ΤΡΙΓΩΝΟΜΔΤΡΙΚΔΣ ΔΞΙΣΩΣΔΙΣ

Σχετικά έγγραφα
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013

ΘΔΜΑ 1 ο Μονάδες 5,10,10

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΒΑΙΚΓ ΓΝΩΓΙ ΣΡΙΓΩΝΟΜΓΣΡΙΑ ΑΠΟ Α ΛΤΚΓΙΟΤ. 1. Σπιγωνομεηπικοί απιθμοί οξείαρ γωνίαρ ζε οπθοκανονικό ζύζηημα αξόνων.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. ηνπ επηπέδνπ. Να απνδείμεηε όηη νπνηνδήπνηε δηάλπζκα r

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)

x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12

ΚΕΦΑΛΑΙΟ 6 ο ΥΗΜΑΣΑ ΕΓΓΕΓΡΑΜΜΕΝΑ Ε ΚΤΚΛΟ ΕΓΓΕΓΡΑΜΜΕΝΕ ΓΧΝΙΕ

ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ

=90º ) κε πιεπξέο α, β, γ. Να βξεζεί ην είδνο ηνπ ηξηγώλνπ πνπ έρεη πιεπξέο (i) θα, θβ, θγ θαη (ii) 4α, 4β, 3γ.

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf

ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017

Ο γεωκεηξηθόο ηόπνο ηωλ εηθόλωλ ηωλ κηγαδηθώλ αξηζκώλ z είλαη ν θύθινο κε θέληξν ηελ αξρή ηωλ αμόλωλ θαη αθηίλα ξ=2.

Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ

ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ

B1. Η ζπλάξηεζε f είλαη ζπλερήο θαη παξαγσγίζηκε ζην 0,, σο πειίθν παξαγσγίζηκσλ. 1 x ln x ln x x ln x. x x x x. f x ln x 0 ln x 1 x e

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2

ΣΡΙΓΩΝΟΜΔΣΡΙΑ Β ΛΤΚΔΙΟΤ

Μεζνδνινγία Κύθινπ. Η εμίζσζε ελόο θύθινπ πνπ έρεη θέληξν ηελ αξρή ησλ αμόλσλ είλαη ηεο κνξθήο:

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ

3ο Δπαναληπηικό διαγώνιζμα ζηα Μαθημαηικά καηεύθσνζης ηης Γ Λσκείοσ Θέμα A Α1. Έζησ f κηα ζπλερήο ζπλάξηεζε ζ έλα δηάζηεκα

Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14

ΜΔΣΡΙΚΔ ΥΔΔΙ ΣΑ ΟΡΘΟΓΩΝΙΑ ΣΡΙΓΩΝΑ

x x x x tan(2 x) x 2 2x x 1

ΚΕΦΑΛΑΙΟ Γείμηε όηη : ΡΑ ΡΒ ΡΓ 2 ΒΑ.

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =

ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ:

ΑΛΥΤΔΣ ΑΣΚΗΣΔΙΣ ΜΙΓΑΓΙΚΟΙ ΟΜΑΓΑ Α

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

f x 2xln x x x 2ln x 1 x f x 0 x 2ln x 1 0 2ln x 1 0 ln x ln e x e

ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου

ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ

1. Η απιή αξκνληθή ηαιάλησζε πνπ εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη πιάηνο Α = 20 cm θαη

Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ

ΓΡΑΠΣΔ ΠΡΟΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΜΑΪΟΤ Θέμα Α ( Α1 =10, Α2 = 15 ) 1) Υαξαθηεξίζηε ηηο παξαθάησ πξνηάζεηο κε - Λ

Ενδεικτικά Θέματα Στατιστικής ΙΙ

Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΣΧΕΣΕΙΣ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ

x x 15 7 x 22. ΘΔΜΑ Α 3x 2 9x 4 3 3x 18x x 5 y 9x 4 Α1. i. . Η ιύζε είλαη y y x 3y y x 3 2x 6y y x x y 6 x 2y 1 y 6

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΚΦΩΝΗΣΕΙΣ. Διάρκεια: 3 ώρες Ημερομηνία: 12/5/2019 Έκδοση: 1 η. Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά):

ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β )

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.

