Επαναληπτικά Θέµατα Εξετάσεων

Σχετικά έγγραφα
Επαναληπτικά Θέµατα Εξετάσεων

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα

1,y 1) είναι η C : xx yy 0.

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

Μαθηματικά Κατεύθυνσης (Προσανατολισμού)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

= π 3 και a = 2, β =2 2. a, β

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β

ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:

ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΕΚΦΩΝΗΣΕΙΣ

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Μαθηματικά Προσανατολισμού Θετικών Σπουδών Β Λυκείου

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)

3 η δεκάδα θεµάτων επανάληψης

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)

Μαθηματικά προσανατολισμού Β Λυκείου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ α φάση. Διανύσματα

Ερωτήσεις αντιστοίχισης

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

ΔΙΑΝΥΣΜΑΤΑ 1. Να αποδειχθεί ότι τα μέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράμμου.

Συνδυαστικά θέματα στον κύκλο

Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση ) ένα σημείο εκτός αυτής. Θέλουμε y (1)

ΘΕΜΑ 1. Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο. (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8.

4 η δεκάδα θεµάτων επανάληψης

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΤΑΞΗ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου (Σεπτέµβριος 1999)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ

2 η δεκάδα θεµάτων επανάληψης

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

y 2 =2px με εστία Ε(p/2, 0) και διευθετούσα δ: x=-p/2.

ΚΥΚΛΟΣ. και ακτίνα 1 3. Σ Λ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Μαθηματικά προσαματολισμού Β Λσκείοσ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v,

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

5 Γενική µορφή εξίσωσης ευθείας

32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a=

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ)

(Μονάδες 8) γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 10)

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

2ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ. ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ 2ο ΓΕΛ ΣΥΚΕΩΝ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

12. Το εμβαδόν ενός τριγώνου ΑΒΓ είναι ίσο με

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ÑÏÌÂÏÓ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

1 η δεκάδα θεµάτων επανάληψης

x y Ax By 0 για τις διάφορες τιμές των Α, Β,Γ (μον.8)

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Ασκήσεις Κύκλος. 6. Για ποια τιμή του λ το σημείο Μ(2λ + 1, λ) ανήκει στον κύκλο με εξίσωση (x 3) 2 + (y + 4) 2 = 100

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

. Μονάδες 3 β) Τα διανύσματα και. τότε x1x2 y1y2. είναι κάθετα αν και μόνο αν 0 Μονάδες 3 γ) Το διάνυσμα,

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η

Γ5. Αν για τα α, β έχουµε α β= 0, ισχύει πάντα ότι α = 0 ή β= 0. Μονάδες 10

ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ. Ε. i) Να βρείτε τη σχετική θέση των τροχιών του 4ου και του 12ου μαθητή.

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

Transcript:

Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και... καλό Πάσχα! Ερωτήσεις Σωστού-Λάθους Να χαρακτηρίσετε καθεµιά από τις παρακάτω προτάσεις ως Σωστή (Σ) ή Λάθος (Λ). 1. ύο αντίθετα διανύσµατα έχουν αντίθετους συντελεστές διεύθυνσης. 2. Αν π 2 < ( α, β) < π, τότε α β < 0. 3. Αν α, β οµόρροπα, τότε α β = α β. 4. Τα αντίθετα διανύσµατα έχουν ίσα µέτρα. 5. Για οποιαδήποτε διανύσµατα α, β, ισχύει ότι : α + β α + β. 6. Για οποιαδήποτε διανύσµατα α, β, ισχύει ότι : α β = α β. 7. Η ευθεία µε εξίσωση Ax + By + Γ = 0, µε A 0 ή B 0, είναι παράλληλη στο διάνυσµα δ = (B, A). 8. Οι ευθείες µε εξισώσεις x = 5 και y = 1 είναι κάθετες. 9. Η ευθεία που διέρχεται από το σηµείο A (α, β) και είναι παράλληλη στον x x έχει εξίσωση x = α. 10. Η ευθεία που διέρχεται από την αρχή των αξόνων και έχει συντελεστή διεύθυνσης λ έχει εξίσωση y = λx. 11. Οι ευθείες y = 2 και y = 2x είναι παράλληλες. 12. Η ευθεία ɛ : y = κ 2 x + 2, κ R {0}, σχηµατίζει αµβλεία γωνία µε τον άξονα x x. 13. Αν A 2 + B 2 4Γ = 0, τότε η εξίσωση x 2 + y 2 + Ax + By + Γ = 0, παριστάνει ένα µόνο σηµείο. 14. Εστω η παραβολή µε εξίσωση y 2 = 2px. Η απόσταση της διευθετούσας από την εστία της παραβολής ισούται µε p. 1

