Fermat, 1638, Newton Euler, Lagrange, 1807

Σχετικά έγγραφα
max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

Τμήμα Διοίκησης Επιχειρήσεων

Μοντελοποίηση προβληµάτων

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

Επιχειρησιακή Έρευνα I

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ.

Επιχειρησιακή Έρευνα I

Επιχειρησιακή Έρευνα. Εισαγωγική Διάλεξη

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

3.7 Παραδείγματα Μεθόδου Simplex

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

z = c 1 x 1 + c 2 x c n x n

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό

ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Θεωρία Μεθόδου Simplex

Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος.

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

(sensitivity analysis, postoptimality analysis).

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Επιχειρησιακή Έρευνα

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ μέθοδοι των εσωτερικών σημείων

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31

Το µαθηµατικό µοντέλο του Υδρονοµέα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Τμήμα Εφαρμοσμένης Πληροφορικής

Γραμμικός Προγραμματισμός

Διαχείριση Εφοδιαστικής Αλυσίδας

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Επιχειρησιακή Έρευνα

max 17x x 2 υπό 10x 1 + 7x 2 40 x 1 + x 2 5 x 1, x 2 0.

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Ανάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Μέθοδοι Βελτιστοποίησης

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού

Δυναμικότητα (GWh) A B C Ζήτηση (GWh) W X Y Z

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ. 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ. Μ. Καρλαύτης Ν. Λαγαρός

Επιχειρησιακή Έρευνα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Το Πρόβλημα Μεταφοράς

ιαµόρφωση Προβλήµατος

Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

Γραμμικός Προγραμματισμός

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος

ΠΑΡΑΡΤΗΜΑ 2 Μεταβατικές Διατάξεις

Εφαρμοσμένη Βελτιστοποίηση

Περιεχόμενα. Πρόλογος Η ιοικητική Επιστήμη στην Κοινωνία της Πληροφορίας... 17

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)

Γραμμικός Προγραμματισμός Μέθοδος Simplex

5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Εισαγωγή στο Γραμμικό Προγραμματισμό

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη

Επιχειρησιακή Έρευνα

2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Άσκηση 5. Εργοστάσια. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Στοχαστικές Στρατηγικές

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος

Εισαγωγή στην Επιχειρησιακή Έρευνα

Γραμμικός Προγραμματισμός

Σχεδίαση & Ανάλυση Αλγορίθμων

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Επιχειρησιακή Έρευνα I

Transcript:

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου 2016

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Επιχειρησιακή Ερευνα Επιχειρησιακή Ερευνα= Τα μαθηματικά της βελτιστοποίησης, Μαθηματικά μοντέλα μελέτης - βελτιστ. διαδικασιών, Μαθηματική θεωρία λήψης αποφάσεων.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Κλάδοι της Επιχειρησιακής Ερευνας Γραμμικός Προγραμματισμός. Μη-Γραμμικός Προγραμματισμός. Ακέραιος Προγραμματισμός - Συνδυαστική Βελτιστοποίηση. Δυναμικός Προγραμματισμός. Θεωρία Παιγνίων. Θεωρία Ελέγχου Αποθεμάτων. Θεωρία Ουρών Αναμονής....

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Ιστορική αναδρομή στη Βελτιστοποίηση Ι Fermat, 1638, Newton 1670 Euler, 1755 Lagrange, 1807 min f(x), x R Λύνουμε df(x) dx = 0 κλπ. min f(x 1, x 2,..., x n ) Λύνουμε f(x 1, x 2,..., x n ) = 0 κλπ. min f(x 1, x 2,..., x n ) υπό g k (x 1, x 2,..., x n ) = 0, k = 1, 2,..., m