ΤΝΟΠΣΙΚΗ ΜΔΘΟΓΟΛΟΓΙΑ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Γ ΛΤΚΔΙΟΤ ΘΔΣΙΚΗ ΚΑΙ ΣΔΥΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ

66. Ομογενής ράβδος ποσ περιζηρέθεηαι

ΣΑΞΗ Α - ΜΑΘΗΜΑΣΙΚΑ ΘΕΜΑΣΑ ΘΕΩΡΙΑ (ΓΙΑ ΣΗΝ ΣΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 133. Ύλη: Σσναρηήζεις-Σηαηιζηική Θέμα 1

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis

Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:

Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ

Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη

3 ΑΠΙΔ ΑΘΖΔΗ ΘΟΚΟΙΟΓΗΑ ΠΟΤ ΑΛΣΗΚΔΣΩΠΗΕΟΛΣΑΗ ΚΔ ΦΤΗΘΖ ΘΑΗ ΚΑΘΖΚΑΣΗΘΑ ΙΤΘΔΗΟΤ

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ

ΔΠΑΝΑΛΖΠΣΗΚΟ ΓΗΑΓΧΝΗΜΑ Γ' ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ. ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ζε όλη ηην ύλη) ΓΗΑΡΚΔΗΑ ΔΞΔΣΑΖ: 3 ΧΡΔ

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα!

όπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου.

ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ

Η/Υ A ΤΑΞΕΩΣ ΑΕ Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ

B-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν.

ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP

ΠΔΡΗΓΡΑΦΖ ΛΔΗΣΟΤΡΓΗΚΟΣΖΣΑ ΥΔΓΗΟΤ ΑΡΗΘΜ. 1

ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ

«Τεηπάδιο Επανάληψηρ» ΑΛΓΕΒΡΑ Ά ΛΥΚΕΙΟΥ

Εξετάςεισ περιόδου Μαΐου Ιουνίου 2016

Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν

Να ζρεδηάζεηο ηξόπνπο ζύλδεζεο κηαο κπαηαξίαο θαη ελόο ιακπηήξα ώζηε ν ιακπηήξαο λα θσηνβνιεί.

ΠΡΩΣΟΙ ΑΡΙΘΜΟΙ. (δει. ν n έρεη έλαλ ηνπιάρηζηνλ δηαηξέηε πνπ αλήθεη ζην ζύλνιν 2,..., n 1

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΜΕ ΑΡΧΙΚΗ ΦΑΗ

ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH

Φςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο

Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα

Κεθάιαην 20. Ελαχιστοποίηση του κόστους

Transcript:

