 5 0 f f 0, f 0, i i i 5 5 x x f 7 55f 65f 75 85 7 55f 65f 5 7 7 55f 65f 5 55f 65f 7 5 55f 65f 5 f f 5 f f 0, f f 0, ff 5 f 0, f ff 0, 0, f f 5, f f 5 f 5, f 0, f 0, 0, f 0, fi Γ. Το σύνολο του νέου δείγματος είναι το 60% του προηγούμενου άρα fi 0,6 0, Άρα f, f, f 0,6 6 55 95 50 00 y55 65 75 6 6 Γ.,5,5,5,5 0,5 0,5 x s x s x s x x s x s x s Τα xi 7 αντιστοιχούν στο,5% άρα x s 7. Τα xi 68 αντιστοιχούν στο 6% άρα xs 68

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 xs7 68 s s 7 s 7 68 s 6 s xs68 x 68s s x 68 x 70, CV x 70 5 0, άρα το δείγμα είναι ομοιογενές ΘΕΜΑ Δ Δ. f(x) lnx f() f() κ εφ :yffx y κ x yx κ xx :y0xκ A κ,0 yy: x0 y κ B 0,κ E κ κ κ κ κ κ κ κ, κ Z Δ. x, x,..., x 5 y (α) Για κ (β) εφ :yx δηλαδή yi xi yxx x 0 0 5 50 0 5 50 xi xi xi λ xi 0 xi xi 5λ i i i6 i i i6 x x 50 50 50 50 xi 60 5λ xi i i 6 5λ 6 5λ x x 50 50 5 50 5 50 6 5λ 5λ 50 0 λ 5 50 50 5 75 Δ. fx0lnx x Για x, έχουμε f γνησίως αύξουσα άρα αβ γf f α f β f γ f fx f x 0 +

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Ξέρουμε ότι: f 0 και f 0 Η f παρουσιάζει ελάχιστο για x το f 0 άρα f xf 0 οπότε 0f f αf βf γf οπότε: R f f f αf βf γf f α ln α β ln β γ ln γ y 5 5 α β γ ln 7 α β γ 8 ln 8 5 5 5 5 5 f t εφω 0f t 0 t A t,..., t Δ. Πρέπει Άρα 0 t,t 0 άρα B t, t..., t f t f t tlntlntlnt t 0 (α) PA 9 0 0 A B t,..., t (β) 9 9 PAB 0 ln t t 0 + + + + 5