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Ιστορική αναδρομή στη Βελτιστοποίηση ΙΙ Fourier, 1826: Λύση συστήματος γραμμικών ανισοτήτων. Farkas, Minkowski, Καραθεοδωρή, 1870-1930: Θεμελίωση Κυρτής Ανάλυσης, Θεωρίας πολυέδρων κλπ. Von Neumann, 1928: Θεωρία παιγνίων, δυϊκότητα. Kantorovich, Koopmans, 1930: Λύση προβλ. γρ. προγρ. Dantzig, 1947: Μέθοδος Simplex. Karmarkar, 1981: Αλγόριθμος εσωτερικού σημείου. 1990-: Ημιορισμένος και κωνικός προγραμματισμός. 2000-: Εύρωστος (robust) προγραμματισμός.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Ιστορική αναδρομή στη Βελτιστοποίηση ΙΙΙ Βραβεία Νόμπελ στα Οικονομικά Leonid Kantorovich, Tjalling Koopmans 1975: Θεωρία Βέλτιστης Κατανομής των Πόρων. Harry Markowich, 1990: Χρηματοοικονομικά - Διαχείριση Χαρτοφυλακίου. John Harsanyi, John Nash, Reinhard Selten, 1994: Θεωρία Παιγνίων. Robert Aumann, Thomas Schelling, 2005: Θεωρία Παιγνίων. Robert Myerson, 2007: Θεωρία Παιγνίων - Θεωρία σχεδιασμού μηχανισμών. Lloyd Shapley, 2012: Θεωρία Παιγνίων.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Στόχοι του μαθήματος Κατηγορίες προβλημάτων βελτιστοποίησης. Μοντελοποίηση προβλημάτων βελτιστοποίησης. Κλασικά προβλήματα βελτιστοποίησης. Διάκριση δυσκολίας προβλημάτων βελτιστοποίησης. Επίλυση προβλημάτων βελτιστοποίησης στον ΗΥ. Βασικές υπολογιστικές μέθοδοι για προβλήματα Γραμμικού Προγραμματισμού. Επεκτάσεις σε προβλήματα Ακέραιου και μη-γραμμικού Προγραμματισμού.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Δομή του μαθήματος Εισαγωγή στην Επιχειρησιακή Ερευνα - πλαίσιο. Εισαγωγή στον γραμμικό προγραμματισμό. Κλασικά προβλήματα γραμμικού προγραμματισμού. Επίλυση προβλημάτων βελτιστοποίησης σε ΗΥ (AMPL). Μέθοδος επίλυσης Simplex. Δυϊκή θεωρία γραμμικού προγραμματισμού. Ανάλυση ευαισθησίας γραμμικού προγραμματισμού. Μέθοδοι επίλυσης εσωτερικού σημείου. Εισαγωγή στον ακέραιο προγραμματισμό. Μέθοδοι επίλυσης ακέραιου προγραμματισμού. Εισαγωγή στο μη-γραμμικό προγραμματισμό.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Μαθ Προγρ Γραμ Προγρ Γενικό πρόβλημα μαθηματικού προγραμματισμού x j, j = 1, 2,..., n: μεταβλητές απόφασης. ζ: η αντικειμενική συνάρτηση. Αντικειμενική συνάρτηση: ζ = f(x 1, x 2,..., x n ). Τυπικός συναρτησιακός περιορισμός: g(x 1, x 2,..., x n ) ή = ή b. Τυπικός περιορισμός μεταβλητών: x j A j.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Μαθ Προγρ Γραμ Προγρ Γενικό πρόβλημα γραμμικού προγραμματισμού x j, j = 1, 2,..., n: μεταβλητές απόφασης. ζ: η αντικειμενική συνάρτηση. Γραμμική αντικειμενική συνάρτηση: ζ = c 1 x 1 + c 2 x 2 + + c n x n. Τυπικός γραμμικός περιορισμός: a 1 x 1 + a 2 x 2 + + a n x n ή = ή b. Τυπικός περιορισμός μεταβλητών: x j 0 ή 0 ή R.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Μαθ Προγρ Γραμ Προγρ Προϋποθέσεις γραμμικού προγραμματισμού Αναλογικότητα: Η συνεισφορά μιας μεταβλητής στην αντικειμενική και στους περιορισμούς είναι ανάλογη της τιμής της. Προσθετικότητα: Η συνεισφορά μιας μεταβλητής στην αντικειμενική και στους περιορισμούς δεν εξαρτάται από άλλες μεταβλητές. Η συνολική συνεισφορά των μεταβλητών αποφάσεων ισούται με το άθροισμα των επιμέρους συνεισφορών τους. Διαιρετότητα: Κάθε μεταβλητή παίρνει πραγματικές τιμές. Βεβαιότητα - Ντετερμινισμός: Οι παράμετροι είναι απόλυτα γνωστές. Δεν υπεισέρχεται τυχαιότητα.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Μαθ Προγρ Γραμ Προγρ Κεντρική θέση του Γραμμικού Προγραμματισμού Πληθώρα εφαρμογών. Κομψή και πλήρης μαθηματική θεωρία. Υπαρξη αποτελεσματικών αλγορίθμων. Υπόβαθρο για τον ακέραιο προγραμματισμό. Υπόβαθρο για το μη-γραμμικό προγραμματισμό.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Μαθ Προγρ Γραμ Προγρ Κλασική βελτιστ. / Γραμμικός Προγραμματισμός Κλασική βελτιστοποίηση με απειροστικό λογισμό: Μια μεταβλητή, Μη-γραμμική αντικειμενική συνάρτηση, Περιορισμός της μεταβλητής σε διάστημα. Γραμμικός προγραμματισμός: Μεγάλο πλήθος μεταβλητών, Γραμμική αντικειμενική συνάρτηση, Μεγάλο πλήθος γραμμικών περιορισμών.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Κλασικά προβλήματα Το πρόβλημα της μίξης των υλικών. Το πρόβλημα της αποτίμησης των υλικών. Το πρόβλημα της δίαιτας. Το πρόβλημα της μεταφοράς. Προγραμματισμός παραγωγής.