1.1 Μονάδερ μέηπηζηρ ηόξων (γωνιών) ΤΡΙΓΩΝΟΜΔΤΡΙΚΔΣ ΔΞΙΣΩΣΔΙΣ Ωο κνλάδα κέηξεζεο ησλ ηόμσλ εθηόο από ηελ κνίξα (1 ν ) πνπ είλαη ην 1/360 ηνπ θύθινπ ρξεζηκνπνηνύκε θαη ην αθηίλην (1rad). Τν αθηίλην είλαη ε γσλία πνπ όηαλ γίλεη επίθεληξε θύθινπ (Ο, ξ) βαίλεη ζε ηόμν κήθνπο ξ. Αλ κηα γσλία είλαη κ κνίξεο θαη α αθηίληα ηόηε ηζρύεη ε ζρέζε: o 180 Η παξαπάλσ ζρέζε ρξεζηκνπνηείηαη γηα ηελ αιιαγή ηεο κνλάδαο κέηξεζεο ησλ ηόμσλ. Ωο δε κέηξν κηαο γσλίαο νξίδεηαη, ην κέηξν ηνπ αληίζηνηρνπ ηόμνπ ζην νπνίν βαίλεη ε γσλία, όηαλ απηή θαηαζηεί επίθεληξε. 1. Κανονική απεικόνιζη πποζαναηολιζμένων ηόξων ζε ηπιγωνομεηπικό κύκλο. Ο θύθινο κε θέληξν Ο ηελ αξρή ελόο νξζνθαλνληθνύ ζπζηήκαηνο αμόλσλ θαη αθηίλα ξ = 1 νλνκάδεηαη ηξηγσλνκεηξηθόο. Αλ Α θαη Β δύν ζεκεία ηνπ ηόηε ην ηόμν AB νλνκάδεηαη πξνζαλαηνιηζκέλν κε αξρή ην ζεκείν Α θαη πέξαο ην ζεκείν Β. Αλ δε ηα Α θαη Β έρνπλ εθιεγεί έηζη ώζηε ην ηόμν AB λα είλαη κνλάδα κέηξεζεο ησλ ηόμσλ ηνπ ηξηγσλνκεηξηθνύ θύθινπ ηόηε απηό νλνκάδεηαη κνλαδηαίν θαη ζπκβνιίδεηαη θαη κε u. Έζησ Μ ηπραίν ζεκείν ηνπ ηξηγσλνκεηξηθνύ θύθινπ. Οξίδνπκε κηα απεηθόληζε θ: ÂÂ κε ηελ νπνία γηα θάζε πξαγκαηηθό αξηζκό x αληηζηνηρίδεηαη ην πέξαο ηνπ ηόμνπ AM x u, ην νπνίν έρεη αιγεβξηθή ηηκή x εθόζνλ ην ηόμν u είλαη ην κνλαδηαίν. Δπεηδή ππάξρνπλ πεξηζζόηεξα ηνπ ελόο ηόμα πνπ έρνπλ αξρή ην ζεκείν Α θαη πέξαο ην ζεκείν Μ, ζα ππάξρνπλ πεξηζζόηεξνη ηνπ ελόο πξαγκαηηθνί αξηζκνί νη νπνίνη κε ηελ θ ζα απεηθνλίδνληαη ζην ζεκείν Μ. Άξα ε απεηθόληζε θ είλαη «επί» αιιά όρη 1 1 θαη ζα νλνκάδεηαη θαλνληθή. Σηελ θαλνληθή απεηθόληζε αλ ιάβνπκε σο κνλάδα κέηξεζεο ησλ ηόμσλ ην αθηίλην, νη αξηζκνί 0, π, 4π, kπ, kä απεηθνλίδνληαη όινη ζην ζεκείν. Γεληθόηεξα, ν πξαγκαηηθόο αξηζκόο x απεηθνλίδεηαη ζε έλα ζεκείν ηνπ ηξηγσλνκεηξηθνύ θύθινπ Μ, ηόηε θαη κόλν ηόηε όηαλ x = x + kπ, kä. Τόηε δύν ηόμα κε αιγεβξηθέο ηηκέο x θαη x δηαθέξνπλ θαηά αθέξαην αξηζκό θύθισλ. Δπνκέλσο γηα λα απεηθνλίδνληαη κε ηελ απεηθόληζε θ δύν πξαγκαηηθνί αξηζκνί x θαη x ζην ίδην ζεκείν Μ ηνπ ηξηγσλνκεηξηθνύ θύθινπ πξέπεη θαη αξθεί λα δηαθέξνπλ θαηά αθέξαην πνιιαπιάζην ηνπ π, δειαδή λα ηζρύεη ε ηζνδπλακία: Μ = θ(x) = θ(x ) Υπάπσει kä, x = x + kπ

