ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής



Σχετικά έγγραφα
Στατιστική Συμπερασματολογία

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

3. Κατανομές πιθανότητας

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

Διαστήματα Εμπιστοσύνης

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

5. Έλεγχοι Υποθέσεων

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

Στατιστική Επιχειρήσεων ΙΙ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Εκτίμηση Διαστήματος. Χ. Εμμανουηλίδης, 1. Στατιστική ΙI. Εκτίμηση Διαστήματος Εμπιστοσύνης για τον Μέσο

Εισαγωγή στην Εκτιμητική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Επιχειρήσεων ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Στατιστική. Εκτιμητική

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

Στατιστική Επιχειρήσεων ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΒΕΛΤΙΣΤΟ ΜΕΓΕΘΟΣ ΔΕΙΓΜΑΤΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling)

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Δειγματοληψία στην Ερευνα. Ετος

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Μέθοδοι Κατασκευής Διαστημάτων Εμπιστοσύνης Επίπεδο εμπιστοσύνης 1-α

Στατιστική Επιχειρήσεων Ι

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...

Στατιστική Συμπερασματολογία

Το Κεντρικό Οριακό Θεώρημα

Στατιστική ΙΙ-Διαστήματα Εμπιστοσύνης Ι (εκδ. 1.1)

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics)

Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις και σημειακή εκτίμηση παραμέτρων Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή συμπερασμάτων για το σ

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

Εκτιμήτριες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Εκτιμήτριες. μέθοδος ροπών και μέγιστης πιθανοφάνειας

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

X = = 81 9 = 9

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

Τυχαία μεταβλητή (τ.μ.)

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

(X1 X 2 ) 2}. ( ) f 1 (x i ; θ) = θ x i. (1 θ) n x i. x i log. i=1. i=1 t2 i

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

9. Παλινδρόμηση και Συσχέτιση

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

2. ΑΠΛΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Simple Random Sampling)

Εισόδημα Κατανάλωση

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12)

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

ΣΑΣΙΣΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΤΣΡΑ. Διδάσκων: Διδάσκων επί Συμβάσει Π.Δ 407/80.

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Είδη Μεταβλητών. κλίµακα µέτρησης

Χ. Εμμανουηλίδης, 1

Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις, σημειακή εκτίμηση παραμέτρων και γραμμική παλινδρόμηση Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)

Θεωρία Πιθανοτήτων & Στατιστική

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΤΜΗΜΑΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ( ) ΟΜΑΔΑ Α ( 40% )

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling)

Transcript:

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες παραμέτρους Παραδείγματος χάριν, η μέση τιμή και η διασπορά (, ) χαρακτηρίζουν τη συνάρτηση πυκνότητας πιθανότητας της κανονικής τυχαίας μεταβλητής, η μέση τιμή τη συνάρτηση πιθανότητας της Poisso, και η πιθανότητα επιτυχίας p τη συνάρτηση πιθανότητας της διωνυμικής Όταν αυτές οι παράμετροι είναι άγνωστες, εκτιμώνται από δειγματοληπτικές μετρήσεις, πχ η μέση τιμή του βάρους μιας συσκευασίας εκτιμάται από το μέσο βάρος της συσκευασίας σε ένα πεπερασμένο δείγμα Η ανάλυση που ακολουθεί υποθέτει ότι η δειγματοληψία γίνεται με τυχαίο τρόπο, δηλαδή οι μετρήσεις του δείγματος είναι ανεξάρτητες μεταξύ τους 1 Σημειακή εκτίμηση Έστω άγνωστη παράμετρος που χαρακτηρίζει μια τυχαία μεταβλητή X Η παράμετρος αυτή εκτιμάται από τυχαίο δείγμα που αποτελείται από μετρήσεις X1, X,, X Οι τιμές του δείγματος είναι ανεξάρτητες τυχαίες μεταβλητές με συνάρτηση (πυκνότητας) πιθανότητας ίδια με της X Από τις τιμές αυτές προκύπτει μια εκτιμήτρια συνάρτηση ˆ η τιμή της οποίας δίνει μια εκτίμηση για την παράμετρο Ακολουθούν ορισμένα παραδείγματα εκτιμητριών Μέση τιμή Εκτιμάται από τη μέση τιμή του δείγματος X, όπου X1 X X X Διασπορά Εκτιμάται από τη διασπορά του δείγματος S S, όπου ( X X) ( X X) ( X X) X X X X 1 1 1 1 Ποσοστό Έστω p το ποσοστό του πληθυσμού με μια συγκεκριμένη ιδιότητα (πχ ποσοστό ελαττωματικών σε παραγωγική διαδικασία) Το ποσοστό αυτό εκτιμάται 1