( ( 15. Η έλλειψη C : x2 α + y2 2 β = 1, 2 µε α > β > 0 έχει εστίες E α2 β 2, 0 ), E ) α 2 β 2, 0. 16. Οποιεσδήποτε δύο ελλείψεις που έχουν τις ίδιες εστίες είναι όµοιες. 17. Για την εκκεντρότητα ɛ µιας έλλειψης ισχύει ότι 0 < ɛ < 1. 18. Η υπερβολή C : x2 α 2 y2 β 2 = 1, έχει δύο κοινά σηµεία µε τον άξονα y y. 19. Το ορθογώνιο ϐάσης µιας ισοσκελούς υπερβολής είναι τετράγωνο. 20. Κάθε ισοσκελής υπερβολή έχει εκκεντρότητα ίση µε 2. 21. Υπάρχουν υπερβολές που οι ασύµπτωτες τους είναι κάθετες µεταξύ τους. 2ο Θέµα Θέµα 2.1 Για τα διανύσµατα α και β ισχύει ότι α = 2, β = 1 και ( α, β) = 2π 3. έστω τα διανύσµατα u = 2 α + 4 β και v = α β. (α) Να υπολογίσετε το α β. (ϐ) Να υπολογίσετε το u v. ) (γ) Να υπολογίσετε το συν ( u, v. (δ) Να υπολογίσετε το x R, ώστε τα διανύσµατα v και w = x α + β, να είναι κάθετα. Θέµα 2.2 ίνονται τα διανύσµατα α = (1, 2) και β = ( 3, 9). (α) Να ϐρείτε το διάνυσµα γ, αν 4 α + β γ = 0. (ϐ) Αν γ = (1, 1) να ϐρεθεί η γωνία ˆϕ που σχηµατίζει το διάνυσµα γ µε τον άξονα x x. (γ) Να γράψετε το διάνυσµα δ = (4, 11) σαν γραµµικό συνδιασµό των διανυσµάτων α και β. (δ) Να ϐρεθεί η προβολή του διανύσµατος α πάνω στο β. (ε) Να αναλύσετε το διάνυσµα α σε δύο κάθετες συνιστώσες από τις οποίες η µία να έχει την διεύθυνση του β. Θέµα 2.3 ίνονται τα σηµεία A(2, 1), B( 3, 2) και Γ(1, 3). (α) Να αποδείξετε ότι τα σηµεία ορίζουν τρίγωνο. (ϐ) Να ϐρείτε το εµβαδόν του τριγώνου ABΓ. (γ) Να ϐρείτε την απόσταση του σηµείου Γ από την πλευρά AB. Θέµα 2.4 ίνονται τα σηµεία A(0, 1), B( 2, 3) και Γ(4, 1). (α) Να αποδείξετε ότι τα σηµεία ορίζουν τρίγωνο. (ϐ) Να ϐρείτε την εξίσωση της ευθείας στην οποία ανήκει η διάµεσος AM του τριγώνου ABΓ. 2

(γ) Να ϐρείτε την εξίσωση της ευθείας στην οποία ανήκει το ύψος A του τριγώνου ABΓ. (δ) Να ϐρείτε την µεσοκάθετο της πλευράς AB. Θέµα 2.5 Εστω (ɛ) η ευθεία που διέρχεται από τα σηµεία A(4, 0) και B(0, 4) και (δ) η ευθεία που διέρχεται από την αρχή Ο των αξόνων και είναι κάθετη στην (ɛ). (α) Να αποδείξετε ότι η εξίσωση της ευθείας (ɛ) είναι x + y = 4. (ϐ) Βρείτε την εξίσωση της ευθείας (δ). (γ) Βρείτε τις συντεταγµένες του σηµείου τοµής Μ των ευθειών (δ) και (ɛ). (δ) Βρείτε την εξίσωση του κύκλου που έχει διάµετρο το ευθύγραµµο τµήµα ΟΜ. Θέµα 3.1 ίνονται οι ευθείες µε εξισώσεις 3ο Θέµα ε 1 : λx + (λ 1)y 1 = 0 και ε 2 : 4x + λy + λ 2 = 0. Να ϐρείτε το λ R τέτοιο ώστε : (α) ε 1 y y (ϐ) ε 1 x x (γ) ε 1 ε 2 (δ) ε 1 ε 2. Θέµα 3.2 ίνεται η εξίσωση (x + y 5) + λ(2x + y 7) = 0, όπου λ R. (α) Να αποδείξετε ότι η παραπάνω εξίσωση παριστάνει ευθεία για κάθε λ R. Υστερα να δείξετε ότι όλες οι ευθείες που παριστάνει η παραπάνω εξίσωση διέρχονται από σταθερό σηµείο, του οποίου να ϐρείτε τις συντεταγµένες. (ϐ) Να ϐρείτε την εξίσωση της ευθείας ε 1 που ορίζεται από την παραπάνω εξίσωση και διέρχεται από το σηµείο Α(4, 1). (γ) Να αποδείξετε ότι η ευθεία η : x + y + 1 = 0 δεν ανήκει στην οικογένεια των ευθειών της παραπάνω εξίσωσης. (δ) Να ϐρείτε την εξίσωση ε 2 που ορίζεται από την παραπάνω εξίσωση και είναι κάθετη στην η : x + y + 1 = 0. Θέµα 3.3 ίνεται η εξίσωση x 2 + 4y 2 4xy + 3x 6y + 2 = 0 (α) Να δείξετε ότι η παραπάνω εξίσωση παριστάνει δυο ευθείες ε 1 και ε 2. (ϐ) Να αποδείξετε ότι ε 1 ε 2. (γ) Να ϐρείτε την απόσταση των παράλληλων ευθειών ε 1 και ε 2. (δ) Να ϐρείτε την εξίσωση της µεσοπαράλληλης ευθείας των ε 1 και ε 2. Θέµα 3.4 ίνεται ο κύκλος µε εξίσωση C : (x 1) 2 + y 2 = 2. 3