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της μίξης των υλικών n τύποι προϊόντων προς παραγωγή. m τύποι πρώτων υλών. a ij : ποσότητα από την πρώτη ύλη i που απαιτείται για την παραγωγή μιας μονάδας προϊόντος τύπου j. b i : διαθέσιμη ποσότητα πρώτης ύλης i. c j : καθαρό κέρδος από την πώληση μιας μονάδας προϊόντος τύπου j. Στόχος: Μεγιστοποίηση συνολικού καθαρού κέρδους από την πώληση των προϊόντων.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της μίξης - Μοντελοποίηση x j : ποσότητα προϊόντος j που θα παραχθεί. Π.γ.π.: max υπό n j=1 c jx j n j=1 a ijx j b i, i = 1, 2,..., m x j 0, j = 1, 2,..., n.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της αποτίμησης των υλικών n τύποι προϊόντων προς παραγωγή. m τύποι πρώτων υλών. a ij : ποσότητα από την πρώτη ύλη i που απαιτείται για την παραγωγή μιας μονάδας προϊόντος τύπου j. b i : διαθέσιμη ποσότητα πρώτης ύλης i. c j : καθαρό κέρδος από την πώληση μιας μονάδας προϊόντος τύπου j. Στόχος: Καθορισμός τιμών ανά μονάδα πρώτης ύλης ώστε να ελαχιστοποιείται η συνολική αξία των πρώτων υλών στην οποία είναι πρόθυμη η επιχείρηση να τις πουλήσει αντί να παραγάγει προϊόντα.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της αποτίμησης - Μοντελοποίηση y i : τιμή ανά μονάδα πρώτης ύλης i που θα πωληθεί. Π.γ.π.: min υπό m m i=1 b iy i i=1 a ijy i c j, j = 1, 2,..., n y i 0, i = 1, 2,..., m.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της δίαιτας n τύποι φαγητών προς κατανάλωση. m είδη θρεπτικών συστατικών. a ij : η ποσότητα θρεπτικού συστατικού i που περιέχεται σε μια μερίδα φαγητού j. b i : η ελάχιστη ημερήσια ποσότητα θρεπτικού συστατικού i που επιβάλλεται να προσληφθεί. d i : η μέγιστη ημερήσια ποσότητα θρεπτικού συστατικού i που επιτρέπεται να προσληφθεί. c j : κόστος μιας μερίδας φαγητού j. Στόχος: Καθορισμός της δίαιτας ελάχιστου κόστους που σέβεται τους διατροφικούς περιορισμούς.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της δίαιτας - Μοντελοποίηση x j : μερίδες φαγητού j που θα αγοραστούν. Π.γ.π.: min υπό n n j=1 c jx j j=1 a ijx j b i, i = 1, 2,..., m n j=1 a ijx j d i, i = 1, 2,..., m x j 0, j = 1, 2,..., n.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της μεταφοράς m σημεία παραγωγής, n σημεία κατανάλωσης. s i : η προσφορά του σημείου i. d j : η ζήτηση του σημείου j. c ij : κόστος μεταφοράς μιας μονάδας προϊόντος από το i στο j. Στόχος: Ελαχιστοποίηση του συνολικού κόστους μεταφοράς από τα σημεία παραγωγής στα σημεία κατανάλωσης.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της μεταφοράς - Μοντελοποίηση x ij : ποσότητα προς μεταφορά από το i στο j. Π.γ.π.: min υπό m m n i=1 j=1 c ijx ij i=1 x ij = d j, j = 1, 2,..., n n j=1 x ij = s i, i = 1, 2,..., m x ij 0, i = 1, 2,..., m, j = 1, 2,..., n.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Προγραμματισμός παραγωγής Εταιρεία προγραμματίζει την παραγωγή προϊόντος. t: Αριθμός περιόδων παραγωγής. i initial : Αρχικό απόθεμα προϊόντος. Στην αρχή κάθε περιόδου, η εταιρεία παράγει νέα προϊόντα και αμέσως μετά ικανοποιεί την τρέχουσα ζήτηση. d n : Ζήτηση προϊόντος την περίοδο n, n = 1, 2,..., t. i final : Τελικό απαιτητό απόθεμα προϊόντος. c n : Κόστος παραγωγής ανά μονάδα προϊόντος την περίοδο n, n = 1, 2,..., t. h n : Κόστος αποθήκευσης υπερβάλλοντος προϊόντος ανά μονάδα προϊόντος την περίοδο n, n = 1, 2,..., t. Η ζήτηση κάθε περιόδου πρέπει να ικανοποιείται άμεσα (no backlogging). Στόχος: Ελαχιστοποίηση κόστους αποθήκευσης.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Προγραμματισμός παραγωγής - Μοντελοποίηση x n : ποσότητα παραγωγής προϊόντος την περίοδο n, n = 1, 2,..., t. y n : απόθεμα προϊόντος την περίοδο n, n = 1, 2,..., t (αμέσως μετά την ικανοποίηση της ζήτησης). Π.γ.π.: min t n=1 (c nx n + h n y n ) υπό i initial + x 1 = d 1 + y 1 y n 1 + x n = d n + y n, n = 2, 3,..., t y t = i final x n, y n 0, n = 1, 2,..., t.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Προβλήματα που ανάγονται σε π.γ.π. Προβλήματα με απόλυτες τιμές μεταβλητών. Προβλήματα max min και min max: Μεγ. κατά τμήματα γραμμικών κοίλων συναρτήσεων, Ελαχ. κατά τμήματα γραμμικών κυρτών συναρτήσεων.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Αντικειμενική συνάρτηση με απόλυτες τιμές Πρόβλημα ελαχιστοποίησης. Στην αντικειμενική συνάρτηση υπάρχει όρος c j x j με c j > 0 και x j R. Θέτουμε: x j = x + j x j, x j = x + j + x j, x + j 0, x j 0. Στη βέλτιστη λύση θα είναι σίγουρα x + j x j = 0 (λόγω ελαχιστοποίησης της αντικειμενικής και c j > 0).

