Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Σχετικά έγγραφα
Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

6 Συνεκτικοί τοπολογικοί χώροι

Ανοικτά και κλειστά σύνολα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Εισαγωγή στην Τοπολογία

Κ X κυρτό σύνολο. Ένα σημείο x Κ

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)].

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Κανόνες παραγώγισης ( )

f(t) = (1 t)a + tb. f(n) =

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.

( y) ( x) ( 0) ( ) ( 0) ( y) ( ) ( ) ( ) Παραδείγµατα και εφαρµογές. 1)Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα 1

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία

5 Σύγκλιση σε τοπολογικούς χώρους

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

f x 0 για κάθε x και f 1

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως

Υπολογισµός τριπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

Ο ΕΥΚΛΕΙ ΕΙΟΣ ΧΩΡΟΣ. Το εσωτερικό γινόµενο

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Οι πραγµατικοί αριθµοί

( a) ( ) n n ( ) ( ) a x a. x a x. x a x a

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

11 Το ολοκλήρωµα Riemann

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

Εισαγωγή στην Τοπολογία

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Ο ΕΥΚΛΕΙ ΕΙΟΣ ΧΩΡΟΣ. Το εσωτερικό γινόµενο

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον

E(G) 2(k 1) = 2k 3.

Κεφάλαιο 1. Μετρικοί χώροι. 1.1 Βασικές έννοιες. Εστω σύνολο X και έστω η απεικόνιση d : X X R έτσι ώστε για κάθε x, y, z X ισχύουν :

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν

Πραγµατική Ανάλυση ( ) Ασκήσεις - Κεφάλαιο 3

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

π B = B και άρα η π είναι ανοικτή απεικόνιση.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

Εισαγωγή στην Τοπολογία

u v 4 w G 2 G 1 u v w x y z 4

εισαγωγή του Ρ(χ) που είναι οι αριθµοί x1 =, x2 σχήµα 1 Θεωρώντας το πολυώνυµο Ρ(z)=z 3 -z 2 +z=z(z 2 -z+1) παρατηρούµε ότι οι = ενώ οι ρίζες 2 2

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

8. Πολλαπλές μερικές παράγωγοι

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...


ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν.

1.2 Βάσεις και υποβάσεις.

Κεφάλαιο 1. Θεωρία Ζήτησης

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ. και την ΟΙΚΟΝΟΜΙΑ»

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

3Τοπολογικοί διανυσματικοί χώροι. y A, για κάθε λ [ 0,1]

Κεφάλαιο 1. Πλειότιµες απεικονίσεις. 1.1 Ορισµοί

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

1 Το ϑεώρηµα του Rademacher

x \ B T X. A = {(x, y) R 2 : x 0, y 0}

8. Πολλαπλές μερικές παράγωγοι

3Τοπολογικοί διανυσματικοί χώροι. y A, για κάθε λ [ 0,1]

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία

1 Ορισµός ακολουθίας πραγµατικών αριθµών

ii

4 Συνέχεια συνάρτησης

Μιχάλης Παπαδημητράκης. Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

B = F i. (X \ F i ) = i I

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Ατοµική Θεωρία Ζήτησης

Υπόδειξη. (α) Άµεσο αφού κάθε υποσύνολο µηδενικού συνόλου είναι µετρήσιµο.

1 Οι πραγµατικοί αριθµοί

Κεφάλαιο 1. Ατοµική Θεωρία Λήψης Αποφάσεων. 1.1 Χώρος αγαθών. a = (3, 4, 2), a = (0, 2, 0).

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Εισαγωγή στην Τοπολογία

q(g \ S ) = q(g \ S) S + d = S.

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Καµπύλες που γεµίζουν τον χώρο

L 2 -σύγκλιση σειρών Fourier

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

Transcript:

4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι ) είναι διάστηµα. Είναι χαρακτηριστική ιδιότητα των ανοικτών ή κλειστών διαστηµάτων στο R ότι δεν µπορούν να γραφούν ως ένωση δύο ξένων ανοικτών ή κλειστών υποδιαστηµάτων αντίστοιχα. Η ιδιότητα αυτή γενικεύεται στον R και επιτρέπει να αποδείξουµε ένα αντίστοιχο αποτέλεσµα για συνεχείς πραγµατικές συναρτήσεις πολλών µεταβλητών.. 3.5 Ορισµός. Ένα σύνολο Α R λέγεται συνεκτικό αν δεν µπορεί να γραφεί ως ένωση δύο ξένων µη κενών ανοικτών στο Α υποσυνόλων. Με άλλα λόγια ένα σύνολο Α R δεν είναι συνεκτικό αν υπάρχουν U, V R ανοικτά ώστε, Α Α Α Α = U, V,( U) ( V) και ( U) ( V) Προφανώς τα µονοσύνολα του Α Α =Α. R είναι συνεκτικά σύνολα. Αποδεικνύεται το ακόλουθο σηµαντικό αποτέλεσµα που χαρακτηρίζει τα συνεκτικά υποσύνολα του R.. 3.6 Θεώρηµα (Συνεκτικότητα των διαστηµάτων). Τα µόνα συνεκτικά υποσύνολα του R µε περισσότερα από ένα στοιχεία είναι τα διαστήµατα. ( ανοικτά, κλειστά,ηµιανοικτά φραγµένα ή µη φραγµένα). Απόδειξη: Παραλείπεται. Υπενθύµιση. Αν Χ σύνολο και Α Χ τότε η χαρακτηριστική συνάρτηση του, x Α xα : Χ R : xα x =., x Α συνόλου Α είναι η συνάρτηση 3.7 Λήµµα. Οι ακόλουθοι ισχυρισµοί είναι ισοδύναµοι για ένα σύνολο Α R. (ι) Το Α δεν είναι συνεκτικό. (ιι) Υπάρχει f : R f Α =,. ανοικτά στο f Α συνεχής ώστε { } Απόδειξη: (ι) (ιι) Το Α γράφεται ως Α= ( Α U) ( Α V) R µε Α U Α V και ( U) ( V) και παρατηρούµε ότι η f είναι συνεχής µε f ( Α ) = {, }. = x Α U όπου U, V Α Α =. Θέτουµε ( η f αντιστρέφει τα ανοικτά υποσύνολα του R σε σχετικά ανοικτά υποσύνολα του Α). (ιι) (ι) Τα σύνολα f Α = { } και Α = f {} είναι σχετικά ανοικτά υποσύνολα του Α σε τρόπο ώστε Α Α =Α, Α, Α και Α Α =. Έστω U, V R ανοικτά ώστε Α = U είναι συνεκτικό. Α και Α = V Α. Εποµένως το Α δεν

4 f 3.8 Πρόταση Έστω Α είναι συνεκτικό υποσύνολο του Α R συνεκτικό και f : R R R. Α συνεχής τότε το Απόδειξη: Αν το f ( Α ) δεν ήταν συνεκτικό τότε θα υπήρχε µια συνεχής συνάρτηση, g : f ( Α) {,} R µε g( f ( Α )) = {,}. Τότε η συνάρτηση gof : Α R R θα ήταν συνεχής και ( gof )( Α ) = {,}. Εποµένως το Α δεν θα ήταν συνεκτικό, άτοπο. Η έννοια της συνεκτικότητας οδηγεί στην ακόλουθη γενίκευση του θεωρήµατος ενδιαµέσου τιµής του Λογισµού µιας µεταβλητής. 3.9 Θεώρηµα ( Ενδιαµέσου Τιµής ) Έστω f : Α R R συνεχής. Αν το Α είναι συνεκτικό υποσύνολο του R τότε το f Α είναι διάστηµα του R, δηλαδή η f παίρνει κάθε τιµή µεταξύ δύο διαφορετικών τιµών της. Απόδειξη: Έπεται προφανώς από το προηγούµενο αποτέλεσµα και τον χαρακτηρισµό των συνεκτικών υποσυνόλων του R. Α I οικογένεια συνεκτικών υποσυνόλων του Α, τότε η ένωση Α= Α είναι συνεκτικό υποσύνολο του 3. Λήµµα. Έστω { : } κλειστότητα ενός συνεκτικού συνόλου είναι σύνολο συνεκτικό. Απόδειξη: Ας υποθέσουµε ότι υπάρχει f : R Έστω, υποθέτουµε ότι x Α x Α, έπεται ότι f ( y) f ( x) R ώστε R. Επίσης η Α συνεχής µε {,} f Α =. f x =. Επειδή το κάθε Α είναι συνεκτικό και = = για κάθε y Α και για κάθε I. Συνεπώς η f δεν µπορεί να παίρνει την τιµή. ( Ανάλογα, αποδεικνύεται ότι αν f ( x ) = τότε y Α= Α f y = για κάθε. Έτσι καταλήγουµε σε άτοπο και άρα το Α είναι συνεκτικό. Για τον δεύτερο ισχυρισµό παρατηρούµε ότι αν f : Ι Α R συνεχής ( όπου Α R συνεκτικό ) µε f ( Α) {,}, τότε η συνέχεια της f έπεται ότι αυτή δεν µπορεί να είναι επί του {, }. Πράγµατι αν υπήρχαν x, x Α µε f ( x ) = και ( ) θα υπήρχαν ακολουθίες ( x ) και ( y ) στοιχείων του Α ώστε x x και y x Συνεπώς f ( x) f ( x) = και f ( y) f ( x) =. Επειδή ( f ( x ) ) και f ( y ) είναι ακολουθίες στοιχείων του {, } έπεται ότι f ( x ) = και N. Συνεπώς f ( Α ) = {,}, άτοπο. N για κάποιο N f x = τότε. f y = για κάθε (*) 3. Ορισµός Έστω, Α R και x Α. Η συνεκτική συνιστώσα Αxτου x στο Α είναι η ένωση όλων των συνεκτικών υποσυνόλων του Α που περιέχουν το x. Χρησιµοποιώντας τα δύο Λήµµατα που αποδείξαµε παραπάνω (3.7 και 3. ) αποδεικνύεται εύκολα ( αφήνεται ως άσκηση ) η ακόλουθη.