(α) Να ϐρεθούν οι εξισώσεις των εφαπτοµένων του κύκλου C οι οποίες είναι πα- ϱάλληλες στην ευθεία η : y = x + 1. (ϐ) Να εξετάσετε ποια από τις ευθείες που ϐρήκατε στο προηγούµενο ερώτηµα είναι εφαπτοµένη του κύκλου Θέµα 3.5 ίνεται η παραβολή : C :y = 4x 2. Να ϐρείτε C : (x 6) 2 + (y 1) 2 = 2. (α) την εστία και τη διευθετούσα της παραβολής, (ϐ) την εξίσωση της εφαπτοµένης η οποία είναι κάθετη στην ευθεία y = x + 2013. Θέµα 3.6 ίνεται κύκλος C : x 2 + y 2 = 10 και το σηµείο Μ(2, 4). α) Να ϐρείτε την σχετική ϑέση του Μ(2, 4) ως προς τον κύκλο C. (ϐ) Να ϐρείτε τις εξισώσεις των εφαπτοµένων του C, ε 1 και ε 2, οι οποίες διέρχονται από το Μ(2, 4). (γ) Να υπολογισθεί η γωνία των ε 1 και ε 2. (δ) Να ϐρείτε τις συντεταγµένες των σηµείων επαφής, Α και Β, των εφαπτοµένων µε τον κύκλο. (ε) Να ϐρείτε την εξίσωση της παραβολής που έχει κορυφή την αρχή των αξόνων, διέρχεται από το σηµείο Α και από το συµµετρικό του σηµείου Α ως προς τον άξονα y y. Θέµα 3.7 ίνεται η εξίσωση x 2 6x + y 2 + 2y + 1 = 0. (α) Να δείξετε ότι η παραπάνω εξίσωση παριστάνει κύκλο και να ϐρείτε το κέντρο και την ακτίνα του. (ϐ) Να δείξετε ότι το Μ(4,-2) είναι εσωτερικό σηµείο του κύκλου. (γ) Να ϐρεθεί η εξίσωση της ευθείας που διέρχεται από το Μ και τέµνει τον κύκλο στα σηµεία Α, Β ώστε το Μ να είναι το µέσο του ΑΒ. 4ο Θέµα Θέµα 4.1 ίνεται η εξίσωση x 2 + y 2 + 2(λ + 1)x + (2λ 1)y + 2λ 2 + λ 1 = 0, όπου λ R. (α) Να δείξετε ότι η παραπάνω εξίσωση παριστάνει κύκλο για κάθε λ R και να ϐρεθεί το κέντρο και η ακτίνα του. (ϐ) Να ϐρεθεί ο γεωµετρικός τόπος των κέντρων των κύκλων του προηγούµενου ερωτήµατος. (γ) Για λ = 1, να ϐρεθεί (γ1) η εξίσωση του κύκλου C 1, 4