1.3 Βαζικέρ κανονικέρ απεικονίζειρ ζηον ηπιγωνομεηπικό κύκλο. Α. Ο αξηζκόο π απεηθνλίδεηαη ζην Α αληηδηακεηξηθό ηνπ Α. Άξα όινη νη αξηζκνί ηεο κνξθήο π + kπ = (k + 1)π, kä δειαδή όια ηα πεξηηηά πνιιαπιάζηα ηνπ π θαη κόλν απηά απεηθνλίδνληαη ζην Α. Β. Ο αξηζκόο 0 ( ζε αθηίληα ) απεηθνλίδεηαη ζην ζεκείν Α. Άξα όινη νη αξηζκνί ηεο κνξθήο kπ, kä. Γειαδή όια ηα άξηηα πνιιαπιάζηα ηνπ π θαη κόλν απηά απεηθνλίδνληαη ζην ζεκείν Α. Γ. Ο αξηζκόο απεηθνλίδεηαη ζην ζεκείν Β, πνπ είλαη ην κέζν ηνπ ζεηηθνύ εκηθπθιίνπ AA. Άξα ζην ζεκείν Β απεηθνλίδνληαη όινη νη αξηζκνί ηεο κνξθήο: + kπ, kä Γ. Ο αξηζκόο 3 (ή ν ) απεηθνλίδεηαη ζην ζεκείν Β, πνπ είλαη ην αληηδηακεηξηθό ηνπ ζεκείνπ Β Άξα ζην ζεκείν Β απεηθνλίδνληαη όινη νη αξηζκνί ηεο κνξθήο: 3 + kπ = (k + 1)π +, kä 1.4 Τόξα με ηο ίδιο ημίηονο Έζησ ηα ηόμα AM θαη AM κε αιγεβξηθέο ηηκέο x θαη x πνπ έρνπλ ην ίδην εκίηνλν, δειαδή είλαη εκx = εκx, ηόηε ηα πέξαηα ηνπο Μ θαη Μ έρνπλ ηελ ίδηα ηεηαγκέλε, ζπλεπώο ζπκπίπηνπλ νπόηε: ππάξρεη kä, ώζηε x = kπ + x είηε είλαη ζπκκεηξηθά σο πξνο ηνλ άμνλα ησλ εκηηόλσλ νπόηε: ππάξρεη kä, ώζηε x = kπ +π - x Δπεηδή γηα ηελ ηηκή ηεο ζπλάξηεζεο f(x) = εκx ζηηο ζέζεηο x, θπ + x θαη θπ + π x έρνπκε όηη εκ(θπ + x ) = εκx θαη εκ(θπ + π x ) = εκx γηα θάζε x πξαγκαηηθό αξηζκό, ηόηε γηα θάζε kä έρνπκε θαη ηελ ηζρύ ηεο αληίζηξνθεο ζπλεπαγσγήο θαη ηζρύεη ε ηζνδπλακία : ημx = ημx ςπάπσει kä, ώζηε (x = kπ + x ή x = kπ +π x )

1.5 Τόξα με ηο ίδιο ζςνημίηονο Έζησ ηα ηόμα AM θαη AM κε αιγεβξηθέο ηηκέο x θαη x πνπ έρνπλ ην ίδην ζπλεκίηνλν, δειαδή είλαη ζπλx = ζπλx, ηόηε ηα πέξαηα ηνπο Μ θαη Μ έρνπλ ηελ ίδηα ηεηαγκέλε, ζπλεπώο ζπκπίπηνπλ νπόηε: ππάξρεη kä, ώζηε x = kπ + x είηε είλαη ζπκκεηξηθά σο πξνο ηνλ άμνλα ησλ ζπλεκηηόλσλ νπόηε: ππάξρεη kä, ώζηε x = kπ x Δπεηδή γηα ηελ ηηκή ηεο ζπλάξηεζεο f(x) = ζπλx ζηηο ζέζεηο x θαη θπ + x έρνπκε όηη ζπλ(θπ + x ) = ζπλx θαη ζπλ(θπ x ) = ζπλ( x ) = ζπλx γηα θάζε x πξαγκαηηθό αξηζκό, ηόηε γηα θάζε kä έρνπκε θαη ηελ ηζρύ ηεο αληίζηξνθεο ζπλεπαγσγήο θαη ηζρύεη ε ηζνδπλακία : ζςνx = ζςνx ςπάπσει kä, ώζηε (x = kπ + x ή x = kπ x ) 1.6 Τόξα με ηην ίδια εθαπηομένη και ζςνεθαπηομένη Έζησ ηα ηόμα AM θαη AM κε αιγεβξηθέο ηηκέο x θαη x πνπ έρνπλ ηελ ίδηα εθαπηνκέλε, δειαδή είλαη εθx = εθx. Αλ νλνκάζνπκε Τ θαη Τ ηα ζεκεία ζηα νπνία νη επζείεο ΟΜ θαη ΟΜ ηέκλνπλ ηνλ άμνλα ησλ εθαπηόκελσλ, ηόηε ηα ζεκεία απηά ζπκπίπηνπλ, επνκέλσο ηα πέξαηα Μ θαη Μ ζπκπίπηνπλ, νπόηε: ππάξρεη kä, ώζηε x = kπ + x είηε ην ζεκείν Μ είλαη ζπκκεηξηθό ηνπ Μ σο πξνο ηελ αξρή ησλ αμόλσλ, νπόηε: ππάξρεη kä, ώζηε x = kπ + π + x = (k+1)π + x Οη παξαπάλσ ζρέζεηο ζπλνςίδνληαη ζηελ ζρέζε ππάξρεη ιä, ώζηε x = ιπ + x