4 (*) 3.. Πρόταση. Έστω, Α R και x Α. Τότε ισχύουν τα ακόλουθα: (ι) Η συνεκτική συνιστώσα Α του x στο Α είναι συνεκτικό σύνολο και είναι ένα x µεγιστικό συνεκτικό υποσύνολο του Α. ( Αν Αx Β Α και Β συνεκτικό τότε Α x =Β ). (ιι) Η συνεκτική συνιστώσαα x του x στο Α είναι σύνολο κλειστό στο Α. (ιιι) Το σύνολο των συνεκτικών συνιστωσών των σηµείων του Α συνιστά µια διαµέριση του Α, δηλαδή, κάθε δύο διαφορετικές συνιστώσες του Α είναι ξένες και η ένωσή τους ισούται µε το Α. (ιν) Μια συνεχής συνάρτηση f : Α R είναι σταθερή πάνω σε κάθε συνεκτική συνιστώσα του Α. Παρατήρηση. Οι συνεκτικές συνιστώσες ενός συνόλου Α δεν είναι απαραίτητα σύνολα ανοικτά στο Α. Για παράδειγµα οι συνεκτικές συνιστώσες των σηµείων του Q είναι µονοσύνολα. Ένα άλλο παράδειγµα είναι το σύνολο Α= : { } R. Οι συνεκτικές συνιστώσες του Α είναι οι: το {},,...,... σχετικά µε το Α. Από την άλλη µεριά αποδεικνύεται ότι οι συνεκτικές συνιστώσες ενός ανοικτού συνόλου U R είναι σύνολα ανοικτά στον R. και το { }, παρατηρούµε ότι το { } δεν είναι ανοικτό 3.3 Ορισµός: (ι) Έστω, a, b R το ( προσανατολισµένο ) ευθύγραµµο τµήµα από το aστο b είναι το σύνολο [, ] { : [,] } a b t a tb t R = +. (ιι) Έστω,,..., a a σηµεία του R. Η πολυγωνική γραµµή µε κορυφές τα a,..., a Ρ= a, a a, a... a, a. είναι το σύνολο, [ ] [ ] [ ] (ιιι) Ένα υποσύνολο 3 Κ R λέγεται κυρτό αν για κάθε a, b Κ ισχύει ότι [ a, b] Κ. Παρατηρούµε ότι κάθε ευθύγραµµο τµήµα [ a, b] R R είναι κυρτό υποσύνολο του 3.4 Πρόταση: (ι) Κάθε ευθύγραµµο τµήµα και γενικότερα κάθε πολυγωνική γραµµή στον R είναι σύνολα συνεκτικά. (ιι) Κάθε κυρτό σύνολο στον R είναι σύνολο συνεκτικό. Απόδειξη: (ι) Έστω, a, b R, τότε η απεικόνιση ϕ :[, ] [ a, b] R : ϕ( t) ( t) a tb, t [,] ϕ [, ] = a, b. Εποµένως το [, ] = + είναι συνεχής και [ ] a b είναι συνεκτικό. Το γεγονός ότι µια πολυγωνική γραµµή Ρ µε - κορυφές είναι σύνολο συνεκτικό αποδεικνύεται µε επαγωγή στον αριθµό των κορυφών της ( για = η Ρ είναι ένα ευθύγραµµο τµήµα στον R και άρα σύνολο συνεκτικό ). Για το επόµενο βήµα της επαγωγής χρησιµοποιούµε το Λήµµα 3..