από το αντίστοιχο ποσοστό στο δείγμα, το οποίο ισούται με pˆ A, όπου A ο αριθμός των μελών του δείγματος με αυτή την ιδιότητα Ιδιότητες εκτιμητριών Η εκτίμηση βασίζεται σε μετρήσεις από ένα υποσύνολο του πληθυσμού (δείγμα), άρα είναι φυσικό να αποκλίνει από την πραγματική τιμή της παραμέτρου με συνέπεια την ύπαρξη σφάλματος εκτίμησης σφάλματος εκτίμησης E[( ) ] ˆ Η μέση τιμή του τετραγώνου του ˆ ονομάζεται μέσο τετραγωνικό σφάλμα (mea squared error, MSE) και χαρακτηρίζει την ποιότητα της εκτιμήτριας: όσο μικρότερο το MSE, τόσο καλύτερη η εκτίμηση Μια άλλη επιθυμητή ιδιότητα είναι η εκτιμήτρια να δίνει κατά μέσο την πραγματική τιμή της άγνωστης παραμέτρου, δηλαδή E( ˆ ) Μια τέτοια εκτιμήτρια ονομάζεται αμερόληπτη Είναι φανερό από τον ορισμό του μέσου τετραγωνικού σφάλματος ότι για αμερόληπτες εκτιμήτριες ισχύει Ακολουθούν παραδείγματα αμερόληπτων εκτιμητριών Μέση τιμή δείγματος Έστω η μέση τιμή μιας τυχαίας μεταβλητής X E( X ) E( X ) E( X ), 1 E( X ) άρα η X είναι αμερόληπτη εκτιμήτρια της Έστω MSE=var( ˆ ) η διασπορά της X Επειδή οι τιμές του δείγματος είναι ανεξάρτητες τυχαίες μεταβλητές έχουμε var( X ) var ( X ) var ( X) MSE var( X ) 1 Διασπορά δείγματος Η μέση τιμή της διασποράς του δείγματος ισούται με όπου E( X1 ) E( X) E( X ) E( X ) E( S ), 1 E( i ) var( i) [E( i)], 1,,, X X X i, E( X ) var( X) [E( X)]

Συνδυάζοντας τις παραπάνω σχέσεις παίρνουμε αμερόληπτη εκτιμήτρια της E( S ), άρα η S είναι Ποσοστό σε δείγμα Έστω p η πιθανότητα ένα μέλος του δείγματος να έχει μια συγκεκριμένη ιδιότητα Άρα ο αριθμός ιδιότητα είναι διωνυμική τυχαία μεταβλητή με E( A ) Επομένως E( A ) p E( pˆ ) p, άρα το ˆp είναι αμερόληπτη εκτιμήτρια του p Επίσης var ( A ) p(1 p) p(1 p) MSE var( pˆ ) A των μελών του δείγματος με αυτή την p και var( A ) p(1 p) Κατανομές εκτιμητριών Υπάρχουν περιπτώσεις εκτιμητριών για τις οποίες, εκτός από τη μέση τιμή και τη διασπορά τους, είναι εφικτό να προσδιοριστεί και η συνάρτηση πυκνότητας πιθανότητας Μέση τιμή δείγματος 1) Αν η τυχαία μεταβλητή X είναι κανονική με μέση τιμή και διασπορά, η μέση τιμή του δείγματος, ως γραμμικός συνδυασμός κανονικών τυχαίων μεταβλητών, είναι επίσης κανονική τυχαία μεταβλητή με μέση τιμή και διασπορά X, δηλαδή ~ N(0,1) Αν όμως η διασπορά είναι άγνωστη, χρησιμοποιούμε την εκτιμήτριά της X S για την οποία ισχύει ~ t 1 S, όπου t 1 είναι η κατανομή Studet (ή κατανομή t ) με 1 βαθμούς ελευθερίας ) Αν το δείγμα είναι μεγάλο ( 30 ), τότε λόγω του κεντρικού οριακού θεωρήματος και ανεξαρτήτως της κατανομής του πληθυσμού η μέση τιμή του δείγματος είναι προσεγγιστικά κανονική με μέση τιμή και διασπορά Η προσέγγιση ισχύει X ακόμα και όταν η διασπορά είναι άγνωστη, οπότε έχουμε ~ N(0,1) S 3