Δπεηδή γηα ηελ ηηκή ηεο ζπλάξηεζεο f(x) = εθx ζηηο ζέζεηο x θαη ιπ + x έρνπκε όηη: εθ(ιπ + x ) = εθ(kπ + x ) = εθx αλ ι άξηηνο νπόηε ι = k θαη εθ(ιπ + x ) = εθ[(k+1)π + x ] = εθ(π + x ) = εθx αλ ι πεξηηηόο νπόηε ι = k+1 ηόηε γηα θάζε x πξαγκαηηθό αξηζκό, ηόηε γηα θάζε kä έρνπκε θαη ηελ ηζρύ ηεο αληίζηξνθεο ζπλεπαγσγήο θαη ηζρύεη ε ηζνδπλακία : Όκνηα γηα ηελ ζπλεθαπηνκέλε έρνπκε: 1.7 Η έννοια ηηρ ηπιγωνομεηπικήρ εξίζωζηρ εθx = εθx ςπάπσει kä, ώζηε x = kπ + x εθx = εθx ςπάπσει kä, ώζηε x = kπ + x Τξηγσλνκεηξηθή εμίζσζε νλνκάδεηαη ε εμίζσζε πνπ πεξηιακβάλεη ηηκέο ηξηγσλνκεηξηθώλ ζπλαξηήζεσλ εμαξηώκελεο από αγλώζηνπο. 1.8 Η εξίζωζη ημx = α Η εμίζσζε έρεη ιύζε όηαλ θαη κόλν όηαλ: -1 α 1 α 1. Έζησ ζ κηα ξίδα ηεο εμίζσζεο, επεηδή εκζ = α, ε αξρηθή εμίζσζε ηζνδύλακα γξάθεηαη εκx = α εκx = εκζ επεηδή ζηελ παξαπάλσ ζρέζε νη αιγεβξηθέο ηηκέο x θαη ζ έρνπλ ην ίδην εκίηνλν ζύκθσλα κε ηα παξαπάλσ: ππάξρεη kä, ώζηε (x = kπ + ζ ή x = kπ +π ζ) επνκέλσο ε αξρηθή εμίζσζε γξάθεηαη: 1.9 H εξίζωζη ζςνx = α ημx = α ημx = ημθ x = kπ + θ x = kπ + π - θ, kä Η εμίζσζε έρεη ιύζε όηαλ θαη κόλν όηαλ: -1 α 1 α 1. Έζησ ζ κηα ξίδα ηεο εμίζσζεο, επεηδή εκζ = α, ε αξρηθή εμίζσζε ηζνδύλακα γξάθεηαη ζπλx = α ζπλx = ζπλζ επεηδή ζηελ παξαπάλσ ζρέζε νη αιγεβξηθέο ηηκέο x θαη ζ έρνπλ ην ίδην ζπλεκίηνλν ζύκθσλα κε ηα παξαπάλσ: ππάξρεη kä, ώζηε (x = kπ + ζ ή x = kπ ζ) επνκέλσο ε αξρηθή εμίζσζε γξάθεηαη: 1.10 Η εξίζωζη εθx = α ζςνx = α ζςνx = ζςνθ x = kπ + θ x = kπ - θ, kä Έζησ ζ κηα ξίδα ηεο εμίζσζεο, επεηδή εθζ = α, ε αξρηθή εμίζσζε ηζνδύλακα γξάθεηαη εθx = α εθx = εθζ επεηδή ζηελ παξαπάλσ ζρέζε νη αιγεβξηθέο ηηκέο x θαη ζ έρνπλ ηελ ίδηα εθαπηνκέλε ζύκθσλα κε ηα παξαπάλσ: ππάξρεη kä, ώζηε x = kπ + ζ επνκέλσο ε αξρηθή εμίζσζε γξάθεηαη: 1.11 Η εξίζωζη ζθx = α εθx = α εθx = εθθ x = kπ + θ, kä

Γηα ηελ ιύζε ηεο εμίζσζεο ζθx = α έρνπκε: 1 1 Αλ α 0 ε εμίζσζε ηζνδύλακα γξάθεηαη: x x x Αλ α = 0 ιύζεηο ηεο εμίζσζεο είλαη νη αιγεβξηθέο ηηκέο ησλ ηόμσλ πνπ ιήγνπλ ζην Β ή ζην Β, δειαδή x = k