ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΘΕΜΑ Β. Β1.. Η f παραγωγίσιμη στο πεδίο ορισμού της R (διότι. x άρα. x 1 0 για κάθε x R)

Σχετικά έγγραφα
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

lim f x lim g x. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΤΕΤΑ ΤΗ 18 ΑΪ Υ 2016 ΑΤΕΥΘΥ ΣΗΣ ( Α Α ΣΥΣΤΗ Α) ,β), τότε να αποδείξετε ότι το f(x

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

Μαθηματικά Προσανατολισμού x 0 x 0. , 0,, οπότε η f είναι γνησίως αύξουσα στο 0, και

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 MAΪΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ

Πανελλαδικές εξετάσεις 2016

ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ TΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ

ΑΠΑΝΤΗΣΕΙΣ. και g(x) =, x ΙR * τότε

Σχέδιο βαθμολόγησης-προσομοίωση Προσανατολισμού Γ Λυκείου - 1/2017 ΣΧΕΔΙΟ ΒΑΘΜΟΛΟΓΗΣΗΣ

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

Λύσεις των θεμάτων. Παρασκευή 9 Ιουνίου 2017 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ


ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

( f ) ( T) ( g) ( H)

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

Προτεινόμενες λύσεις. , β) και η f είναι συνεχής στο x. , η f είναι γνησίως αύξουσα στο (α,x. 0]. Έτσι έχουμε: f(x) f(x

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

f(x ) 0 O) = 0, τότε το x

και g(x) =, x ΙR * τότε

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου

Απαντήσεις Θεμάτων Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων (Νέο & Παλιό Σύστημα)

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2018

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

Άγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα)

A3. Σχολικό βιβλίο σελίδα 73 Α4. α. Λάθος, β. Σωστό, γ. Λάθος, δ. Σωστό, ε. Σωστό.

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Πανελλαδικές Εξετάσεις 2017

x (x ) (x + 1) - x (x + 1)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Εξετάσεις 9 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ x. Η f είναι συνεχής στο x0. lim lim 1. Παρατηρούμε, δηλαδή, ότι μια

{ } { ( ) } ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 Απόδειξη θεωρήματος σελίδα 135 στο σχολικό

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ

f(x ) 0 O) = 0, τότε το x

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3)

1 εφ x dx. 1 ν 1. συνx. 2 + ln1 = - ln 2. J 3-2 = 1 2 J 1 = ln 2 2, οπότε. x lnx 2 x, x > 0.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

x του Δ». ΘΕΜΑ Α Α1. Έστω μία συνάρτηση f και x Αν η πρόταση είναι αληθής να το αποδείξετε, ενώ αν είναι ψευδής να δώσετε κατάλληλο αντιπαράδειγμα.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (09/06/2017)

ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή. Γενικού Λυκείου. Ημερησίου-Εσπερινού-Ομογενών

A1. Έστω f μια συνεχής συνάρτηση σε ένα διάστημα [α, β]. Αν G είναι μια παράγουσα της f στο [α, β], τότε να αποδείξετε ότι:

f(x) 0 (x f(x) g(x), lim f(x) lim g(x).

A ένα σημείο της C. Τι

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2.

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ. MyΤeachers.gr ΘΕΜΑΤΑ

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α. Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα. Αν η f είναι συνεχής στο και για κάθε εσωτερικό σημείο x του ισχύει f (x)

Transcript:

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεώρημα σελ. σχολ. βιβλ. 6 Α. Θεωρία σελ. σχολ. βιβλ. 4 Α. Θεωρία σελ. σχολ. βιβλ. 46-47 Α4. Λ, Σ, Λ, Σ, Σ ΘΕΜΑ Β f, Β.. Η f αραγωγίσιμη στο εδίο ορισμού της (διότι άρα για κάθε ) f (Η f ράξεις αραγωγισίμων άρα αραγωγίσιμη) Έστω f Έστω Έστω f f Άρα η f γνησίως φθίνουσα στο, και γνησίως αύξουσα στο, f = ολικό ελάχιστο = f + f Β. Η f αραγωγίσιμη στο ως ράξεις αραγωγισίμων με f f. 4

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 8 4 8 6 f Έστω 4 6 6 f 6 6 Έστω f ή Έστω f ή f διότι + + f Σ.Κ. Ο.Ε. Σ.Κ. (Η f κοίλη στα, (Η f κυρτή στο (Σημεία καμής τα και, ), ) Α,f, B,f ) f f 4 4 Σημεία καμής τα Α, 4, B, 4 Θέσαμε f f διότι η f άρτια

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 Β. Οριζόντια ασύμτωτη όταν f Η ευθεία (ε): y οριζόντια ασύμτωτη στο, άρα δεν υάρχει λάγια ασύμτωτη στο. Ομοίως, όταν, οριζόντια ασύμτωτη η ίδια ευθεία (ε): y, διότι f (φυσικά δεν έχει λάγια στο ) Κατακόρυφη ασύμτωτη δεν υάρχει διότι δεν υάρχει Df στο οοίο να ισούται με ή δηλαδή δεν υάρχει σημείο ασυνέχειας ή σημείο ου είναι άκρο ανοιχτού υοδιαστήματος του (το οοίο να ανήκει στο ) ή ή Β4. y y 4 ΘΕΜΑ Γ Γ. u e, θέτω u, τότε e u. u u Έστω gue u, gue u gue u u u u Για u e e e e gu u u u Για u e e e e g u g + g O.Ε.