Ποσοστό σε δείγμα Για μεγάλα δείγματα το ποσοστό ˆp είναι προσεγγιστικά κανονική τυχαία μεταβλητή με μέση τιμή p και διασπορά p(1 p) Διαστήματα εμπιστοσύνης Τα διαστήματα εμπιστοσύνης αποτελούν μια ευρύτερη μορφή εκτίμησης από τη σημειακή Αντί η άγνωστη παράμετρος να εκτιμηθεί από μια συγκεκριμένη τιμή, υπολογίζεται ένα διάστημα που περιέχει την τιμή αυτής της παραμέτρου με μια προκαθορισμένη πιθανότητα Ορισμός Το διάστημα [ ab, ] είναι ένα 100(1 )% διάστημα εμπιστοσύνης για την παράμετρο αν P( [ ab, ]) 1 Διάστημα εμπιστοσύνης μέσης τιμής Έστω ότι η τυχαία μεταβλητή X είναι κανονική με γνωστή διασπορά X ~ N(0,1) Έστω επίσης z η τιμή για την οποία ισχύει P, άρα Y z, όπου Y η τυποποιημένη κανονική τυχαία μεταβλητή Για δεδομένο η τιμή αυτή βρίσκεται από τον πίνακα της κανονικής κατανομής Επομένως X Pz z 1 PX z X z 1 Συγκρίνοντας την τελευταία σχέση με τον ορισμό του διαστήματος εμπιστοσύνης συμπεραίνουμε ότι το διάστημα X z, X z διάστημα εμπιστοσύνης για τη μέση τιμή είναι ένα 100(1 )% Με παρόμοιο τρόπο μπορεί να δειχθεί ότι για κανονικό πληθυσμό με άγνωστη διασπορά ένα 100(1 )% διάστημα εμπιστοσύνης για τη μέση τιμή είναι το S S X t, X t, 1, 1, όπου t, είναι η τιμή για την οποία ισχύει P t t, και μπορεί να βρεθεί από τον πίνακα στο τέλος των σημειώσεων 4

Τέλος, για μεγάλα δείγματα το αντίστοιχο διάστημα εμπιστοσύνης είναι της μορφής ή S X z, X z ή S Το εύρος του διαστήματος εμπιστοσύνης έχει άμεση σχέση με το σφάλμα ή S εκτίμησης X Συγκεκριμένα ισχύει P X z Αν λοιπόν θέλουμε το σφάλμα εκτίμησης της μέσης τιμής να είναι μεγαλύτερο από d με πιθανότητα το πολύ, πρέπει το μισό του 100(1 )% διαστήματος εμπιστοσύνης να είναι το πολύ d Αυτό σημαίνει ότι το απαιτούμενο μέγεθος δείγματος είναι z d ή z d S ανάλογα με το αν η διασπορά είναι γνωστή ή άγνωστη Στη δεύτερη περίπτωση η διασπορά S υπολογίζεται από κάποιο μικρό αρχικό δείγμα Διάστημα εμπιστοσύνης ποσοστού Θεωρούμε την περίπτωση μεγάλων δειγμάτων για την οποία ισχύει pˆ p p(1 p) ~ N(0,1) Παρόμοια με την περίπτωση της μέσης τιμής προκύπτει διάστημα εμπιστοσύνης ˆ p(1 p z p) ˆ (1 ), p z p p, όπου όμως η παράμετρος p είναι η άγνωστη παράμετρος που θέλουμε να εκτιμήσουμε Το πρόβλημα παρακάμπτεται αντικαθιστώντας το p(1 p) με το pˆ(1 pˆ) και τελικά ˆ(1 ˆ) ˆ(1 ˆ) παίρνουμε διάστημα εμπιστοσύνης ˆ p p z p ˆ, p z p p Όσον αφορά το σφάλμα εκτίμησης ˆp p, αν θέλουμε να είναι μεγαλύτερο από d με πιθανότητα το πολύ, πρέπει το μισό του 100(1 )% διαστήματος εμπιστοσύνης να είναι το πολύ d Αυτό σημαίνει μέγεθος δείγματος τουλάχιστον ίσο z με pˆ(1 pˆ), όπου το ποσοστό ˆp υπολογίζεται από κάποιο μικρό αρχικό d δείγμα Εναλλακτικά, επειδή pˆ(1 pˆ) 1 4, μπορούμε ως απαιτούμενο μέγεθος δείγματος να πάρουμε το 1 z 4 d 5