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Παράδειγμα Το πρόβλημα μη-γραμμικού προγραμματισμού min 2 x + y υπό 3x + 4y 12 5x + 2y 10 γράφεται ισοδύναμα (x = x + x, y = y + y ) min 2x + + 2x + y + + y υπό 3x + 3x + 4y + 4y 12 5x + 5x + 2y + 2y 10 x +, x, y +, y 0.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Προβλήματα max min και min max (α) Κατά τμήματα γραμμική κυρτή συνάρτηση. (β) Προσέγγιση κυρτής συνάρτησης από κατά τμήματα γραμμική. Κατά τμήματα γραμμική κυρτή συνάρτηση = Μέγιστο γραμμικών συναρτήσεων Π.χ. max(c 1 x + d 1, c 2 x + d 2, c 3 x + d 3 ).

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Προβλήματα max min και min max Πρόβλημα ελαχιστοποίησης. Η αντικειμενική συνάρτηση είναι κατά τμήματα γραμμική κυρτή συνάρτηση. Την εκφράζουμε ως max i=1,2,...,m (c T i x + d i ). Την αντικαθιστούμε με μια νέα μεταβλητή z. Προσθέτουμε τους περιορισμούς z c T i x + d i, i = 1, 2,..., m. Στη βέλτιστη λύση θα είναι z = c T i x + d i για κάποιο i = 1, 2,..., m (λόγω ελαχιστοποίησης της αντικειμενικής). Οπότε πράγματι θα είναι z = max i=1,2,...,m (c T i x + d i ) στη βέλτιστη λύση.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Παράδειγμα Το πρόβλημα μη-γραμμικού προγραμματισμού min max i=1,2,...,m (c T i x + d i ) υπό Ax b γράφεται ισοδύναμα (z = max i=1,2,...,m (c T i x + d i )) min υπό z z c T i x + d i, i = 1, 2,..., m Ax b.

Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Προβλήματα max min και min max Αν έχουμε ελαχιστοποίηση κυρτής συνάρτησης, μπορούμε να την προσεγγίσουμε από κατά τμήματα γραμμική κυρτή συνάρτηση και να ανάγουμε σε προσεγγιστικό π.γ.π. Αν έχουμε μεγιστοποίηση κατά τμήματα γραμμικής κοίλης συνάρτησης, η μέθοδος προσαρμόζεται και ανάγουμε σε π.γ.π. Περιορισμός f(x) b με f(x) = max i=1,2,...,m (c T i x + d i ) μπορεί να αντικατασταθεί από τους γραμμικούς περιορισμούς c T i x + d i b, i = 1, 2,..., m. x = max(x, x). Επομένως η μέθοδος μπορεί να εφαρμοστεί όταν εμφανίζονται απόλυτες τιμές μεταβλητών.