Για u η g αρουσιάζει ολικό ελάχιστο το gu u ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 g e Άρα Η συνάρτηση g είναι θετική για κάθε u και μηδενίζεται μόνο για u. Άρα η ρίζα u μοναδική λύση της g. Γ. Οι f συνεχείς συναρτήσεις, f: f e g για κάθε f e g για κάθε f e για κάθε i) αν f f e f e για κάθε και εειδή είναι συνεχής για f e, f e, για κάθε (), f ii) αν e, e, f f e f e για κάθε f e, για και λόγω συνέχειας f e για () f e, για και λόγω συνέχειας f e για κάθε (4), 4 f Γ. f e, f e e, e, f e e e 4 e f e 4 e e 4e 8e 8 e e 8 e 4e Αλλά e, για κάθε f f Άρα για 4

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 για f f f Άρα για ff Άρα Γ4. f όου για ff f για κάθε και η f κυρτή f Θεωρούμε τη συνάρτηση Φf f Φ f f f f διότι f f f f f Αλλά Φημ f ημ f ημ Φ ημ Φ ημ Άρα η δοθείσα γράφεται Φ ΘΕΜΑ Δ Df Δ. f συνεχής f ημf ημ d f ημ f ημd f ημd f ημ d A A f ημ f συν d A f ημf ημ f συν d A f συν d Af συν f συν d f f f f f g f ημ g A f συνf συν f ημ d A f f A Έστω ημ, άρα Φ Φ για, άρα f συνεχής f ημg g f,ff f f f f f ημ f ημ 5

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 Δ. i) Έστω ότι η f αρουσιάζει ακρότατο στη θέση, τότε ρέει f Παραγωγίζουμε και τα δύο μέλη της για f e f f f f e για f f, άτοο διότι f f e f f e f e f f f f e e f f e e f Άρα ii) Εειδή, άρα η f δεν αρουσιάζει ακρότατα στο f άρα η f δεν μηδενίζεται για καμία τιμή του, εομένως η f συνεχής και f διατηρεί σταθερό ρόσημο. Αλλά Άρα τότε f f Δ. ημ συν ημ συν, όου f Είσης f ημ συν f f f ημ συν f f f Έστω ότι f, τότε Άρα f, f e f f e e f f f e f κ e διότι, άρα κ, άτοο e τότε το Άρα f f και f Αό κριτήριο αρεμβολής, τότε e ημ συν f e DLH Δ4. e f ln d y y, θέτω ln y e d e dy Για τα νέα άκρα : για ln y y Για e lne y y 6

Άρα f y y edy f y y dy e f Αλλά για yf f y f f y dy f y dy dy f y dy Άρα f y dy e f ln d ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 Οι αραάνω ααντήσεις είναι ενδεικτικές 7

ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ A. Έστω μια συνάρτηση f αραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του, στο οοίο όμως η f είναι συνεχής. Αν f () > στο (α, ) και f () < στο (,β), τότε να αοδείξετε ότι το f( ) είναι τοικό μέγιστο της f. Μονάδες 7 A. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 A. Να διατυώσετε το θεώρημα μέσης τιμής του διαφορικού λογισμού και να το ερμηνεύσετε γεωμετρικά. Μονάδες 4 A4. Να χαρακτηρίσετε τις ροτάσεις ου ακολουθούν, γράφοντας στο τετράδιό σας, δίλα στο γράμμα ου αντιστοιχεί σε κάθε ρόταση, τη λέξη Σωστό, αν η ρόταση είναι σωστή, ή Λάθος, αν η ρόταση είναι λανθασμένη. ΘΕΜΑ Β α) Για κάθε συνεχή συνάρτηση f:[α,β], αράγουσα της f β α αν G είναι μια στο [α,β], τότε το f(t)dt = G(α) G(β). β) Αν οι συναρτήσεις f,g έχουν όριο στο και ισχύει f() g() κοντά στο, τότε f() g(). γ) Κάθε συνάρτηση f, για την οοία ισχύει f () = για κάθε (α, ) (,β), είναι σταθερή στο (α, ) (,β). δ) Μια συνάρτηση f είναι -, αν και μόνο αν, για κάθε στοιχείο y του συνόλου τιμών της, η εξίσωση y = f() έχει ακριβώς μια λύση ως ρος. ε) Αν η f είναι συνεχής στο [α,β], τότε η f αίρνει στο [α,β] μια μέγιστη τιμή M και μια ελάχιστη τιμή m. Δίνεται η συνάρτηση f() =, +. Μονάδες B. Να βρείτε τα διαστήματα στα οοία η f είναι γνησίως αύξουσα, τα διαστήματα στα οοία η f είναι γνησίως φθίνουσα και τα ακρότατα της f. Μονάδες 6 B. Να βρείτε τα διαστήματα στα οοία η f είναι κυρτή, τα διαστήματα στα οοία η f είναι κοίλη και να ροσδιορίσετε τα σημεία καμής της γραφικής της αράστασης. Μονάδες 9