(γ2) η ϑέση της ευθείας ε : 3x + 4y 5 = 0 ως προς τον κύκλο C 1. Θέµα 4.2 Θεωρούµε έναν πληθυσµό από 1999 µυρµήγκια. Κάθε µυρµήγκι χαρακτηρίζεται από έναν αριθµό n = 1, 2, 3,..., 1999 και κινείται επάνω στο καρτεσιανό επίπεδο Oxy διαγράφοντας µια τροχιά µε εξίσωση Να αποδείξετε ότι : (x 1) 2 + y 2 = 2n(x + y 1). (α) η τροχιά κάθε µυρµηγκιού είναι κύκλος και να ϐρείτε τις συντεταγµένες του κέντρου του, (ϐ) κατά την κίνηση τους όλα τα µυρµήγκια διέρχονται από ένα σταθερό σηµείο Α (που είναι η ϕωλιά τους) και να ϐρείτε τις συντεταγµένες του σηµείου Α, (γ) οι τροχιές όλων των µυρµηγκιών εφάπτονται της ευθείας µε εξίσωση x+y 1 = 0 στο σηµείο Α. Θέµα 4.3 ίνεται η εξίσωση (x 1)(x 3) + (y 3)(y 5) = 0. (α) Να αποδείξετε ότι η εξίσωση αυτή παριστάνει κύκλο και να ϐρείτε το κέντρο και την ακτίνα του. (ϐ) Σε τοπογραφικό σχεδιάγραµµα, µε καρτεσιανό σύστηµα συντεταγµένων xoy τα σηµεία Α(1, 3), Β(3, 3), Γ(3, 5) και (1, 5) παριστάνουν τις ϑέσεις τεσσάρων δήµων. Να αποδείξετε ότι µπορεί να χαραχθεί περιφερειακός κυκλικός δρόµος που να διέρχεται από τους τέσσερις δήµους. (γ) Αν ϑεωρήσουµε ότι στο ίδιο σύστηµα αξόνων του προηγούµενου ερωτήµατος, οι συντεταγµένες ενός αυτοκινήτου Κ για κάθε χρονική στιγµή t, t > 0 είναι (t, t+2), να ϐρείτε αν η γραµµή, στην οποία κινείται το αυτοκίνητο Κ, συναντά τον κυκλικό περιφερειακό δρόµο και αν ναι, σε ποια σηµεία ; Θέµα 4.4. ίνεται η εξίσωση x 2 + y 2 2 + λ(x y + 2) = 0, όπου λ R (1) (α) Να δείξετε ότι η εξίσωση (1) παριστάνει κύκλο για κάθε πραγµατικό αριθµό λ διαφορετικό από το 2 και να ϐρείτε το κέντρο και την ακτίνα του. (ϐ) Να ϐρείτε τι παριστάνει η εξίσωση για λ = 2. (γ) Να ϐρείτε το γεωµετρικό τόπο των κέντρων των κύκλων που ορίζονται από την εξίσωση (1). (δ) Να αποδείξετε ότι οι παραπάνω κύκλοι διέρχονται από σταθερό σηµείο, το οποίο και να ϐρεθεί. (ε) Να αποδείξετε ότι όλοι οι κύκλοι που ορίζονται από την εξίσωση (1) εφάπτονται της ευθείας ε : x + y = 2. Θέµα 4.5 ίνεται η έλλειψη C : x2 25 + y2 9 = 1 και η εφαπτοµένη ε σε τυχαίο σηµείο της Π(x 1, y 1 ). Η κάθετη στην ε στο Π τέµνει τους άξονες x x, y y στα σηµεία K και Λ αντίστοιχα. Αν M(u, v) είναι το µέσο του τµήµατος KΛ, τότε : 5

(α) να εκφραστούν τα u, v συναρτήσει των x 1, y 1, (ϐ) να αποδειχθεί ότι το M ανήκει σε έλλειψη, της οποίας να ϐρεθούν οι εστίες και η εκκεντρότητα. Θέµα 4.6 ίνεται ο κύκλος µε εξίσωση C : x 2 + y 2 = 9. (α) Αν το σηµείο ( P(x 0, y 0 ) ανήκει στον παραπάνω κύκλο, να αποδείξετε ότι το 5 σηµείο M 3 x 0, 4 ) 3 y 0 ανήκει σε έλλειψη της οποίας να υπολογίσετε την εκκεντρότητα. (ϐ) Να ϐρείτε την εξίσωση της ισοσκελούς υπερβολής η οποία έχει τις ίδιες εστίες µε την παραπάνω έλλειψη. (γ) Να ϐρείτε τις εξισώσεις των ασύµπτωτων της υπερβολής του ερωτήµατος (ϐ) καθώς και τη γωνία που σχηµατίζουν οι ασύµπτωτες. Θέµα 4.7 ίνονται τα µη µηδενικά διανύσµατα α, β τα οποία σχηµατίζουν µεταξύ τους γωνία φ = π και η εξίσωση 3 (α) Να αποδείξετε ότι : x 2 + y 2 2 α x β y + α β = 0. (1) i. 2 α β, 2 α β ii. η εξίσωση (1) παριστάνει κύκλο µε ακτίνα ρ =. 2 (ϐ) Αν K (1, 1) είναι το κέντρο του παραπάνω κύκλου, να αποδείξετε ότι : i. α = 1, β = 2 και ρ = 1, ii. ο κύκλος εφάπτεται στην ευθεία ɛ : 3x + 4y 12 = 0, iii. η προβολή του β στο α είναι ίση µε το α. 6