43 (ιι) Έστω Κ κυρτό και a Κ. Επειδή το Κ είναι κυρτό ισχύει ότι [ a, x] Κ για κάθε x Κ, εποµένως Κ = {[ a, x] : x Κ}. Από το Λήµµα 3. έπεται το συµπέρασµα. Παραδείγµατα κυρτών συνόλων: ) Κάθε ανοικτή ή κλειστή σφαίρα στον R είναι σύνολο κυρτό. Η απόδειξη είναι απλή ( και διαισθητικά προφανής αν = ή 3). )Κάθε ηµιεπίπεδο ( ανοικτό ή κλειστό ) είναι κυρτό σύνολο στον R. 3) Το εσωτερικό ενός τριγώνου ή ενός παραλληλογράµµου είναι σύνολο κυρτό στον R. Βέβαια και κάθε κλειστό τρίγωνο ή παραλληλόγραµµο ( το εσωτερικό µαζί µε το σύνορο ) είναι κυρτό σύνολο. Αποδεικνύεται ο ακόλουθος χαρακτηρισµός των ανοικτών και συνεκτικών υποσυνόλων του R. 3.5 Θεώρηµα. Έστω, U R ανοικτό σύνολο. Τότε τα ακόλουθα είναι ισοδύναµα: (ι) Το U είναι συνεκτικό. (ιι) Για κάθε a, b Uυπάρχει πολυγωνική γραµµή Ρ Uαπό το a στο b ( το U είναι όπως λέµε πολυγωνικά συνεκτικό). Απόδειξη: Παραλείπεται. Ένα ανοικτό και συνεκτικό υποσύνολο του R θα ονοµάζεται και τόπος. Παραδείγµατα: Χρησιµοποιώντας τα προηγούµενα αποτελέσµατα µπορούµε να αποδείξουµε ότι τα ακόλουθα ανοικτά σύνολα είναι συνεκτικά: )Αν F R είναι πεπερασµένο σύνολο τότε το R F Β x, ε F είναι συνεκτικά σύνολα. (όπου x )Αν x R και ε ε συνεκτικό. R, καθώς και το ε > και ). Β x, ε Β x, ε είναι σύνολο < < τότε ο δακτύλιος ( ) ( ) 3)Αν οι ανοικτές σφαίρες ( x, ε ), ( x, ε ) Β Β τέµνονται τότε η ένωση τους είναι σύνολο συνεκτικό. Η απόδειξη των (), (), (3) αφήνεται ως άσκηση. Καθόσον αφορά τις συνεκτικές συνιστώσες ενός ανοικτού συνόλου του αποδεικνύεται εύκολα το ακόλουθο. (*) 3.6Θεώρηµα. Έστω Uανοικτό σύνολο στον R. Τότε ισχύουν: (ι) Κάθε συνεκτική συνιστώσα του U είναι σύνολο ανοικτό στον (ιι) Το U έχει αριθµήσιµο πλήθος συνεκτικών συνιστωσών. Η απόδειξη του (ι) ισχυρισµού αφήνεται ως άσκηση. Για τον (ιι) ισχυρισµό χρησιµοποιούµε τον πρώτο ισχυρισµό καθώς και το γεγονός ότι ο R περιέχει ένα αριθµήσιµο πυκνό υποσύνολο, π.χ. το σύνολο Q ( Q =το σύνολο των ρητών στο R ). Ένα υποσύνολο Α του R λέγεται ότι είναι πυκνό στον R αν, Α= R. R. R