B. Να βρεθούν οι ασύμτωτες της γραφικής αράστασης της f. Μονάδες 7 B4. Με βάση τις ααντήσεις σας στα ερωτήματα Β, Β, Β να σχεδιάσετε τη γραφική αράσταση της συνάρτησης f. (Η γραφική αράσταση να σχεδιαστεί με στυλό) Μονάδες ΘΕΜΑ Γ Γ. Να λύσετε την εξίσωση e =,. Μονάδες 4 Γ. Να βρείτε όλες τις συνεχείς συναρτήσεις f: ου ικανοοιούν την σχέση f () = ( e ) για κάθε και να αιτιολογήσετε την αάντησή σας. Μονάδες 8 Γ. Αν f() = e,, να αοδειχθεί ότι η f είναι κυρτή. Μονάδες 4 Γ4. Αν f είναι η συνάρτηση του ερωτήματος Γ, να λυθεί η εξίσωση: f( ημ + ) f( ημ ) = f(+) f() όταν [, + ). Μονάδες 9 ΘΕΜΑ Δ Δίνεται συνάρτηση f ορισμένη και δύο φορές αραγωγίσιμη στο, με συνεχή δεύτερη αράγωγο, για την οοία ισχύει ότι: ( ) f()+ f () ημ d = και f() f ( ) = = ημ e f() + = f f() + e για κάθε. ( ) Δ. Να δείξετε ότι f( ) = (μονάδες 4) και f () = (μονάδες ). Μονάδες 7 Δ. α) Να δείξετε ότι η f δεν αρουσιάζει ακρότατα στο. (μονάδες 4) β) Να δείξετε ότι η f είναι γνησίως αύξουσα στο. (μονάδες ) Δ. Να βρείτε το ημ + συν f() + Μονάδες 6. Μονάδες 6 Δ4. Να δείξετε ότι e f(ln ) < d <. Μονάδες 6

ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Δ Δίνεται συνάρτηση f ορισμένη και δύο φορές αραγωγίσιμη στο, με συνεχή δεύτερη αράγωγο, για την οοία ισχύει ότι: ( ) f ( ) = f()+ f () ημ d = και f() ( ) = ημ e f() + = f f() + e για κάθε. Δ. Να δείξετε ότι f( ) = (μονάδες 4) και f () = (μονάδες ). Μονάδες 7 Δ. α) Να δείξετε ότι η f δεν αρουσιάζει ακρότατα στο. (μονάδες 4) β) Να δείξετε ότι η f είναι γνησίως αύξουσα στο. (μονάδες ) Δ. Να βρείτε το ημ + συν f() + Μονάδες 6. Μονάδες 6 Δ4. Να δείξετε ότι e f(ln ) < d <. Μονάδες 6 ΟΔΗΓΙΕΣ (για τους εξεταζομένους). Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο άνω-άνω να συμληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των ααντήσεών σας να γράψετε άνω-άνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μη γράψετε ουθενά στις ααντήσεις σας το όνομά σας.. Να γράψετε το ονοματεώνυμό σας στο άνω μέρος των φωτοαντιγράφων αμέσως μόλις σας αραδοθούν. Τυχόν σημειώσεις σας άνω στα θέματα δεν θα βαθμολογηθούν σε καμία ερίτωση. Κατά την αοχώρησή σας να αραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.. Να ααντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μλε ή μόνο με μαύρο στυλό με μελάνι ου δεν σβήνει. Μολύβι ειτρέεται, μόνο αν το ζητάει η εκφώνηση, και μόνο για ίνακες, διαγράμματα κλ. 4. Κάθε αάντηση ειστημονικά τεκμηριωμένη είναι αοδεκτή. 5. Διάρκεια εξέτασης: τρεις () ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αοχώρησης:..μ. ΣΑΣ ΕΥΧΟΜΑΣΤΕ KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ ΗΣ ΑΠΟ ΣΕΛΙΔΕΣ